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In this technical report our first experiences with a Convey HC-1 are documented. Several stencil application
kernels are evaluated and related work in the area of CPUs, GPUs and FPGAs is discussed. Performance of
the C and Fortran stencil benchmarks in single and double precision are reported. Benchmarks were run on
Blizzard – the IBM supercomputer at DKRZ –, the working group’s Intel Westmere cluster and the Convey
HC-1 provided at KIT.

With the Vector personality, performance of the Convey system is not convincing. However, there lies potential
in programming custom personalities. The major issue is to approximate performance of an implementation on
a FPGA before the time consuming implementation is performed.
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1 Introduction

The main motivation of this work is to do first steps with the Convey HC-1 and to assess the solution’s potential.
This work does not intent to answer all questions completely. Instead, we plan to further investigate the issue
together with HMK Supercomputing and Convey.

The report is structured as follows: First, a brief introduction to hardware architectures, limitations and
performance implications is given. Then, some related work and potential performance of stencil operations
are discussed. In section 3, excerpts of all evaluated application kernels are provided and discussed. Measured
performance on the three systems is assessed in section 4. Then, modifications needed to run applications on
the Convey HC-1 are shown. Further experiences are discussed in section 4.4.

1.1 Hardware Architectures

In this section a brief overview of the hardware architectures used in the evaluation are given.

1.1.1 Intel Westmere

Westmere is the 32 nm die shrink of the Nehalem multi-core microarchitecture. An overview is given in fig-
ure 1.11. A clock frequency of up to 3.46 GHz is possible.

Machine instructions are decoded and transformed into a sequence of micro-operations. Execution of the
instructions and micro-operations is performed out-of-order. One 128 bit operand can be loaded and another
one stored per cycle by the load and store units. The correct order is ensured by the Memory Order Buffer,
which also optimizes memory throughput.
In theory all ports (execution units) can operate concurrently, that is, one floating point add can be performed
on port 1 while one floating point multiplication is executed on port 0. In fact, both ports support SSE
instructions. Therefore, SIMD operations could be performed on two double precision or four single precision
at once, leading to an aggregated rate of eight single precision floating point operations per cycle.
The Nehalem microarchitecture, retires at most 4 micro-operations per cycle.
Fused multiply add units will be added around 2011 in the Haswell processor architecture. In the future –
introduced with Sandy Bridge – Intel Advanced Vector Extensions (AVX) will enhance the vector length to
256 bits, extensions to 512 or 1024 bits are expected. The alignment requirements of the data (currently 128 bit
boundaries) are expected to be relaxed.

There are a 32 KiB of L1 instruction cache and a 32 KiB of L1 data cache per core. Additionally, a L2 cache
with 256 KiB is available. All cores share a common L3 cache, which contains the contents of the L2 caches of
all cores (inclusive cache).
Memory bandwidth is limited by three channels per processor. For example, 1.333 GHz · 8 Bytes = 32 GByte/s.
NUMA interconnect between processors achieve 12.8 GByte/s in full-duplex per QPI link (the number of links
depends on the system).

More details of the architecture can be found in [12].
As a side node, data transfer from host to any accelerator connected via PCI Express2 is limited to 6.4 GByte/s.

1.1.2 IBM Power6

Power6 is a 65 nm dual core processor, which supports clock frequencies of up to 4.7 GHz.

Available execution units include two Fixed Point Units. Fixed point operations can perform 1 cycle back-to-
back execution on dependent instructions. Two binary floating point units each perform one fused multiply add
operation per cycle. In the pipeline, dependent operations can be started six cycles later. A SIMD unit allows
to process four single precision floating point or integer operations per cycle.

Instructions are stored in a 64 KByte L1 instruction cache and processed in-order. Fixed point operations could
operate concurrently with floating point operations. There are a 64 KByte L1 data cache and a 4 MByte L2
cache per core. All cores share one 32 MB L3 cache. Memory bandwidth is about 4 GByte/s per core.

More details about the microarchitecture can be found in [8, 10].

1Image source is from Wikipedia and licensed under Creative Commons Attribution-Share Alike 3.0 Unported
2Currently, PCI Express 2 with 16 lanes provides the highest speed. This will double with PCI Express 3.

4



Figure 1.1: Nehalem microarchitecture of the quad-core variant.

1.1.3 Convey HC-1

Convey HC-1 is a hybrid machine, which hosts one quad-core Xeon processor and one co-processor. In the dual
socket machine one processor is replaced by an interconnect to the co-processor, which consists of four Xilinx
Virtex-5 FPGAs and a memory subsystem. Memory configuration of the accelerator varies between 8 to 16
DDR2 channels (PC-5300/667 MHz), which achieve a maximum bandwidth of up to 80 GByte/s. A maximum
of 128 GByte of memory can be integrated. Convey allows to use COTS memory or special scatter-gather
memory, which allows data to be accessed in a fine granularity of 8 bytes instead of accessing whole cache lines
of 64 bytes.

There are several important aspects of the technology compared to GPU accelerated systems. Memory of the
host and co-processor can be accessed in a coherent way from both devices. However, device-local memory can
be accessed much faster. The FPGAs can be reprogrammed with custom execution units to match a particular
workload. Convey calls one configuration of the FPGAs a personality. Available personalities include a single
precision vector personality with 32 function pipes. Each pipe provides one SIMD instruction 4 fused multiply
add operations. Peak performance is at 76.8 Gflop/s (32 pipes · 4 FMA/pipe · 2 FLOP/FMA · 0.300 GHz).3 The
double precision personality has 16 function pipes.

Custom personalities can be created with the Personality Development Kit. The logic must be programmed in
Verilog using the development suite from Xilinx.

1.2 Stencil Operations

Iterative algorithms often update the value of a grid point depending on the values of the neighbors. A stencil
describes a fixed pattern of how to weight the neighbors and the old value of the grid point. An exemplary 2D
stencil, which smoothens/interpolates values of the grid is given below in pseudo code:

a = b = c = d = 0.25

for i: // for all rows

for j: // for all columns

m[i][j] = a * o[i][j+1] + b * o[i][j-1] + c * o[i-1][j] + d * o[i+1][j]

The performance of stencil operations depends on the memory bandwidth. In this case values for 4 neighbors
are read, 3 additions and 4 multiplications are done, and one value is updated. Dependencies between loop

3This text is modified in the revised version, as the frequency of a personality varies up to 300 MHz. Both vector personalities
run at 300 MHz and not at 150 MHz.
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iterations do not exist. Therefore, the loop elements can be processed independently (concurrently if possible).
An SIMD vectorization, however, is not directly applicable, because left and right neighbors are required for
the computation.
Due to the common use of stencil operations plenty of research has been conducted. In the following an excerpt
of performance numbers and achievements of recent research is provided.

In [6] multiple algorithms of 3D (double precision) stencil operations are evaluated on Itanium 2, Opteron,
Power5 and Cell architecture. Depending on the architecture, the optimizations necessary to achieve best
performance changes. The naive unaliased implementation already achieved 2 Gflop/s on the Power5 and
1.3 Gflop/s on the Itanium 2. However, the Itanium 2 can reach 1.7 Gflop/s with a complex cache usage
optimization. The Cell architecture won by achieving 5.5 Gflop/s at 2.4 GHz clock frequency and 7.3 Gflop/s at
3.2 GHz respectivly.

Automatic tuning of stencil codes towards an architecture is evaluated in [4]. The dimension of the double
precision 3D stencil grid is 2563. Evaluated systems are NVIDIA GTX280, AMD Barcelona (Opteron 2356),
Intel Clovertown (E5355) and IBM PowerXCell 8i. With one core about 1 Gflop/s was achieved on compute
systems and 2.3 Gflop/s on the Cell by using SIMD. To enable scaling on common CPU architectures more
sophisticated tuning is required. The influence of optimization methods with regards to different numbers
of cores is shown nicely, several optimization methods are introduced and evaluated. Enabling all discussed
optimizations leads to 2.5 Gflop/s on Clovertown (8 cores), 7 Gflop/s on Barcelona (8 cores), and 16 Gflop/s
on Cell Blade (16 cores). A naive first implementation on a GeForce GTX280 achieved 1.4 Gflop/s. In this
case, in each time step data is copied between host and GPU. If data could reside completely in device memory
10 Gflop/s can be achieved. 35 Gflop/s are possible with a modified scheme and without the overhead of copying
data between the host and device memory.

Newer results for the auto-tuning library ([5]) use a Laplacian, Divergence and Gradient 3D stencil and show
performance for several systems, among which are the Intel Nehalem and GTX280. The author assesses perfor-
mance limitations of the kernels and the architecture based on flop/s and memory bandwidth. The auto-tuned
Nehalem implementation is close to the theoretical peak performance of 10 Gflop/s for Laplacian, 6 Gflop/s for
Divergence kernels and 3.5 Gflop/s for the Gradient kernel. The GTX280 performance is 13, 15 and 9 Gflop/s
respectively. Further work of their group is to demonstrate the application of their auto-tuning to an icosahedral
atmospheric climate simulation.

Peng et.al. [9] provide a scheme to parallelize stencil operations with SIMD instructions by using shuffle op-
erations. In detail, they optimize stencil operations for the Lattice-Boltzmann method and finite-difference
time-domain for seismic code by using SIMD instruction level parallelism and node parallelism with MPI. Eval-
uation is performed on the following platforms: Cell, Intel quad-core, IBM BlueGene/L and BlueGene/P. The
spatial decomposition of the Lattice-Boltzman scaled up to 200,000 processors on the BlueGene/L. SIMD im-
proved the speed of the computation part of the parallel Lattice-Boltzman method by a factor of 3.5 on the Cell
with single precision. The SIMD technique was applied to the seismic code on a quad-core Xeon with 2.33 GHz,
achieving a speedup of 2–3 with varying numbers of threads.

In [7] a new Fast Iterative Method is proposed and implemented to solve a class of Hamilton-Jacobi equations.
On an NVIDIA GeForce 8800 GTX GPU a grid with the dimensions 256x256x100 this leads to a speedup of
100.

Jacobi’s iterative method for the 2D Poisson equation is optimized for GPUs in [13]. Additionally, hybrid code
utilizing GPUs and CPUs concurrently is discussed and evaluated. In the paper the authors discuss the Jacobi
method and several optimization techniques for GPUs. On an NVIDIA C1060 a single precision performance of
36 Gflop/s and double precision performance of 16 Gflop/s is observed. This corresponds to memory bandwidths
of 70 GByte/s (SP) and 60 GByte/s (DP). The overhead of data transfer between host and device is measured:
with 100 iterations performed in the GPU the data transfer is negligible.

Several GPU implementations for a single precision Jacobi solver are discussed in [1]. Additionally, CPU versions
are compared. The following GPUs are evaluated and embedded in different host systems: GeForce 8600GT,
GeForce 8800GT and GTX280. With the GPU between about 8 and 68 Gflop/s have been achieved (with an
observed memory bandwidth of up to 130 GByte/s). Results for the CPU are below 1 Gflop. However, a proper
comparison is missing and the CPU peak seems too high for the quad-core, because only one core is utilized.
Therefore, their comparison between GPU and CPUs must be critically assessed.

In [3] the 2D Jacobi method is evaluated on Tesla C870, C1060 and a Core 2 Quad Q9450 CPU. On the CPU
the best performance is observed with 1 core and 1 thread in most cases. However, tests were conducted with
up to 4 cores and 16 threads. On an input matrix with the dimension 81922 the C1060 outperformed the CPU
by a factor of 5.5. With a small matrix the CPU behaved better than a C870, but the C1060 was twice as fast.

In [2] Reverse Time Migration – the most advanced seismic imaging technique – is evaluated on Tesla C1060,
Cell and Xeon E5460. Additionally, a stencil implementation is discussed for the Convey HC-1. To estimate
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performance on the Convey HC-1 they consider memory bandwidth and available execution units on the Xilinix
FPGAs. The execution time of the problem was lowest with GPUs followed by FPGAs. Previous work done
in their group was an FPGA implementation on the Virtex-5 LX200 FPGA which showed a performance of
55.5 Gflop/s ([11]). Basically, they projected how a FPGA implementation on the Convey HC-1 would perform
based on the resources available on the FPGA and the knowledge gained by their previous work. Development
time for the GPU solution was lower due to the mature CUDA development tools.

Summing up, the related work confirms that – in tendency – optimization to an “acceptable” level of peak-
performance is easier on CPU architectures and harder on exotic architectures like Cell, GPUs and FPGAs.
However, to utilize available resources on modern CPUs vectorization of the stencil algorithm is required.
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2 Evaluation

To assess the behavior of the HC-1 system, several existing codes are run on one core of a Westmere Linux
Cluster, the Blizzard Power6 supercomputer at DKRZ and on the Convey HC-1. Application performance in
terms of flop/s are measured and compared. Code is run at least three times. In all cases consistent results
were observed.

2.1 Test Systems

Because only one logical CPU is used to assess performance, an introduction to aspects related to a single node
is sufficient. The floating point capabilities of one processor of each system are shown in table 2.1.

Westmere Linux Cluster

Nodes on the Linux Cluster are equipped with two Intel Westmere hexa-core CPUs at 2.6 GHz (Intel Xeon
5650). 12 GByte of memory operate at 1,333 MHz. Ubuntu 10.04 is installed with a 2.6.32-24-server kernel.
Code was compiled with GCC 4.4.3. For the measurement the TurboBoost feature was disabled, although it
improves performance of our examples by 15%.

Blizzard Power6 Supercomputer

One node of the IBM supercomputer consists of 16 node cards each with a IBM Power 6 at 4.7 GHz. Blizzard
runs with AIX 6.1. On the system GCC 4.4.2 and the IBM compilers XL C/C++ for AIX (V10.1) and XL
Fortran for AIX (V12.1) are available.

Convey HC-1

Thanks to the Karlsruhe Institute of Technology and HMK Supercomputing access to a Convey HC-1 in
Karlsruhe was possible.

We used the following compiler version:

Convey64 Compiler Suite: Version 2.0.0

Built on: 2010-07-14 07:30:59 -0500

Thread model: posix

GNU gcc version 3.3.1 (Convey64 2.0.0 driver)

Portions Copyright (c) 2007-2010 Convey Computer Corporation

Portions Copyright (c) 2002-2005 PathScale, Inc.

Portions Copyright (c) 2000-2001 Silicon Graphics, Inc.

All Rights Reserved.

Convey64 Compiler Suite: Version 2.0.0

Built on: 2010-07-14 07:30:59 -0500

Thread model: posix

GNU gcc version 4.2.0 (Convey64 2.0.0 driver)

Intel Westmere IBM Power6 Convey HC-1

processor 32nm die shrink 65nm dual core Xilinx Virtex5
Nehalem multicore FGPA co-processor

clock frequency 2.66 GHz 4.7 GHz 0.300 GHz
floating point operations:
single precision 8 per cycle 4 + 4 (VMX) per cycle 4 · 2 per cycle
double precision 4 per cycle 4 per cycle 4 · 2 per cycle
single precision Gflop/s 21.28 per core 36.4 per core 2.4 per pipe
double precision Gflop/s 10.64 per core 18.8 per core 2.4 per pipe

Table 2.1: Floating operation capabilities of available hardware architectures.
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3 Compute Kernels

Compute kernels are split into three groups. The first one is an example provided by Convey which was already
ported to the HC-1. The second one consists of stencils taken from a 2D Jacobi PDE solver. The last set of
examples is a benchmark of index methods for an ocean model. Some applications are coded in Fortran and
some in C.

3.1 Convey Example

Convey provides an example of a 3D stencil kernel in Fortran and in C. Both use single precision floating point
operations.

Listing 3.1: Convey Fortran 3D kernel

integer ( 8 ) , parameter : : NX=1000 , NY=1000 , NZ=100

do k=2,NZ−1
do j =2,NY−1

do i =2,NX−1
p2 ( i , j , k ) = sp∗p1 ( i , j , k ) + sx1 ∗ p1 ( i −1, j , k ) &

+ sx2 ∗ p1 ( i +1, j , k ) &
+ sy1 ∗ p1 ( i , j −1,k ) &
+ sy2 ∗ p1 ( i , j +1,k ) &
+ sz1 ∗ p1 ( i , j , k−1) &
+ sz2 ∗ p1 ( i , j , k+1)

enddo
enddo

enddo

3.1.1 Convey example only additions

The Convey example is rewritten to use only additions. Architectures which allow concurrent additions and
multiplications could be briefly rated. For example, Power6 allows fused multiply add operations and Westmere
has execution units to process both operations concurrently.

Listing 3.2: Convey Fortran 3D kernel modified to use only additions

p2 ( i , j , k ) = sp+p1 ( i , j , k ) + sx1 + p1 ( i −1, j , k ) &
+ sx2 + p1 ( i +1, j , k ) &
+ sy1 + p1 ( i , j −1,k ) &
+ sy2 + p1 ( i , j +1,k ) &
+ sz1 + p1 ( i , j , k−1) &
+ sz2 + p1 ( i , j , k+1)

3.2 Jacobi PDE Solver

The Jacobi PDE application iteratively solves the Poisson equation in a 2D grid. The size of the grid and the
iteration or accuracy can be specified on the command line. In the example a dimension of 800x800 with an
iteration count of 10,000 is used.

Listing 3.3: Original C kernel of the Jacobi PDE

for ( i =1; i<N; i++) /∗ over a l l rows ∗/
{ /∗ ∗/

for ( j =1; j<N; j++) /∗ over a l l columns ∗/
{

s t a r = Matrix [m2 ] [ i −1] [ j ] + Matrix [m2 ] [ i ] [ j −1]
+ Matrix [m2 ] [ i ] [ j +1] + Matrix [m2 ] [ i +1] [ j ]
− 4 .0∗Matrix [m2 ] [ i ] [ j ] ;

9



residuum=getResiduum ( i , j , s t a r ) ;
kor rektur=residuum ;
// i f ( residuum<0) residuum=residuum ∗(−1);
residuum = ( residuum<0) ? −residuum : residuum ;
// t r a c k the maximum residuum to approximate the er ror .
maxresiduum = ( residuum < maxresiduum ) ? maxresiduum : residuum ;
Matrix [m1 ] [ i ] [ j ]=Matrix [m2 ] [ i ] [ j ]+ kor rektur ;

}
}
. . .

double getResiduum ( int x , int y , double s t a r )
{

i f ( i n f f u n c==FUNC F0)
return s t a r ∗0 . 2 5 ;

. . .
}

3.2.1 Jacobi PDE solver simple stencil

The branching and function call inside the original C kernel prevents vectorization, therefore, a reduced kernel
is measured, too.

Listing 3.4: Simplified loop for the PDE solver

for ( i =1; i<N; i++) /∗ over a l l rows ∗/
{ /∗ ∗/

for ( j =1; j<N; j++) /∗ over a l l columns ∗/
{

Matrix [m1 ] [ i ] [ j ]= ( Matrix [m2 ] [ i −1] [ j ] + Matrix [m2 ] [ i ] [ j −1]
+ Matrix [m2 ] [ i ] [ j +1] + Matrix [m2 ] [ i +1] [ j ]

) ∗ 0 .25 ;
}

}

3.2.2 Manual loop body optimization

Naturally, equations are evaluated strictly from left to right, which prevents concurrent computation within one
expression. Depending on the flags, a compiler could change the order. The presented manual loop body allows
to perform two independent additions explicitly.

Listing 3.5: Manual loop body optimization

register double a = Matrix [m2 ] [ i −1] [ j ] ;
register double b = Matrix [m2 ] [ i ] [ j −1] ;
register double c = Matrix [m2 ] [ i ] [ j +1] ;
register double d = Matrix [m2 ] [ i +1] [ j ] ;

register double e = a + b ;
register double f = c + d ;
Matrix [m1 ] [ i ] [ j ]= ( e + f ) ∗ 0 .25 ;

3.2.3 Explicit pointer aliasing

Optimizing pointer access in C depends on the C aliasing rules. In C99, the “restrict” keyword specifies that
a pointer argument does not alias any other pointer argument. The impact of the proper usage of the C99
feature is tested on the code. Both GCC and XLC explicitly honor the restrict keyword.

3.2.4 Jacobi PDE solver single precision

In this test the Jacobi simple stencil is modified to use single precision floating point arithmetic.
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3.3 ECOHAM

Stencil operations are common in climate simulations. Especially, physical processes are described by partial
differential equations, which are often expressed by the finite-difference method. Modeling of ocean processes
relies on the topography, which defines the regions of land and the depth of the ocean. For the simulations the
underlying topography will be expressed by a discrete 3-dimensional grid or matrix, respectively. This matrix
defines the topology of the simulated parameters. However, only wet points – that is, grid points with water
– and their neighbors are of interest for the simulations. Grid points with land are useless. There are plenty
possible ways to index the grid, while the best index method depends on the architecture and compiler. The
implementation allows to use single and double precision.

In our example we chose the topography of the North Sea, with a spatial resolution of approximately 3 km, the
latitude is decomposed by 380 grid points and the longitude is decomposed by 414 grid points. The depth is
decomposed by 30 levels. The ratio of the wet grid points to all grid points is 20%.

Five different grid indexing methods have been chosen for evaluation.

3.3.1 3D indexing of the whole grid

The first indexing method is similar to the Convey example, only with different array dimensions. The whole
3-dimensional grid is indexed and the calculation includes all grid points. Values for land points are simply 0
and they do not matter for the simulation.

Listing 3.6: 3D indexing with calculation for all grid points (similar to the Convey example)

integer (kind=4) , parameter : : iMax=380 , jMax=414 , kMax=30

do i = 2 , iMax−1 ! over a l l l a t t i t u d e s / rows
do k = 2 , kMax−1 ! over a l l depth l e v e l s

do j = 2 , jMax−1 ! over a l l l o n g i t u d e s / columns
p2 ( j , k , i ) = sp∗p1 ( j , k , i ) + sy1 ∗ p1 ( j −1,k , i ) &

+ sy2 ∗ p1 ( j +1,k , i ) &
+ sz1 ∗ p1 ( j , k−1, i ) &
+ sz2 ∗ p1 ( j , k+1, i ) &
+ sx1 ∗ p1 ( j , k , i −1) &
+ sx2 ∗ p1 ( j , k , i +1)

enddo
enddo

enddo

3.3.2 3D indexing of the wet grid points

The second indexing keeps the whole 3-dimensional grid in memory, but only the wet grid points are computed.

Listing 3.7: 3D indexing with calculation for the wet grid points

integer (kind=4) , parameter : : iMax=380 , jMax=414 , kMax=30

! counts the wet g r i d p o i n t s f o r each row and depth l e v e l :
! jWet ( k , i )
! c a l c u l a t e s the index j f o r each jWet ( k , i ) :
! jWet3D ( jWet , k , i )

do i = 2 , iMax−1 ! over a l l l a t t i t u d e s / rows
do k = 2 , kMax−1 ! over a l l depth l e v e l s

do i j = 1 , jWet (k , i ) ! over wet g r i d p o i n t s &
j = jWet3D( i j , k , i ) ! o f a l l l o n g i t u d e s / columns
west = p1 ( j −1,k , i ) ! because than i t runs f a s t e r
ea s t = p1 ( j +1,k , i )
above = p1 ( j , k−1, i )
below = p1 ( j , k−1, i )
north = p1 ( j , k , i −1)
south = p1 ( j , k , i +1)
cente r = p1 ( j , k , i )
p2 ( j , k , i ) = sp∗ cente r + sy1 ∗ west &

+ sy2 ∗ ea s t &
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+ sz1 ∗ above &
+ sz2 ∗ below &
+ sx1 ∗ north &
+ sx2 ∗ south

enddo
enddo

enddo

3.3.3 1D indexing of the wet grid points and their related dry neighbor grid points

In the following, three ways of how to pack the 3-dimensional grid points into a 1D vector are described.

The 3-dimensional wet grid points and their related dry neighbor points are packed into a vector. Therefore,
a mask of the wet points and their related dry neighbor points is created and packed with the Fortran routine
pack(). This routine preserves the memory packing order of the 3-dimensional order, therefore, the grid (j, k, i)
is stored in the order j, k, i.

To keep the implementation simple – compared to the 3D indexing of just the wet points – points on the
boundary are included in the computation.

Listing 3.8: 1D indexing of the wet grid points and their related points

integer (kind=4) , parameter : : iMax=380 , jMax=414 , kMax=30

! counts the wet g r i d p o i n t s :
! CountWetPoints
! counts the wet g r i d p o i n t s and t h e i r s r e l a t e d dry g r i d p o i n t s :
! CountWetRelatedDryPoints

! i n i t i a l i s i n g v e c t o r out o f the pack o f the wet g r i d p o i n t s and
! t h e i r r e l a t e d neighbour p o i n t s in the 3D g r i d :
! p1 ( CountWetRelatedDryPoints )

! c a l c u l a t e s the index o f wet p o i n t s in the v e c t o r p1 :
! CalcPoints ( CountWetPoints )

! c a l c u l a t e s the index o f the r e l a t e d p o i n t s in the v e c t o r p1 :
! CalcWestPoints ( CountWetPoints ) , CalcEastPoints ( CountWetPoints )
! CalcAbovePoints ( CountWetPoints ) , CalcBelowPoints ( CountWetPoints )
! CalcNorthPoints ( CountWetPoints ) , CalcSouthPoints ( CountWetPoints )

cente r => p1
west => p1 ; ea s t => p1
above => p1 ; below => p1
norht => p1 ; south => p1

do i = 1 , CountWetPoints
p2 ( CalcPoints ( i ) ) = sp ∗ cente r ( CalcPoints ( i ) ) &

+ sy1∗west ( CalcWestPoints ( i ) ) &
+ sy2∗ ea s t ( CalcEastPoints ( i ) ) &
+ sz1 ∗above ( CalcAbovePoints ( i ) ) &
+ sz2 ∗below ( CalcBelowPoints ( i ) ) &
+ sx1∗north ( CalcNorthPoints ( i ) )
+ sx2∗ south ( CalcSouthPoints ( i ) )

enddo

3.3.4 1D indexing of the wet grid points

Now only the 3-dimensional wet grid points are packed into a vector. Like in the previous implementation
the Fortran function pack() is used. To avoid conditions in the code one additional element is appended as a
dummy to represent dry neighbor grid points. All dry points reference this dummy.

Listing 3.9: 1D indexing of the wet grid points and their related points

integer (kind=4) , parameter : : iMax=380 , jMax=414 , kMax=30
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3D all 3D wet 1D wet 1D wet 1D wet
+ related dry fixed ordering

Lattitude: iMax 380 380 380 380 380
Longitude: jMax 414 414 414 414 414
Depth : kMax 30 30 30 30 30
Array Dimensions jMax, jMax, wet points wet points wet points

kMax, kMax, + related dry
iMax iMax points

Array Elements 4719600 4719600 1060980 952450 952450
Array Size 18.9 MByte 18.9 MByte 4.2 MByte 3.8 MByte 3.8 MByte
Valid Points 4360608 862170 952450 952450 952450
of Calculation

Table 3.1: Summary of ECOHAM indexing variants (single precission).

! counts the wet g r i d p o i n t s :
! CountWetPoints

! i n i t i a l i s i n g v e c t o r out o f the pack o f the wet g r i d p o i n t s
! and one a d d i t i o n a l e lement wi th v a l u e n u l l , which are
! f o r a l l land g r i d p o i n t s
! p1 ( CountWetPoints )
! p1 (0) = 0 .

! c a l c u l a t e s the index o f the r e l a t e d p o i n t s in the v e c t o r p1 :
! RelatedWestPoints ( CountWetPoints ) , Re la tedEas tPoints ( CountWetPoints )
! RelatedAbovePoints ( CountWetPoints ) , RelatedBelowPoints ( CountWetPoints )
! Re la tedNorthPoints ( CountWetPoints ) , Re la tedSouthPoints ( CountWetPoints )

do i = 1 , CountWetPoints
west ( i ) = p1 ( RelatedWestPoints ( i ) )
ea s t ( i ) = p1 ( RelatedEastPoints ( i ) )
above ( i ) = p1 ( RelatedAbovePoints ( i ) )
below ( i ) = p1 ( RelatedBelowPoints ( i ) )
north ( i ) = p1 ( RelatedNorthPoints ( i ) )
south ( i ) = p1 ( RelatedSouthPoints ( i ) )

enddo

do i = 1 , CountWetPoints
p2 ( CalcPoints ( i ) ) = sp∗ cente r ( i ) + sy1∗west ( i ) &

+ sy2∗ ea s t ( i ) &
+ sz1 ∗above ( i ) &
+ sz2 ∗below ( i ) &
+ sx1∗north ( i ) &
+ sx2∗ south ( i )

enddo

3.3.5 1D indexing of the wet grid points with fixed order (ECOHAM)

In this indexing method the 3 dimensional wet grid points are packed into a vector. The ordering of the packing
is fixed to first store by depth levels (k), second by longitudes (j) and third by latitudes (i). This original
indexing approach is used for biological processes which depend only on local processes. Dry neighbors are not
important in this case. Related dry neighbor grid points are neglected and the index is set to the local grid
point.

Listing 3.10: 1D indexing of the wet grid points and their related points

integer (kind=4) , parameter : : iMax=380 , jMax=414 , kMax=30

! counts the wet g r i d p o i n t s :
! CountWetPoints
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! i n i t i a l i s i n g v e c t o r o f the wet g r i d p o i n t s wi th
! f i x e d orde r in g : 1 . depth l e v e l s ( k ) ,
! 2 . l o n g i t u d e s ( j ) , 3 . l a t t i t u d e s ( i )
! p1 ( CountWetPoints )

! c a l c u l a t e s the index o f the r e l a t e d p o i n t s in the v e c t o r p1 :
! RelatedWestPoints ( CountWetPoints ) , Re la tedEas tPoints ( CountWetPoints )
! RelatedAbovePoints ( CountWetPoints ) , RelatedBelowPoints ( CountWetPoints )
! Re la tedNorthPoints ( CountWetPoints ) , Re la tedSouthPoints ( CountWetPoints )

do i = 1 , CountWetPoints
p2 ( j , k , i ) = sp∗p1 ( i ) + sy1∗p1 ( RelatedWestPoints ( i ) ) &

+ sy2∗p1 ( RelatedEastPoints ( i ) ) &
+ sz1 ∗p1 ( RelatedAbovePoints ( i ) ) &
+ sz2 ∗p1 ( RelatedBelowPoints ( i ) ) &
+ sx1∗p1 ( RelatedNorthPoints ( i ) ) &
+ sz1 ∗p1 ( RelatedSouthPoints ( i ) ) &

enddo
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4 Results

Compilation of the source code is done mainly with “-O3”. GCC is used with the profile feature. That is, code
is compiled with profiling, run and then recompiled by using knowledge about the runtime behavior to optimize
it. This leads to additional performance gains of about 10 percent on the Intel system.

4.1 Convey Example

A comparison between the compute clusters and compiler flags used is shown in figure 4.1. The efficiency in terms
of peak-performance is given in figure 4.3. Using GCC a single Westmere core delivers the highest performance
for the C code. Fortran and C are both identically fast on the Westmere. The code is not vectorized with SIMD
instructions due to the algorithmic specification. Therefore, two flop could be achieved per cycle (2.66 GHz).
This corresponds to 73.7% of the potential performance the algorithm could achieve on the architecture. The
variant in which only additions are performed achieves 1390 Mflop/s, which is about 50.5% of the achievable
performance. This is due to the fact that only the floating point adder unit is used. Performance of a single
precision variant achieved similar performance.

On Blizzard, the C compiler from IBM achieves a performance of about 1380 Mflop/s, which is similar to GCC.
Output of hpmccount to profile hardware counters are shown in 4.1. This corresponds to 7.3 percent of the
peak performance or 8.6 percent of the achievable performance on the architecture (6 out of 7 operations for
the expression could be fused multiply add operations, both floating operation units could work concurrently).
At this point a deeper investigation is necessary.

First, it should be checked whether there are any unnecessary operations added by the compiler. The total
amount of floating point operations is approximately the ones needed to perform the computation. Every 2.5th
instruction is one floating point instruction (PM RUN INST CMPL/PM FPU FLOP = 2.51). Most operations are
fused multiply operations, that is, one and a half operation is needed to prepare the floating point operation.
7 operands must be loaded and the result must be stored. 7 floating point instructions are needed to perform
the calculation. Therefore, approximately 3 additional instructions per loop iteration are needed.

Second, the value of instructions per run cycle (IPC ) is low, that is, smaller than 1 and therefore the operations
stall on the CPU. Checking the assembler showed loop unrolling is done. However, the processing is different
to the Fortran compiler. The problem is shown in listing 4.2. In C, the compiler enforced proper evaluation of
the expressions, from left to right (no register renaming on Power6). On a Power6 the pipeline takes 6 cycles
to feed results from the FPU back. Therefore, during the main computation of a loop iteration 25 cycles are
wasted: 15 instructions are run in approximately 35 cycles, which results IPC of 2.33. The reason for the stall
is found as the C compiler generates very inefficient assembler for the problem code.

Listing 4.1: Excerpt of hpmcount for the Convey example in C

Total amount o f time in user mode : 37 ,135217 seconds

I n s t r u c t i o n s per run c y c l e : 0 ,397
Total f l o a t i n g po int ope ra t i on s : 50756 ,370 M
Flop ra t e ( f l o p s / WCT) : 1361 ,546 Mflop/ s
Algebra i c f l o p ra t e ( f l o p s / WCT) : 1361 ,546 Mflop/ s
FMA percentage : 92 ,308 %
% of peak performance : 7 ,251 %

PM FPU 1FLOP (FPU executed one f l o p i n s t r u c t i o n ) : 3904339462
PM FPU FMA (FPU executed mult ip ly−add i n s t r u c t i o n ) : 23426015170
PM FPU FSQRT FDIV (FPU executed FSQRT or FDIV i n s t r u c t i o n ) : 21
PM FPU FLOP (FPU executed 1FLOP, FMA, FSQRT or FDIV i n s t r u c t i o n ) : 27330354653

PM L2 LD REQ DATA (L2 data load r e q u e s t s ) : 1486489341
PM L2 LD MISS DATA (L2 data load misses ) : 738380370
PM L2 ST REQ DATA (L2 data s t o r e r e q u e s t s ) : 976719243
PM L2 ST MISS DATA (L2 data s t o r e mis se s ) : 244632483
PM RUN INST CMPL (Run i n s t r u c t i o n s completed ) : 69465854554
PM RUN CYC (Run c y c l e s ) : 174948086689
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Figure 4.1: Stencil operation example from Convey run on compute architectures.

Listing 4.2: Assembler code excerpt for the XLC compiler output

s t f s fp0 , 4 ( r25 )
l f s fp10 , 8 ( r28 )
fmuls fp0 , fp2 , fp10
l f s fp8 , 8 ( r26 )
l f s fp9 , 4 ( r24 )
l f s fp10 , 8 ( r27 )
l f s fp11 , 8 ( r23 )
l f s fp12 , 0 ( r24 )
l f s fp13 , 8 ( r24 )
fmadds fp0 , fp1 , fp9 , fp0
fmadds fp0 , fp3 , fp8 , fp0
fmadds fp0 , fp4 , fp10 , fp0
fmadds fp0 , fp5 , fp11 , fp0
fmadds fp0 , fp6 , fp12 , fp0
fmadds fp0 , fp7 , fp13 , fp0

With Fortran the IBM compiler works better. Note that including these optimizations the Fortran compiler
reorders the evaluation of the expressions, which means that the numeric differs from normal evaluation. If a
user enforces proper evaluation, the created assembler code will probably look similar to the one created for the
C Code. In theory, better optimization of the loop is possible to gain both performance and accuracy. This,
however, requires manual tuning. Interestingly “-O3” achieved 6,700 Mflop/s while “O5” reported 4,610 Mflop/s.
6,700 Mflop/s are about 35 % of the hardware peak performance.

Looking at the hardware counter revealed that additional compiler optimization reduced the total number of
floating point operations. However, the total number of floating point operations is increased. In detail, the
fused multiply add operations are reduced but many more single floating point operations are created.

The tests in which a shorter loop is used to demonstrate the (well known) necessity of long inner loop bodies.
In the case in which only additions are used, the Westmere architecture is limited to one flop/cycle. This cuts
performance almost to a half. The Power6 does not suffer so much, yet the efficiency of the system lacks behind
Westmere.

Now we compare the results with the results measured on the Convey HC-1. Performance results are visualized
in figure 4.2. With proper compiler pragmas, the Convey compiler achieves 22 Gflop/s, which corresponds to
28% of the system peak performance with the vector personality. This high efficiency requires that the SIMD
feature is used by the compiler.

4.2 Jacobi PDE Solver

Results for the 2D PDE solver are provided in figure 4.4. The modified code to run it on the system is shown
in listing 4.3. About 2 Gflop/s are measured on the Westmere. Due to the problem statement and without
the programmer’s knowledge the compiler can achieve at most 2.66 Gflop/s. Performance on the Blizzard is
low due to IBM’s XLC compiler. For the original program the additional optimizations with “-O5” improved
performance of the original problem at least to the level of the simple stencil kernel. Single precision improves
performance only slightly. However, in the Convey case, more pipelines can be implemented in the FPGA than
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Figure 4.2: Stencil operations example from Convey – comparison between HC-1 performance and others.
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Figure 4.3: Efficiency of the stencil operation example from Convey.
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Figure 4.4: Variants of a Jacobi PDE solver.

for the double precision case. The performance on the Convey system sticks behind the results for the 3D
stencil.

Listing 4.3: Jacobi PDE solver simple stencil with Convey pragmas

#pragma cny d u a l t a r g e t (1 )
void c a l c u l a t e (double ∗ r e s t r i c t ∗ r e s t r i c t tm ,

double const ∗ r e s t r i c t ∗ r e s t r i c t sm , int n)
{

long i , j ; /∗ l o c a l v a r i a b l e s f o r l o o p s ∗/
double va l = 0 . 2 5 ;

#pragma cny array (tm [ n ] [ n ] )
#pragma cny array (sm [ n ] [ n ] )

for ( i =1; i<n−1; i++) /∗ over a l l rows ∗/
{

#pragma cny no loop dep (tm , sm , Matrix )
for ( j =1; j<n−1; j++) /∗ over a l l columns ∗/
{

tm [ i ] [ j ]= ( sm [ i −1] [ j ] + sm [ i ] [ j −1] + sm [ i ] [ j +1] + sm [ i +1] [ j ] ) ∗ va l ;
}

}
}
#pragma cny d u a l t a r g e t (0 )

int main ( ){
. . .
#pragma cny beg in coproc

c a l c u l a t e ( Matrix [m1] , Matrix [m2] , N+1); /∗ s o l v e the equat ion ∗/
#pragma cny end coproc
. . .
}

The manual loop body optimization to enable concurrent processing of the equation improves the performance
on Westmere from 3,900 Mflop/s to 4,180 Mflop/s. On Blizzard, the manual loop body does not improve
performance, because the evaluation of equations is reordered by the XLF compiler.
A few additional tests have been performed to evaluate performance of higher (and lower) dimensions for the
matrix. Due to cache misses, performance of all CPU systems is reduced, but efficient pre-fetching mostly
mitigates the performance loss. The values provided in this section are created by using the best parameter set
we found.

4.3 ECOHAM

Porting the Fortran code to the Convey required some minor modifications. Basically the loop had to be
extracted into a separate function – see section 4.4 for more information. Results for the different indexing
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Figure 4.5: Efficiency of variants of a Jacobi PDE solver.
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Figure 4.6: Index variant evaluation for a climate code.

methods are provided in figure 4.6. The application performance reported does not care about additional
computation for dry points. Therefore, the really interesting flop/s for the “3DAll” case must be multiplied
with 0.2, because roughly 20% points are wet points. The best indexing method is “1DWet”. Interestingly, on
the Westmere architecture the achievable flop/s are higher than for “1DWet”, for Blizzard and Convey “1DWet”
wins. With “1DWet” 17 Gflop/s can be observed on the Convey HC-1. However, on Blizzard 6 Gflop/s were
measured on a single core already. With double precision the results on the compute architecture are similar,
therefore only the single precision results are shown here.

4.4 Experience with the Convey HC-1

The Linux environment and documentation allows to do first steps rapidly. A modified Open64 compiler allows
to specify personalities to use during the code compilation. During the compilation the proper personality must
be selected. Plenty of documentation exists for the developer. It discusses modifications necessary to port code
to the convey. A very useful example is the Convey Programmers Guide. Due to the coherent memory between
FPGA and host an incremental parallelization is possible. Reserving memory on the proper device or migrating
frequently accessed data is required to achieve good performance. Memory allocation on the co-processor and
migration were both tested, and are easy to use.

Without proper data location the observed performance was about 4 Mflop/s, which is less than 1/1000 of
observable performance. During the experiments sometimes the compiler did not vectorize loops. However, as
the compiler reports statistics about vectorized loops, those could be localized. For a loop the compiler shows
the number of all operation types (binary, logical, ...) which are in the loop. Running loops on the co-processor
which are not vectorized causes a dramatic performance loss, which is similar to the case where data is allocated
on the wrong device.
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Figure 4.7: Efficiency of the index variants for a climate code.

Porting Fortran code to the Convey is easier than porting C, because by default Fortran has more strict aliasing
rules and avoids pointers. Therefore, the compiler can make more assumptions about data usage.

During the evaluation we contacted Convey about some minor issues and a compiler bug which prohibited
vectorization on one example code. The answer was prompt and accurate, a few days later the compiler bug
was fixed by their compiler team.

There are several restrictions to co-processor code. For example, no I/O or system call can be made on the co-
processor, and no function can be called which is not compiled for the co-processor. In our examples in Fortran
we dynamically allocated the matrix. Unfortunately, the compiler could not vectorize the loops. Refactoring
the code by extracting the loops into a separate function for the co-processor fixed this issue.

Several environment flags help to assess usage of the FPGA. We extensively used a flag which prevents code to
run if the co-processor cannot be used. Another flag counts the number of calls to the co-processor.

The Convey Open64 compiler is a bit behind the current compilers. For example, the file extension F03 is not
detected.
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5 Conclusions

In this first report we could get a first glance at the Convey system and we could evaluate some low-level
performance aspects on our systems. Compilers and code often have plenty of room for optimization, which
is especially true for the C compiler on Blizzard. The Westmere architecture is very efficient for the given
problems. Due to the problem statement vector instructions could not be used. However, there are approaches
to rewrite stencil operations accordingly to improve performance. There is the need to assess performance
furhter, even by inspecting assembler code and assessing hardware capabilities for the given case.

The Convey HC-1 has the potential to be used for general purpose computation. Even though the system is
still new, the documentation and provided software look rather mature. Even though the provided compiler
is not the newest version, it works well. However, on Convey 22 Gflop/s were measured on the FPGA. If one
compares this to the 4 Gflop/s on a single core of a commodity CPU the high initial costs of the new solution
probably can not persuade common application developers.

Development on GPUs is now common practice and is applicable for many problems. For example the Testla
C2070 achieves up to 630 Gflop/s in double precision. Memory is limited to 6 GByte. The price of the GPU
accelerator is about 3,500$. In the related work we cited work which achieved 36 Gflop/s with the older
generation of GPUs. Compared to the Convey HC-1 GPU programming does not allow the easy incremental
parallelization of the Convey, data localization must be handled manually. A kernel on a GPU looks different
from the sequential code, on the Convey system the code is identical and can still be compiled on other compilers.
Portland Group’s GPU compiler might help to utilize the GPU to some extent. However, deeper understanding
of the hardware and software is necessary to exploit the hardware’s full potential.

With the coming Knight family – which reaches approximately 512 Gflop/s – from Intel the easy CPU pro-
gramming model can be applied directly to accelerators. Unfortunately, to utilize this approach completely
converting code to vector operations is mandatory as the system will provide full performance only on 512 bit
vectors. However, as it will require a shorter training period to gain some performance out of the box, this
seems to be the way to go for large codes which must not run at full performance – for instance, because they
are not run 24/7.

For long-running climate codes, that is, a few codes which burn half the CPU hours per year performance gains
are vital. Unfortunately, the true strength of re-programming the FPGA – to gear the co-processor towards
the application – could not be evaluated by us. Related work in this area shows that an stencil kernel could
be implemented efficiently, although recent GPUs deliver a better performance. As all high performance imple-
mentations require a deep understanding of the software kernel and hardware characteristics, hand-optimized
code is faster.

5.1 Future Steps

The main considerations for us are to approximate the potential performance of an equation – or algorithm –
before they run on a given architecture. A theoretical performance assessment allows to estimate best perfor-
mance a compiler could deliver on a given system. We will work in this direction to tighten performance bounds
on our architectures.

To proof the usefulness of the Convey approach to existing codes it seems mandatory that performance can
be estimated on the system before a new personality is written. In this context the estimation of how much
space particular executions require on the FPGA and of how many cycles are needed to perform the operation
can guide the direction. Let us assume, for instance, that in the best case 50 double precision adders could
be implemented on each Xilinx FPGA. Each could perform one flop/s, which means that 200 Gflop/s could
be achieved. To compute this bound one could consider memory limitations, and the size and number of
lookup-tables, flip-flops and provided higher level execution units.

HMK Supercomputing promised to provide estimates for potential implementations to avoid doing time con-
suming research and implementations if the potential does not suffice for the code. By providing some rough
space estimates for execution units this would enable us to check existing code for routines which could be
implemented efficiently on the Convey HC-1. Then, a closer inspection of the code blocks by Convey should
tighten these bounds. Finally, this will allow us to determine the benefit to port these applications to the
Convey HC-1.
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