
Copyright University of Reading

INVESTIGATING READ PERFORMANCE OF
PYTHON AND NETCDF WHEN
USING HPC PARALLEL FILESYSTEMS

Matthew Jones | Jon Blower | Bryan Lawrence | Annette Osprey

1

Matthew Jones

m.jones3@pgr.reading.ac.uk

MOTIVATION
• Atmospheric data analysis

getting difficult due to very large
data sets (10-20PB for CMIP6)

• Parallel analysis one way of
dealing with this

• But throwaway scripts

• Many different levels in software
hardware stack can affect
analysis script

• Need to understand
contributions of each layer to
write efficient analysis script

2

BACKGROUND
• NetCDF4 widely used to store data in

Atmospheric science

• Binary format which is metadata rich

• Portable and can be used to store large
datasets

• Built on HDF5, which allows chunking and
compression

• File can also be striped in parallel file
system

• All these can interact but initially need to
see effect of NetCDF4

3

BACKGROUND
• As well as file type access pattern can play

a large role

• In standard [t,z,y,x] layout only maps are
contiguous

• For any other slice access pattern is
striding or hopping through file

• Data generally stored in a repository so
written once and read from many times

4

AIMS
• How much do read sizes affect read rate?

• How much does read pattern affect read rate?

• How much does using Python affect read rate?

• How much does using NetCDF4 files affect read rate?

5

METHOD
• Range of buffer sizes from 512b doubling to 1GiB

• Large files of ‘plain’ binary and NetCDF4 – double size of RAM

• 1D

• Build layers of complication:

• C reading from plain binary file

• Python reading from plain binary file

• C reading from NetCDF4 file

• Python reading from NetCDF4 file

• Three different read patterns:

• Sequential

• Striding

• Random 6

METHOD
Sequential read

f = open(filename)

for number of buffers :

 data = f.read(buffersize)

striding read

f = open(filename)

readoffset = 0

for number of buffers :

 f.seek(readoffset)

 data = f.read(buffersize)

 readoffset = readoffset + 4*buffersize 7

METHOD
Random read

f = open(filename)

readoffsets = genrandoffsets(length=100)

for offset in readoffsets :

 f.seek(offset)

 data = f.read(buffersize)

8

METHOD
• Sequential read simulates best case scenario for a read

• Striding read simulates typical read pattern from slice which non
sequential with regular strides

• Random read simulates worst possible read

• Lustre and GPFS platforms only have C tests reading from a binary file to
ascertain any major differences

• Panasas platform has all tests

9

BASELINE PERFORMANCE
• Reads using python and C from ‘plain’ binary file on Panasas

10

Grey – C
Black - python

BASELINE PERFORMANCE

11

• Reads using C from ‘plain’ binary file on Lustre

BASELINE PERFORMANCE

12

• Reads using C from ‘plain’ binary file on GPFS

BASELINE PERFORMANCE

13

• Little difference between C and python when reading from plain binary
files

• Different read patterns have large effect on read rate – due to read ahead
on sequential reads

• Drop of read rate at small buffer size agrees with other literature

NETCDF PERFORMANCE
• Reads from NetCDF4 unchunked file using NetCDF4-python and C

NetCDF library

14

Grey – C
Black - python

NETCDF PERFORMANCE
• h5netcdf library sequential reads – grey C netcdf, black diamonds

netCDF4-python, black squares h5netcdf

• h5netcdf similar to plain binary reads (not shown) and C NetCDF reads at
large buffer size

• Also, library always reads at least 64KiB

15

NETCDF PERFORMANCE
• Notable drop in performance when

using NetCDF4-python

• Caused by CPU limited behaviour in
the library

16 h5netcdf

C NetCDF

netCDF4-python

NETCDF PERFORMANCE
• C NetCDF4 reads similar to reading from plain binary file

• No drop in performance purely from NetCDF4

• Notable drop in performance when using NetCDF4-python

• Caused by CPU limited behaviour in the library

• Also, Python libraries always reads at least 64KiB from NetCDF4 files

17

CONCLUSIONS
• How much do read sizes affect read rate?

• for netCDF4-python a lot - could be the difference between hours and
days for analysis script

• For other only below 4KiB

• How much does read pattern affect read rate?

• Significantly – read ahead plays a large effect

• How much does using Python affect read rate?

• Not significantly – slight drop after 16MiB

• How much does using NetCDF4 files affect read rate?

• For C not at all

• Within netCDF4-python library significant – but due to library

 18

FUTURE WORK
• Run NetCDF4 tests on Lustre and GPFS platforms

• Quantify the effect of chunking and compression in NetCDF4 files for
typical analysis script

• Parallel reads using netCDF4-python on parallel file system

19

