
Towards new storage interfaces – chance or curse?

Julian M. Kunkel (DKRZ)

2017-09-26



Outline

1 HPC Storage Landscape

2 Thoughts

3 Better Interfaces?

4 Community APIs



HPC Storage Landscape Thoughts Better Interfaces? Community APIs

HPC Storage Usage: Workflows
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Mapping of a 2D field from a parallel application to storage
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Mapping for Pre-Post

User-defined analysis of ND datasets leads to various patterns
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User Perspective: Accessing Data
Multitude of data models

POSIX File: Array of bytes
HDF5: Container like a file system

Dataset: N-D array of a (derived) datatype
Rich metadata, different APIs (tables)

Database: structured (+arrays)
NoSQL: document, key-value, graph, tuple

Choosing the right interface is difficult – workflow may involve several

Properties / qualities

Namespace: Hierarchical, flat, relational
Access: Imperative, declarative, implicit (mmap())
Concurrency: Blocking vs. non-blocking
Consistency semantics: Visibility and durability of modifications
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Storage Landscape of Future Systems
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HPC system with compute nodes and storage
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Peeking at the Current I/O Stack – System Perspective

Coexistence of access paradigms

File (POSIX, ADIOS, HDF5), SQL, NoSQL

Semantical information is lost through layers

Suboptimal performance

Reimplementation of features across stack

Unpredictable interactions
Wasted ressources

Restricted (performance) portability

Optimizing each layer for each system?

Example I/O stack
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Limitations of the current software stack
Platform

1 Zoo of interfaces

2 Low-level storage APIs

3 Loss of semantical information

4 Interference of applications / lack of coordination

5 All data treated identically

Software

1 Explicit workflows

2 Unclear access patterns (users, sites)

3 No performance awareness

4 Lack of technological knowledge (from users, for tweaking)

5 Manual tiering (or with policies)
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Semantical Gap of File Access (1)

Applications work with (semi)structured data

Vectors, matrices, n-Dimensional data

A file is just a sequence of bytes!

...File

offset

Applications/Programmers must serialize data into a flat namespace

Uneasy handling of complex data types

Mapping is performance-critical (on HDDs)

Vertical data access unpractical (e.g. to to pick a slice of multiple files)
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Semantical Gap of File Access (2)
Information hidden from file systems

Data types

Data semantics

Value of data

Type: Checkpoint, computed, original, logfile

Data lifecycle: production, usage, deletion

Characteristics can even vary within a file, e.g. for metadata

Storage systems could use this information for

Improving performance: Automatic tiering, caching, replication

Simplifying management: ILM, offering alternative data views

Correctness: Ensuring data consistency
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Performance Tweaks

There are many options to tune the I/O-stack

API: posix_fadvise(), HDF5 properties, open flags, cache size
Via command line: lfs setstripe
Setup/initialization of a storage system
Mounting options and procfs settings

Many options are of technical nature

Performance gain/loss depend on hardware, software
Specific to file system, API (MPI, POSIX, HDF5)
Many types of hints/tweaks are not portable

Performance loss forces us to use these optimization

Usually we are losing system performance!
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Critical Discussion

Questions from the users’ perspective

Why do I have to organize the file format?

It’s like taking care of the memory layout of C-structs

Why do I have to convert data between storage paradigms?
Why must I provide system specific performance hints?

It’s like telling the compiler to unroll a loop exactly 4 times

Why can’t I rely on a correct implementation of the consistency model?

Parallel file systems have performance issues with most models

Why is a file system not offering the consistency model I need?

My application knows the required level of synchronization

Would you rather like to code an actual application?
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Personal Vision: Towards Intelligent Storage Systems and Interfaces

Access paradigm
Database File system

Local storage

ILM/HSM Self-awareness
System characteristics

NoSQL    HDF5

Topology aware
Hierarchical storage

Performance model

Data replication

Semi-structured data

Content aware

Semantical access

Data transformation

Dynamic “on-disk” format

Intelligence Smart

Natural storage access
Data exploration

Semantical name space       Guided interface

Programmability

Data mining

Application focus U
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Arbitrary views

Julian M. Kunkel 15 / 32



HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Coexistence of Storage Systems vs. Tiering
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We shall be able to use all storage technologies concurrently
Without explicit migration etc. put data where it fits
Administrators just add a new technology (e.g., SSD pool) and users benefit
Should be steered by a standard and open interface
Open ecosystem for any vendor...
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Additional Responsibilities of Storage System

Mapping of data structures

Flexible semantics

Compute offloading, see success of big data tools

Tight integration of workflows

Advanced performance assessment

Namespace based on metadata

Management tools

...
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Exascale10 Initiative Term: Guided Interfaces

Guiding vs. automatism vs. technical hints

Users provide additional information to guide an intelligent system.
The I/O stack may exploit this information or not.
Systems could improve over time by using the information better.

Information which could be provided by users

Data types
Semantics
Relations between data
Lifecycle (especially usage)

Several issues have been addressed in different access paradigms.

Also some behavioral hints exist: open() flags, fadvise(), ...
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Compression Research: Involvement

Scientific Compression Library (SCIL)
Separates concern of data accuracy and choice of algorithms
Users specify necessary accuracy and performance parameters
Metacompression library makes the choice of algorithms
Supports also new algorithms
Ongoing: standardization of useful compression quantities

Development of algorithms for lossless compression
MAFISC: suite of preconditioners for HDF5, pack data optimally, reduces
climate data by additional 10-20%, simple filters are sufficient

Cost-benefit analysis: e.g., for long-term storage MAFISC pays of
Analysis of compression characteristics for earth-science related data sets

Lossless LZMA yields best ratio but is very slow, LZ4fast outperforms BLOSC
Lossy: GRIB+JPEG2000 vs. MAFSISC and proprietary software

Method for system-wide determination of ratio/performance
Script suite to scan data centers...
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SCIL: Supported User-Space Quantities

Quantities defining the residual (error):
absolute tolerance: compressed can become true value ± absolute tolerance

relative tolerance: percentage the compressed value can deviate from true value

relative error finest tolerance: value defining the abs tol error for rel compression for values around 0

significant digits: number of significant decimal digits

significant bits: number of significant decimals in bits

field conservation: limits the sum (mean) of field’s change

Quantities defining the performance behavior:
compression throughput

decompression throughput

in MiB or GiB, or relative to network or storage speed

Aim to standardize user-space quantities across compressors!
See https://www.vi4io.org/std/compression
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SCIL Provides Typical Synthetic Data

Example: Simplex (options 206, 2D: 100x100 points)

Right picture compressed with Sigbits 3bits (ratio 11.3:1)
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Ongoing Activity: Earth-Science Data Middleware

Part of the ESiWACE Center of Excellence in H2020

Design Goals of the Earth System Data Middleware

1 Understand application data structures and scientific metadata

2 Flexible mapping of data to multiple storage backends

3 Placement based on site-configuration + performance model

4 Site-specific optimized data layout schemes

5 Relaxed access semantics, tailored to scientific data generation

6 A configurable namespace based on scientific metadata
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Architecture

Tools and services

ESD

Application1

NetCDF4 (patched)

Application2 Application3

GRIB

HDF5 VOL (unmodified)

ESD interface

cp-esd esd-daemonesd-FUSE

Layout Datatypes

ESD (Plugin)

Performance model

Metadata backend Storage backends

Site configuration

RDBMSNoSQL POSIX-IO Object storage Lustre
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A Potential Approach in the Community: Following MPI

The standardization of a high-level data model & interface
Targeting data intensive and HPC workloads
Lifting semantic access to a new level

Development of a reference implementation of a smart runtime system
Implementing key features

Demonstration of benefits on socially relevant data-intense apps
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API Key Features

High-level data model for HPC
Storage understands data structures vs. byte array
Relaxed consistency

Semantic namespace
Organize based on domain-specific metadata (instead of file system)
Support domain-specific opperations and addressing schemes

Integrated processing capabilities
Offload data-intensive compute to storage system
In-situ/In-transit workflows

Workflow management
Managed data-driven workflow

Performance-portability
Guided interfaces: Intents vs. technical hints

Enhanced data management features
Embedded performance analysis
Resilience, import/export, ...
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API development

Development of the data model

Establishing a Forum similarly to MPI

Define data model for HPC

Must be beneficial for Big Data + Desktop, too

Open board: encourage community collaboration

Current Draft
New S* interface

ManagementInformationIntentWorkflowOperationObjectData description
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Reference Implementation: Goals

Semantic access

Search and access based on metadata

Self-aware

Understand performance characteristics

Automatic layouting + smart data replication

Adapt data layout during runtime

Managed workflows

Scheduler considers compute and I/O requirements

Compatibility
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Architecture Draft

Applications Tools and services
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Processing Model
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