
Towards new storage interfaces – chance or curse?

Julian M. Kunkel (DKRZ)

2017-09-26

Outline

1 HPC Storage Landscape

2 Thoughts

3 Better Interfaces?

4 Community APIs

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

HPC Storage Usage: Workflows

Primary

Storage

Cloud

HPC 1
Secondary

Tertiary

HPC 2

2

1

3

4
5

4

Julian M. Kunkel 3 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Mapping of a 2D field from a parallel application to storage

A
p

p
licatio

n
4 p

ro
cesse

s

Mapping to fragments

Julian M. Kunkel 4 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Mapping for Pre-Post

User-defined analysis of ND datasets leads to various patterns

Julian M. Kunkel 5 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

User Perspective: Accessing Data
Multitude of data models

POSIX File: Array of bytes
HDF5: Container like a file system

Dataset: N-D array of a (derived) datatype
Rich metadata, different APIs (tables)

Database: structured (+arrays)
NoSQL: document, key-value, graph, tuple

Choosing the right interface is difficult – workflow may involve several

Properties / qualities

Namespace: Hierarchical, flat, relational
Access: Imperative, declarative, implicit (mmap())
Concurrency: Blocking vs. non-blocking
Consistency semantics: Visibility and durability of modifications

Julian M. Kunkel 6 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Storage Landscape of Future Systems

HDDHDD

Node

Memory

Node

Memory

NVRAM

SSD Tape

S3

Cloud
EC2

HDDHDD HDDMemory HDDBurst
Buffer SSD

...

HPC system with compute nodes and storage

Julian M. Kunkel 7 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Outline

1 HPC Storage Landscape

2 Thoughts
Storage stack
Performance Optimization

3 Better Interfaces?

4 Community APIs

Julian M. Kunkel 8 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Peeking at the Current I/O Stack – System Perspective

Coexistence of access paradigms

File (POSIX, ADIOS, HDF5), SQL, NoSQL

Semantical information is lost through layers

Suboptimal performance

Reimplementation of features across stack

Unpredictable interactions
Wasted ressources

Restricted (performance) portability

Optimizing each layer for each system?

Example I/O stack

Julian M. Kunkel 9 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Limitations of the current software stack
Platform

1 Zoo of interfaces

2 Low-level storage APIs

3 Loss of semantical information

4 Interference of applications / lack of coordination

5 All data treated identically

Software

1 Explicit workflows

2 Unclear access patterns (users, sites)

3 No performance awareness

4 Lack of technological knowledge (from users, for tweaking)

5 Manual tiering (or with policies)
Julian M. Kunkel 10 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Semantical Gap of File Access (1)

Applications work with (semi)structured data

Vectors, matrices, n-Dimensional data

A file is just a sequence of bytes!

...File

offset

Applications/Programmers must serialize data into a flat namespace

Uneasy handling of complex data types

Mapping is performance-critical (on HDDs)

Vertical data access unpractical (e.g. to to pick a slice of multiple files)

Julian M. Kunkel 11 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Semantical Gap of File Access (2)
Information hidden from file systems

Data types

Data semantics

Value of data

Type: Checkpoint, computed, original, logfile

Data lifecycle: production, usage, deletion

Characteristics can even vary within a file, e.g. for metadata

Storage systems could use this information for

Improving performance: Automatic tiering, caching, replication

Simplifying management: ILM, offering alternative data views

Correctness: Ensuring data consistency

Julian M. Kunkel 12 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Performance Tweaks

There are many options to tune the I/O-stack

API: posix_fadvise(), HDF5 properties, open flags, cache size
Via command line: lfs setstripe
Setup/initialization of a storage system
Mounting options and procfs settings

Many options are of technical nature

Performance gain/loss depend on hardware, software
Specific to file system, API (MPI, POSIX, HDF5)
Many types of hints/tweaks are not portable

Performance loss forces us to use these optimization

Usually we are losing system performance!

Julian M. Kunkel 13 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Performance Tweaks

There are many options to tune the I/O-stack

API: posix_fadvise(), HDF5 properties, open flags, cache size
Via command line: lfs setstripe
Setup/initialization of a storage system
Mounting options and procfs settings

Many options are of technical nature

Performance gain/loss depend on hardware, software
Specific to file system, API (MPI, POSIX, HDF5)
Many types of hints/tweaks are not portable

Performance loss forces us to use these optimization

Usually we are losing system performance!

Julian M. Kunkel 13 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Critical Discussion

Questions from the users’ perspective

Why do I have to organize the file format?

It’s like taking care of the memory layout of C-structs

Why do I have to convert data between storage paradigms?
Why must I provide system specific performance hints?

It’s like telling the compiler to unroll a loop exactly 4 times

Why can’t I rely on a correct implementation of the consistency model?

Parallel file systems have performance issues with most models

Why is a file system not offering the consistency model I need?

My application knows the required level of synchronization

Would you rather like to code an actual application?

Julian M. Kunkel 14 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Personal Vision: Towards Intelligent Storage Systems and Interfaces

Access paradigm
Database File system

Local storage

ILM/HSM Self-awareness
System characteristics

NoSQL HDF5

Topology aware
Hierarchical storage

Performance model

Data replication

Semi-structured data

Content aware

Semantical access

Data transformation

Dynamic “on-disk” format

Intelligence Smart

Natural storage access
Data exploration

Semantical name space Guided interface

Programmability

Data mining

Application focus U
ser

S
torage system

Arbitrary views

Julian M. Kunkel 15 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Coexistence of Storage Systems vs. Tiering

HDDHDD

Node

Memory

Node

Memory

NVRAM

SSD Tape

S3

Cloud
EC2

HDDHDD HDDMemory HDDBurst
Buffer SSD

...

We shall be able to use all storage technologies concurrently
Without explicit migration etc. put data where it fits
Administrators just add a new technology (e.g., SSD pool) and users benefit
Should be steered by a standard and open interface
Open ecosystem for any vendor...

Julian M. Kunkel 16 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Additional Responsibilities of Storage System

Mapping of data structures

Flexible semantics

Compute offloading, see success of big data tools

Tight integration of workflows

Advanced performance assessment

Namespace based on metadata

Management tools

...

Julian M. Kunkel 17 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Outline

1 HPC Storage Landscape

2 Thoughts

3 Better Interfaces?
Guided Interfaces
Compression Example
SCIL
ESDM

4 Community APIs

Julian M. Kunkel 18 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Exascale10 Initiative Term: Guided Interfaces

Guiding vs. automatism vs. technical hints

Users provide additional information to guide an intelligent system.
The I/O stack may exploit this information or not.
Systems could improve over time by using the information better.

Information which could be provided by users

Data types
Semantics
Relations between data
Lifecycle (especially usage)

Several issues have been addressed in different access paradigms.

Also some behavioral hints exist: open() flags, fadvise(), ...

Julian M. Kunkel 19 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Compression Research: Involvement

Scientific Compression Library (SCIL)
Separates concern of data accuracy and choice of algorithms
Users specify necessary accuracy and performance parameters
Metacompression library makes the choice of algorithms
Supports also new algorithms
Ongoing: standardization of useful compression quantities

Development of algorithms for lossless compression
MAFISC: suite of preconditioners for HDF5, pack data optimally, reduces
climate data by additional 10-20%, simple filters are sufficient

Cost-benefit analysis: e.g., for long-term storage MAFISC pays of
Analysis of compression characteristics for earth-science related data sets

Lossless LZMA yields best ratio but is very slow, LZ4fast outperforms BLOSC
Lossy: GRIB+JPEG2000 vs. MAFSISC and proprietary software

Method for system-wide determination of ratio/performance
Script suite to scan data centers...

Julian M. Kunkel 20 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

SCIL: Supported User-Space Quantities

Quantities defining the residual (error):
absolute tolerance: compressed can become true value ± absolute tolerance

relative tolerance: percentage the compressed value can deviate from true value

relative error finest tolerance: value defining the abs tol error for rel compression for values around 0

significant digits: number of significant decimal digits

significant bits: number of significant decimals in bits

field conservation: limits the sum (mean) of field’s change

Quantities defining the performance behavior:
compression throughput

decompression throughput

in MiB or GiB, or relative to network or storage speed

Aim to standardize user-space quantities across compressors!
See https://www.vi4io.org/std/compression

Julian M. Kunkel 21 / 32

https://www.vi4io.org/std/compression

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

SCIL Provides Typical Synthetic Data

Example: Simplex (options 206, 2D: 100x100 points)

Right picture compressed with Sigbits 3bits (ratio 11.3:1)

Julian M. Kunkel 22 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Ongoing Activity: Earth-Science Data Middleware

Part of the ESiWACE Center of Excellence in H2020

Design Goals of the Earth System Data Middleware

1 Understand application data structures and scientific metadata

2 Flexible mapping of data to multiple storage backends

3 Placement based on site-configuration + performance model

4 Site-specific optimized data layout schemes

5 Relaxed access semantics, tailored to scientific data generation

6 A configurable namespace based on scientific metadata

Julian M. Kunkel 23 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Architecture

Tools and services

ESD

Application1

NetCDF4 (patched)

Application2 Application3

GRIB

HDF5 VOL (unmodified)

ESD interface

cp-esd esd-daemonesd-FUSE

Layout Datatypes

ESD (Plugin)

Performance model

Metadata backend Storage backends

Site configuration

RDBMSNoSQL POSIX-IO Object storage Lustre

Julian M. Kunkel 24 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Outline

1 HPC Storage Landscape

2 Thoughts

3 Better Interfaces?

4 Community APIs
Community

Julian M. Kunkel 25 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

A Potential Approach in the Community: Following MPI

The standardization of a high-level data model & interface
Targeting data intensive and HPC workloads
Lifting semantic access to a new level

Development of a reference implementation of a smart runtime system
Implementing key features

Demonstration of benefits on socially relevant data-intense apps
S

ta
nd

ar
d

1.
0

Data
Model

Interface

Reference Implementation

Standard-Forum

Steering Board

Committee

WorkgroupU
se

-c
as

e
s

Mini-apps

Workflows

Industry

Data centers

Scientists

Pseudo code

M
em

b
er

s

B
od

ie
s

N
ex

t G
en

er
at

io
n

S
ta

nd
ar

d
2.

0

Julian M. Kunkel 26 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

API Key Features

High-level data model for HPC
Storage understands data structures vs. byte array
Relaxed consistency

Semantic namespace
Organize based on domain-specific metadata (instead of file system)
Support domain-specific opperations and addressing schemes

Integrated processing capabilities
Offload data-intensive compute to storage system
In-situ/In-transit workflows

Workflow management
Managed data-driven workflow

Performance-portability
Guided interfaces: Intents vs. technical hints

Enhanced data management features
Embedded performance analysis
Resilience, import/export, ...

Julian M. Kunkel 27 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

API development

Development of the data model

Establishing a Forum similarly to MPI

Define data model for HPC

Must be beneficial for Big Data + Desktop, too

Open board: encourage community collaboration

Current Draft
New S* interface

ManagementInformationIntentWorkflowOperationObjectData description

Julian M. Kunkel 28 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Reference Implementation: Goals

Semantic access

Search and access based on metadata

Self-aware

Understand performance characteristics

Automatic layouting + smart data replication

Adapt data layout during runtime

Managed workflows

Scheduler considers compute and I/O requirements

Compatibility

Julian M. Kunkel 29 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Architecture Draft

Applications Tools and services

std

reference implementation

Storage backends Metadata backends

cp-stdstd-daemon

Workflow

std-FUSE

ManagementInformation

NotificationResource
management

Workflow
 schedulerTelemetryPerformance

model
I/O

SchedulerLayout

IntentOperationObjectData description

POSIX-IO RDBMS

QuerySchema
registry

TapeObject storageNVRAMBeeGFS NoSQL

Cluster Workload
 Manager

Julian M. Kunkel 30 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Data Model

attr ibuting

Information Concepts

Storage & Processing Concepts

Fragment

Storage System

SchemaRegistry

CoverageVar

Collection

Schema Metadata

ContainerDataset

partit ioned
into
using schema

1

1..*

lives on

references
0..* 0..*

stored
i n

described
b y

contains

 contains1

is a

Julian M. Kunkel 31 / 32

HPC Storage Landscape Thoughts Better Interfaces? Community APIs

Processing Model

runs

Job script

Cluster
workload manager

 Traditional cluster management

dispatchesadjusts
scale out

observes
dependencies

listens to

Storage & Processing Concepts

Event

processes

User
Admin

Workflow scheduler

Code TaskResource mgmt ServiceWorkflow

Information Concepts

Slot

Fragment

Storage System

SchemaRegistry

Schema

ContainerDataset

schedules
dispatches

submits
prolog
epilogue

triggers
events

upon change

reads, writes

registersRuns
on

Runs consists of
11..*

provided
b y

runs
optionally
provided

b y

Julian M. Kunkel 32 / 32

	HPC Storage Landscape
	Application perspective
	HPC Storage

	Thoughts
	Storage stack
	Motivation
	Performance Optimization
	Critical Discussion

	Better Interfaces?
	Guided Interfaces
	Compression Example
	SCIL
	ESDM

	Community APIs
	Community

