
Data layouts File-driven Input Multifile Restart

ICON I/O Optimizations by the DWD

Nathanael Hübbe

2017-09-26



Data layouts File-driven Input Multifile Restart

Table of Contents

Data layouts
Disk Data Layout
Memory Data Layout

File-driven Input
Typical File-reading Code
File-driven Input
Results

Multifile Restart
Motivation
ICON Implementation
Results



Data layouts File-driven Input Multifile Restart

Disk Data Layout

• Top level: time step and variables

• 2nd level: height level

• 3rd level: ground coordinate(s)
• Structured Grid: 2D
• Unstructured Grid: fused 1D ground coordinate



Data layouts File-driven Input Multifile Restart

Memory Data Layout

• Top level: variables

• Decomposition layer: ground coordinate

• Local layer: height level ground coordinate



Data layouts File-driven Input Multifile Restart

Table of Contents

Data layouts
Disk Data Layout
Memory Data Layout

File-driven Input
Typical File-reading Code
File-driven Input
Results

Multifile Restart
Motivation
ICON Implementation
Results



Data layouts File-driven Input Multifile Restart

Typical File-reading Code

Whats wrong with this?

• Program dictates order of reading
⇒ non-sequential access pattern

• File is a GRIB file
⇒ no index, open call must build in-memory index
⇒ data is read twice



Data layouts File-driven Input Multifile Restart

What’s wrong with this? cont.

Benchmark Result reading a GRIB file with CDI:

• file open call: 6.363 s

• read calls: 6.343 s



Data layouts File-driven Input Multifile Restart

Solution: File-driven Input

Changes in CDI:

• New CDI API that reads data as it "arrives" from file

• Iterator based interface, pseudo code:



Data layouts File-driven Input Multifile Restart

New Infrastructure within ICON

t_InputRequestList

1. all variables of interest are registered

2. inputRequesList_readFile() reads all interesting data,
scattering it to the processes

3. data is retrieved at the discretion of the calling code
• perfectly local to the process, no MPI-calls triggered



Data layouts File-driven Input Multifile Restart

Take-aways from file-driven input

• Iterator based CDI-Interface is nice...

• ...but ICON code restructuring was complex
• Mainly due to conditional reading of fields depending on

the presence of other fields

• File formats that don’t include an index are best avoided

• Useful spin-off: Typesafe use of CDI now possible



Data layouts File-driven Input Multifile Restart

Table of Contents

Data layouts
Disk Data Layout
Memory Data Layout

File-driven Input
Typical File-reading Code
File-driven Input
Results

Multifile Restart
Motivation
ICON Implementation
Results



Data layouts File-driven Input Multifile Restart

Why Multifile Restart?

Benchmark shows: Concurrent access to many files is fastest

Chain-Job Restarts are written at the end of an integration
Reading always happens first thing in a job
⇒ Cannot be hidden behind computation

ICON is the only consumer of ICON restart files
⇒ No format restrictions

Typically, restarting PE N needs the data from original PE N
⇒ Multifile Restart reduces need to communicate

⇒ Multifile I/O is a perfect fit for restart data



Data layouts File-driven Input Multifile Restart

Multifile Restart in ICON

File Structure

• Restart "file" is a directory: restartFile.mfr/

• restartFile.mfr/attributes.nc (global metadata)

• restartFile.mfr/patch<JG>_metadata (patch metadata)

• restartFile.mfr/patch<JG>_<N>.nc (payload data)
Each payload file contains global indices of its points



Data layouts File-driven Input Multifile Restart

Multifile Restart in ICON

Features

• Any number of compute/dedicated PEs may write
⇒ Count of writers determines count of files

• Each writer PE is exclusively responsible
for a single file and a group of PEs
⇒ Only communication among subgroups necessary

• Restart writing PEs may be disjunct of compute PEs

• Restart may be read with any process count

• Significant speedup seen in test case
(unfortunately I couldn’t perform any thorough testing)



Data layouts File-driven Input Multifile Restart

Multifile Restart Take-aways

• Writing multifiles is easy

• Data redistribution when reading is a challenge

• Understanding legacy code is harder

• The effort pays off

• Dedicated restart writers don’t pay off



Data layouts File-driven Input Multifile Restart

Summary

File-driven Input

• 2x speedup when reading GRIB files

• Typesafe CDI iterator interface

Multifile Restart in ICON

• Direct consequence of the benchmark results

• Avoids unnecessary reshuffling and communication

• Significant speedup achieved


	Data layouts
	Disk Data Layout
	Memory Data Layout

	File-driven Input
	Typical File-reading Code
	File-driven Input
	Results

	Multifile Restart
	Motivation
	ICON Implementation
	Results


