

NEXTGenIO Performance Tools for In-Memory I/O

holger.brunst@tu-dresden.de ZIH, Technische Universität Dresden

UIOP Workshop, Hamburg 22nd-23rd March 2017

Intro slides by Adrian Jackson (EPCC)

23rd March 2017

A new hierarchy

- New non-volatile memory technology is going to change the memory hierarchy we have
- What does that mean for applications, particularly scientific simulations?
- I/O performance is one of the critical components for scaling up HPC applications and enabling HPDA applications at scale

NEXTGenIO summary

Project

- Research & Innovation Action
- 36 month duration
- €8.1 million
- Approx. 50% committed to hardware development

Partners

- EPCC
- INTEL
- FUJITSU
- BSC
- TUD
- ALLINEA
- ECMWF
- ARCTUR

NEXTGenIO objectives

- Develop a new server architecture using next generation processor and memory advances
 - Based on Intel[®] Xeon and Intel DIMM based on 3D XPoint[™] memory technology
- Investigate the best ways of utilising these technologies in HPC
 - Develop the systemware to support their use, particularly at scale
- Model different I/O workloads and use this understanding in a co-design process
 - Representative of real HPC centre workloads

Hardware

- The project is developing a new HPC platform with focus on I/O performance
 - System and motherboard designed & built by Fujitsu
- The Complete Compute Nodes are based on
 - Intel[™] CPUs 2 sockets per node
 - Intel[™] DIMMs
 - Intel[™] OmniPath

Prototype

Note: final configuration may differ

Intel[™] DIMMs

- Non-volatile RAM
 - 3D XPoint technology
- Much larger capacity than DRAM
- Slower than DRAM by a small factor, but significantly faster than SSDs ™
- 12 DIMM slots per socket
 - Populated by combination of DDR4 and Intel[™] DIMMs

Intel[™] DIMMs – Usage Models

- The "memory" usage model allows for the extension of the main memory with Intel[™] DIMMs
 - The data is volatile like normal DRAM based main memory
- The "storage" usage model which supports the use of Intel[™] DIMMs like a classic block device
 - E.g. like a very fast SSD
- The "application direct" usage model maps persistent storage from the Intel[™] DIMMs directly into the main memory address space
 - Direct CPU load/store instructions for persistent main memory regions

Remote access

- Complete compute nodes and network hardware will support remote access to NVDIMMs from other CCNs
 - Using RDMA between nodes will allow data in NVDIMMs to be shared between CCNs if required by the applications using them
- Systemware will support remote access and use it for data partitioning and replication.

- Without changing applications
 - Large memory space/in-memory database etc...
 - Local filesystem

- Users manage data themselves
- No global data access/namespace, large number of files
- Still require global filesystem for persistence

- Without changing applications
 - Filesystem buffer

- Pre-load data into NVRAM from filesystem
- Use NVRAM for I/O and write data back to filesystem at the end
- Requires systemware to preload and postmove data

^{23rd March 2017} Uses filesystem as namespace manager

- Without changing applications
 - Global filesystem

Need to be able to support multiple filesystems across system

23rd March 2017

- With changes to applications
 - Object store

- Needs same functionality as global filesystem
- Removes need for POSIX, or POSIX-like functionality

The Challenge of distributed storage

- Enabling all the use cases in multi-user, multi-job environment is the real challenge
 - Heterogeneous scheduling mix
 - Different requirements on the NVRAM
 - Scheduling across these resources
 - Enabling sharing of nodes
 - etc....
- Enabling applications to do more I/O
 - Large numbers of our applications don't heavily use I/O at the moment
 - What can we enable if I/O is significantly cheaper
- NEXTGenIO is tackling these
 - Job scheduler
 - Data scheduler
 - Data movers

Tools effort

- Performance analysis tools need to understand new memory hierarchy and its impact on applications
 - TUD's Vampir & Allinea's MAP
- At the same time, tools themselves can exploit NVRAM to rapidly store sampling/tracing data

Memory usage (M) 6.1 - 62.6 (29.3 avg)	
MPI call duration (ms) 0 - 727.9 (136.2 avg.)	
MPI point-to-point (/s) 0 - 217 (1.0 avg.)	Raine Response of 111
MPI collectives (/s) 0 - 172 (0.6 avg)	ninini
CPU memory access (%) 0 · 100 (18.7 avg)	Land and the second second second
CPU floating-point (%) 0 - 100 (10.9 avg)	WWWWW
CPU vector (%) 0 - 100 (37.6 avg)	WWWWW Concerning of the second
CPU branch (%) 0 - 60 (0.5 avg)	

IO workload simulation by ECMWF

- Need to quantify improvements in job runtime and throughput
 - Measure and understand current bottlenecks
- Create a workload simulator and generator
 - Simulator can be used to derive system configuration options
 - Generator can be used to create scaled down
 version of data centre workload

23rd March 2017

Performance Features

- Monitoring NVRAM resources
- Recording File I/O operations
- Providing memory access statistics
- Adding system topology information
- Merging perf. data (workflow support)
- Hence, extensions are required in:
 - Data formats
 - Measurement infrastructure
 - Visualization

Functional extensions in measurement infrastructure

Monitoring extensions

- 1. File I/O operations
- 2. Hardware/software counters
 - 1. Non-Volatile Memory Library (NVML) provides information on NVRAM allocation
 - 2. Counters enable memory statistics on NVRAM
- 3. System topology information related to NVRAM

Figure 1 : Metric Architecture with the Memory Access Metric extension. Differences between TUD and Allinea

23rd March 2017

NVM Library Wrapper

- Enter and leave events
- Additional information being recorded
 - Requested memory size
 - Usable memory size
 - High Water Mark metric for the utilization of memory pool over its entire execution
 - Size and number of elements available in the persistent array
- Byte access activities to/from NVRAM remain out of scope (e.g. memory mapped files)
- NVRAM health status
 - Intel management API access (system configuration)
 - S.M.A.R.T. (on node level)
 - Intel NVDIM_API

Memory Access Statistics

- Memory access hotspots for using DRAM and NVRAM?
 - Where? When? Type of memory?
- Metric collection needs to be extended
 - 1. DRAM local access
 - 2. DRAM remote access (on a different socket)
 - 3. NVRAM local access
 - 4. NVRAM remote access (on a different socket)

Access to PMU using perf

- Architectural independent counters
 - May introduce some overhead
 - MEM_TRANS_RETIRED.LOAD_LATENCY
 - MEM_TRANS_RETIRED.PRECISE_STORE
 - Guess: It will also work for NVRAM?
- Architectural dependent counters
 - Counter for DRAM
 - MEM_LOAD_UOPS_L3_MISS_RETIRED.REMOTE_DRAM
 - MEM_LOAD_UOPS_L3_MISS_RETIRED.LOCAL_DRAM
 - MEM_LOAD_UOPS_*.REMOTE_NVRAM ?
 - MEM_LOAD_UOPS_*.LOCAL_NVRAM ?

Information of system topology in compute node

- Following information will be incorporated in the system topology of each compute node:
 - 1. Using procfs:
 - Total size of NVRAM
 - Total size of DRAM
 - Total processors
 - 2. Using sysfs for:
 - Namespaces for used NVDIMMs
 - 3. Using libnuma / numactl:
 - Total number of NUMA nodes
 - Memory size of each NUMA node
 - Processing Cores allocated to each NUMA node
 - NUMA distances
 - 4. SLURM API will be used to provide meta information of following records:
 - Job memory size of NVRAM
 - Job memory size of DRAM
 - Number of compute nodes
 - Number of compute processors

Figure 2 : Extension of Score-P infrastructure to incorporate system topology in OTF2 Trace

Functional Extensions in Visualization (Vampir)

Display stacked I/O layers

- I/O layers
 - POSIX
 - MPI-I/O
 - HDF5
 - NetCDF
 - PNetCDF
 - Adios
 - (Lustre)
- Data of interest
 - File Open/Create Operations
 - File Close Operations
 - Data Transfer operations

I/O operations over time

23rd March 2017

I/O data rate over time

23rd March 2017

I/O summaries with totals

23rd March 2017

I/O summaries per file

All Processes, Aggregated I/O Transaction Time per File Name

4.5 s	3.0 s	1.5 s	Os
5.232 s		Ċ.	/N
	3.628 s		/N
		2.503 s	/N
	1	2.027 s	/N
		1.986 s	/N
		1.359 s	3 /N
		1.182	2 s /N
		0.	942 s /tm
			0.798 s /N
			0.768 s /N
			0.704 s /N
			0.694 s /N
		0.59	s /N

dc2/scratch/wardmod/input/fineGrid/frate.wheat.nc dc2/scratch/wardmod/input/fineGrid/frate.corn.nc dc2/scratch/wardmod/input/fineGrid/frate.soy.nc dc2/scratch/wardmod/inp...dx/daily/Intr_relh_1948.nc dc2/scratch/wardmod/inp...dx/daily/Intr rads 1948.nc dc2/scratch/wardmod/in...x/daily/Intr_wspd_1948.nc dc2/scratch/wardmod/i...C 60year climo mm day.nc p/mpi/proc6/output/hourly/1948 hourly4thmb.nc dc2/scratch/wardmod/inp...dx/daily/Intr_tmin_1948.nc dc2/scratch/wardmod/inp...dx/daily/Intr_tmax_1948.nc dc2/scratch/wardmod/i...ntr_RADS_60year_climo.nc dc2/scratch/wardmod/i...ntr WSPD 60year climo.nc dc2/scratch/wardmod/i...ntr TMAX 60year climo.nc

Missing: timeline view per file

I/O operations per thread or per file

23rd March 2017

I/O comparison example

23rd March 2017

Visualization of memory access statistics

- Currently, Vampir has many different views presenting counter metrics
- Future: Absolute number of memory accesses performed by an application for different types of memory All Processes

23rd March 2017

NVRAM allocation over time

23rd March 2017

NVRAM accesses over time?

Counters?

Future Stats

All Processes	Number of Hits r	er Source Code Locat	tion	
150 k	100 k	50 k	()
160,307 (14	.6%)			buts.f:238
13	4,400 (12.24%)			blts.f:59
	124,823 (11.37%)		rhs.f:307
	101,387	(9.23%)		rhs.f:328
	8	1,371 (7.41%)		jacu.f:181
		71,172 (6.48%)		jacld.f:329
		51,809 (4.72	2%)	Unknown
	3	6,002 (3.28%)		jacld.f:105
		31,540 (2.87%)		jacld.f:335
		23,288 (2.12%)		rhs.f:318
		20,820 (1.9%)		jacu.f:105
		17,884 (1.63%)		jacld.f:181
		16,526 (1.51%)		jacld.f:328
		14,934 (1.36%)		rhs.f:312
		14,159 (1.29%)	jacld.f:44
		13,490 (1.23%)	jacld.f:278
		11,814 (1.08%	6)	jacu.f:187
		11.233 (1.02%	6)	iacu.f:331

All Processes, Number of Hits per Source Code Location

3 k	2 k	1 k	()
3,173	(14.81%)			buts.f:238
	2,707 (12.63%)			blts.f:59
	2,411 (11.25%)			rhs.f:307
	rhs.f:328			
1,611 (7.52%)			jacu.f:181	
		1,417 (6.61%)		jacld.f:329
		990 (4.62%)		Unknown
		663 (3.09%)		jacld.f:105
		643 (3	3%)	jacld.f:335
		411 (1.92%)		rhs.f:318
		396 (1.85%)		jacu.f:105
		351 (1.64%)		jacld.f:181
		324 (1.51%)		jacld.f:328
		302 (1.41%)		jacld.f:278
		281 (1.31%)		rhs.f:312
		267 (1.25%)		jacld.f:44
		254 (1.19%)		jacu.f:187
		230 (1.07%))	iacu.f:331

Future Stats

hread, Values of Metric "long int* vector" over Time

23rd March 2017

- NEXTGenIO developing a *full* hardware and software solution
- Requirements capture and first architectural designs completed
 - Hardware under development
 - Systemware under development
- Potential to both significantly reduce I/O costs and enable new usage models for HPC and HPDA
 - Proper convergence between HPC and HPDA