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1 INTRODUCTION

Abstract

One of the goals of the project AIMES is to improve the programming of the earth system models, which
includes improving the code quality, and hence, the maintainability of the source code and the productivity
of the scientists. To realize this we developed the GGDML language extensions, which we described in
the previous reports. However, another important point concerning the advanced programming techniques
is the performance portability of the model code. To provide such a feature, we designed our techniques,
and hence tools, to translate the GGDML code through source-to-source translation tools, which apply
some transformations to optimize the code for a specific architecture. The developed tools apply a set of
user-driven optimization procedures to exploit the different hardware features of the underlying architecture.

In this report we focus on the efforts done under this project deliverable. We describe the requirements
we collected to design the tools and the technique. Then we describe some optimizations that the tools apply
within a description of the translation process. Some experimental results are also discussed to demonstrate
performance impact on different architectures.

1 Introduction

1.1 Relation to the Project

This report describes the developed tools and demonstrates how to use them to create a own meta-dsl, dialects
and back-end-ends to transform them.
The following text is the description of the project proposal for this task and deliverable:
In this task, the source-to-source translation tool is developed that converts code enriched with the meta-dsl (and

derived formulations of dialects) flexibly into various target representations. It will be a light-weight tool to allow
users to understand and maintain it in the future. Using back-ends, the abstract DSL formulation is convertible
into a broad range of different approaches with limited effort. The tool will be flexible and modular to allow
exchange of the meta-dsl and back-ends. Since back- ends are tightly coupled with the language specification
each meta-dsl requires its own back-ends. We use a test-driven approach during the development and apply
the tool to a synthetic meta-dsl which also serves as documentation for developing own meta-dsls and dialects.
While the tool is developed by UHHSC, the other groups provide back-ends as targets for the con- version of
the meta-dsl for icosahedral models. We evaluate existing DSLs, application frameworks and libraries that
have been developed within previous projects such as ICOMEX and JST CREST and Physis, HybridFortran
and GRIDTools as potential targets and provide translations for relevant application operators. During this
process, we also anticipate to identify limitations in potential back- ends, for example, the Physis DSL assumes
regular Cartesian meshes, while some of the target applications employ unstructured list vectors to represent
partial differential equations, which is not possible to express in Physis. While these limitations restrict certain
constructs of the meta-dsl for certain back-ends, the do not restrict the generality of the meta-dsl and the
concept.

1.2 Higher-Level Coding Reviewed

In the work-package WP1 of the project AIMES, we developed a set of language extensions to support the
development of earth system models, especially modeling with icosahedral grids. The extensions were developed
based on the three icosahedral models DYNAMICO, ICON and NICAM which use icosahedral grids. The
extensions were basically developed for each of the three models, while keeping in mind to specify a common
set of the suggested extensions as long as possible. This common set of language extensions serves as the basis
for the domain-specific language extensions that we specified as GGDML. For further details, please refer to
the report D1.2 of the project. GGDML abstracts the scientific concept of the grid and provides the necessary
code like specifiers, expressions, iterator to access and manipulate variables and grids from a scientific point of
view.
The three icosahedral models that were used to guide the development of the language extensions were written
in Fortran. However, the nature of the solution, in which we depend on extending the grammar of the general-
purpose modeling language (GPL), allows to use the technique with different languages. That is because
generally the grammars of the programming languages can be extended, and the new rules could exhibit different
semantical features.

The language extensions that we developed for the models which are written in the Fortran language, are usable
in other languages. For example, we have used this set of language extensions to write a test-code which uses
the C language as the basic modeling language. In this case, the application’s code is written mainly with C,
and some parts use the GGDML extensions.

The implementation of the source-to-source translation tools provides the way to allow using the language
extensions to extend a specific modeling language. For example, to process the test-code that we developed
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2 DESIGN DRIVERS

with C and GGDML, a module was developed to handle the grammar of the C language. To use the language
extensions to extend another language, the translation tools implementation needs to support that language.

2 Design Drivers

In this section we review the requirements which where specified at the beginning of the project to develop the
language extensions and the translation tools design. We review here the requirements related to the translation
process and derived tools. For the whole set of requirements, please refer to report D1.1 of the project.

2.1 Functional Requirements

We review here the functional requirements which drove the development of the translation tools.

RFPD Parse extended language

Parsing the developed extension of the general-purpose language must be doable by the tools for further
processing.

RFRS Read source files in project structures

The code extensions of the GPL must be able to be integrated in the existing directory structures for the
application projects. That means, tools must be able to read input source code from the models code
repository and process them during source-to-source translation considering dependencies.

RFWS Generate code output in project structures

After source code tree contents are processed the solution should write the generated GPL code into an
output code tree that fits into the existing project structure.

RFGC Generate code for target machines

The tools must be able to generate code for various back-ends that can be chosen upon compile time.

RFRC Configurable process

The translation process must be a configurable process (supporting RFGC). The tools must be configurable
and particularly, the configuration and language must work together to allow flexible use across systems.

RFOP Optimizing high-level code

The tools must provide high-level optimizations that normally are implemented manually and cannot
be conducted by compilers of the GPL. That means, the tools must apply the relevant optimization
procedures and rewrite code in a way to get optimal performance on the target machine.

RNBI Tools can be integrated into existing build systems

The tools should be able to be integrated into existing build systems e.g. make. Simple calls to the
translation tools should allow translating the source code to make it ready for compiling.

RNFL Flexibility

The translation technique and tools should allow modifying the DSL. Processing the DSL should not
support a strict constant set of language constructs, it should rather support DSL modifications. Language
processing module should be replaceable to provide alternative implementations.

2.2 Non-Functional Requirements

The non-functional requirements, which drove and guided the development of the translation tools are discussed
in this section.

RNPP Performance portability

Performance portable code can target multiple architectures. On each supported architecture, performance
portable code can optimally use the hardware features.

One of our goals in the AIMES project is to give the capability for scientists to write performance
portable code. Atmospheric/climate applications are highly demanding for computing resources. However,
rewriting parts of a model’s code for different architectures is the price of getting performance.

One of the requirements while developing our translation technique and tools is to allow using the same
source code on different architectures, while optimally using their capabilities.
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3 TRANSLATION PROCESS

RNCT Compilation time

Runtime of the tool must be in the order of the regular compile time (2x of current compile time is
acceptable).

RNTS Tools simplicity

The use of the tool should not be a concern for scientists. Calling the tool to translate code by scientists
should be simple enough and should not present any new learning burden or complicated build procedures.

RNTM Tools maintainability

Maintainability of the tools is an important point to consider. The tools should not need complicated
maintainability efforts to keep them doing their work.

3 Translation Process

In this section, we discuss the concepts and some high-level details concerning the translation process. We
describe the concept of ’separation of concerns’ which was an important point to consider in the design phase.
Tools design at the high-level is discussed briefly, and further discussion on configuration files is then provided.
Some optimization procedures are discussed briefly to have a better overview on the tools and their design.

3.1 Separation of Concerns

In the approach that we use in AIMES project, we commit to the principle of separation of concerns. Climate
scientists do not need to learn optimization techniques and programming models. They rather focus on the
scientific side. This is done by a flexible DSL that abstracts domain concepts. Source code is developed with the
high-level DSL. To get an optimized code based on the high-level code, translation tools transform the source
code and apply optimization procedures. The optimization procedures are guided by information delivered
through configuration files. Those configuration files are prepared by scientific programmers, who have the
expertise with the target architectures. They know how to optimize code for those architectures. Based on this
knowledge, they provided the necessary sections and options to generate a code version that optimally uses the
features of a target machine.

Figure 1: Separation of concerns

3.2 Tools Design

The high-level model code is developed with GGDML mixed together with general-purpose language. Trans-
lating this code into GPL code which can be used by compilers, passes through a set of steps. When calling the
translation tool, the user needs to tell it where the root of the source code is located, besides to the language
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3 TRANSLATION PROCESS

handler modules, and the configuration file to use during the code translation process. Besides to translating
complete trees, the tools can process one source file, the name of which can be passed as an alternative to the
tree root folder. However, the tree translation allows to exploit optimizations available at the inter-file level
between the source code files through inlining function calls and loop fusions.
As a first step, the tool loads necessary modules, which allow it to deal with the DSL extensions and the
general-purpose language. Then, the specified configuration file is loaded and parsed, such that the modules are
configured to parse the code according to the user needs. After the modules are loaded and configured, the source
code is loaded and parsed. An AST structure is generated for each of the different source files. The configuration
of the modules allows the translation tool to apply different optimization procedures. Some optimizations are
applied within each AST, and some are done based on analyzing the set of ASTs. As a last step, the tool
generates the final code from the ASTs. A new version of each file is generated mirroring the original model
code tree. The new code takes the optimizations into account for the target architecture and configuration.
Figure 2 shows the discussed concepts. Several relevant high-level optimizations1 are implemented directly in
the tool, which is extensible to allow the integration of even more optimizations.

Figure 2: Translation Process

3.3 Configuration Files

The translation process that we use in our approach is controlled by the users. Besides to the role of the scientists
who develop the scientific problem within the source code, expert scientific programmers provide optimization
information to guide the high-level code translation. Configuration files contain this information. Different
sections of the configuration files drive the different optimization procedures. Some sections are essential, and
some can be ignored. When a section is missing, then a default optimization procedure is used. For example,
if the local domain is not defined, then automatic domain decomposition is used.
Listing 1 is a sample from a configuration file demonstrating how the user provides different options to guide
the code transformation process.

Listing 1: Example configuration file contents

...

RANGE OF YD= 0 TO GRIDY

RANGE OF XD= 0 TO GRIDX

...

CBLOCKING:

1We consider optimizations high-level that cannot be executed by the compiler due to the restrictions of a language’s semantics.
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3 TRANSLATION PROCESS

XD =10000

ENDCBLOCKING

...

INDEXOPERATORS:

edge_right (): XD=$XD+1

...

In this sample configuration part, different information are provided. The ranges of a grid specifying the global
problem domain are shown. The values GRIDX and GRIDY are values that can be defined for compile-time
processing. A few lines later we see information regarding blocking configuration. It tells the tool to apply
blocking to the X dimension with a blocking factor of 10000. The definition line below defines the extension
edge right to allow access to the right edge by incrementing the index of the X dimension.
In the remainder of this section we describe some optimizations that can be applied through the tools and the
configuration files.

3.4 Blocking

Memory hierarchies on the different architectures allow to reduce the need to data traffic between the processing
units and the memory. However, the code should be written in a way that allows to optimally use those hardware
features. Reducing the data movement from/to the memory is a key optimization for stencil computations as
a result of the arithmetic intensity of such codes.
Data locality of the stencil applications allow to benefit much of memory hierarchies, if the code is written to
exploit those memory hierarchies. Blocking is one technique to increase the reuse of the data while still being
stored in the caches.
Our translation tool is designed to transform the code to apply blocking based on some input from the user
through the configuration files. Blocking can be disabled if it is not desired to be applied. A kernel to compute
the divergence at each grid cell is shown in Listing 2 using the GGDML language extensions mixed with C
language.

Listing 2: Example kernel using C with GGDML

foreach c in grid

{

float df=(f_F[c.east_edge ()]-f_F[c.west_edge ()])/dx;

float dg=(f_G[c.north_edge ()]-f_G[c.south_edge ()])/dy;

f_HT[c]=df+dg;

}

Applying the blocking using the blocking information provided within Listing 1 will result in generating the
following code in Listing 3.

Listing 3: Example configuration file contents

...

for (size_t blk_start = (0); blk_start < (GRIDX); blk_start += 10000) {

size_t blk_end = GRIDX;

if (( blk_end - blk_start) > 10000)

blk_end = blk_start + 10000;

...

#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end; XD_index ++) {

...

Experiments were done to evaluate the impact of applying blocking to the generated code within the translation
tools. Section 5.1 demonstrates the results.

3.5 Memory Layout

Choosing the right layout of the field data in memory is a key decision to optimally use the memory band-
width. This is important for memory-bound computations, which is the case for stencil computations. A data
layout that matches the most time consuming memory access patterns is essential to use the caching and the
vectorization features of the underlying architecture.
Our translation tool provides a flexible user-driven memory layout transformation optimizer. It can apply a wide
range of transformations ranging from simple index interchange to much complex formula based transformations,
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e.g., space-filling curves. To further control the optimal use of memory layout, the user is also given the
possibility to control loop interchange. The sum of the related transformation procedures within the translation
tools allows to optimally use memory bandwidth and vector units.
The following code (Listing 4) demonstrates the index transformation technique. The two indices are trans-
formed into one index in this example. Users provide the formula, and the tool uses it to transform the indices.

Listing 4: Example code generated with index transformation

...

#pragma omp for

for (size_t YD_index = (0); YD_index < (local_Y_Cregion); YD_index ++) {

#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end; XD_index ++) {

float df = (f_F[( YD_index + 1) * (GRIDX + 3) + (XD_index + 1) + 1] -

f_F[( YD_index + 1) * (GRIDX + 3) + (XD_index) + 1]) * invdx;

float dg = (f_G[(( YD_index + 1) + 1) * (GRIDX + 3) + (XD_index) + 1] -

f_G[( YD_index + 1) * (GRIDX + 3) + (XD_index) + 1]) * invdy;

f_HT[( YD_index + 1) * (GRIDX + 3) + (XD_index) + 1] = df + dg;

}

}

...

Experiments were done to evaluate the impact of choosing the right memory layout to get optimal performance.
Section 5.2 shows some experiments using those capabilities of the translation tool.

3.6 Inter-Kernel Optimization

To further improve the data reuse while being in the cache, further optimizations besides to blocking are appli-
cable. Blocking allows to reuse data that need to be accessed within a kernel, however, there are opportunities
some times to reuse data by transforming multiple kernels. Some consecutive kernels can be fused in some form
to exploit such opportunities. Surely, this is done after some decisions are made regarding the feasibility of the
merge and the data dependencies to guarantee the correctness of the computational results.
Our translation tool does some analysis to check the possibilities to fuse loops, and even check the possibilities
to inline functions between source code modules, such that it allows further loop fusions. The tool provides
a list of those possibilities to the user who can then choose as arguments which to apply, and then again the
tool applies the selected optimization (inlining or fusion). This strategy provides the opportunity for a later
automatic selection of the optimizations.
Listing 5 shows two kernels to compute the two components of the flux.

Listing 5: Example code with two kernels to compute flux components

...

#pragma omp parallel for

for (size_t YD_index = (0); YD_index < (local_Y_Eregion); YD_index ++) {

#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end; XD_index ++) {

f_F[YD_index ][ XD_index] = f_U[YD_index ][ XD_index] *

(f_H[YD_index ][ XD_index] +

f_H[YD_index ][( XD_index) + (-1)])

* onehalf;

}

}

...

#pragma omp parallel for

for (size_t YD_index = (0); YD_index < (local_Y_Eregion); YD_index ++) {

#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end; XD_index ++) {

f_G[YD_index ][ XD_index] = f_V[YD_index ][ XD_index] *

(f_H[YD_index ][( XD_index] +

f_H[( YD_index) + (-1)][ XD_index ])

* onehalf;

}

}

...
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3 TRANSLATION PROCESS

Listing 6 shows the resulting code after merging the two kernels.

Listing 6: Merged version of the flux computation kernels

...

#pragma omp parallel for

for (size_t YD_index = (0); YD_index < (local_Y_Eregion); YD_index ++) {

#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end; XD_index ++) {

f_F[YD_index ][ XD_index] = f_U[YD_index ][ XD_index] *

(f_H[YD_index ][ XD_index] +

f_H[YD_index ][( XD_index) + (-1)])

* onehalf;

f_G[YD_index ][ XD_index] = f_V[YD_index ][ XD_index] *

(f_H[YD_index ][( XD_index] +

f_H[( YD_index) + (-1)][ XD_index ])

* onehalf;

}

}

...

Experiments in Section 5.3 demonstrate the impact of using the inter-kernel optimization technique.

3.7 Scaling with Multiple-Node Runs

In the exascale era, using the features of a single machine is not enough but many nodes must be clustered
together with powerful interconnects. So, codes that scale over multiple nodes is essential to run models which
demand more computational resources than a single node.
To support scaling models written with GGDML over multiple nodes, we allow generating code to handle the
necessary inter-node communication regarding the specified multi-node configurations. This includes domain
decomposition and communication between the nodes.
Our translation tools allow both automatic and user-guided domain decomposition. The tool also detects the
necessary halo-exchange operations through extracting the semantics from the GGDML language extensions.
Then, those extracted information drive the generation of code that handles the communication. The whole
procedure is configurable and controlled by the user. So, the user can provide the necessary instructions to
initialize the communication library and the code patterns to handle the different halo patterns. This flexibility
allows the user to choose whatever communication library of interest without changing the translation tool
itself.
To examine the success of that technique, we used MPI and measured performance to test the scalability of the
generated codes, and GASPI as an alternative to test the possibility to change the communication library.
The following code Listing 7 demonstrates generating communication code to exchange the halo data between
the running processes.

Listing 7: Example generated code to handle communication of halo data

...

// part of the halo exchange code

if (f_G_dirty_flag [11] == 1) {

if (mpi_world_size > 1) {

comm_tag ++;

int pp = mpi_rank != 0 ? mpi_rank - 1 : mpi_world_size - 1;

int np = mpi_rank != mpi_world_size - 1 ? mpi_rank + 1 : 0;

MPI_Isend(f_G[0], GRIDX + 1, MPI_FLOAT , pp,

comm_tag , MPI_COMM_WORLD , &mpi_requests [0]);

MPI_Irecv(f_G[local_Y_Eregion], GRIDX + 1, MPI_FLOAT , np,

comm_tag , MPI_COMM_WORLD , &mpi_requests [1]);

MPI_Waitall (2, mpi_requests , MPI_STATUSES_IGNORE);

...

#pragma omp parallel for

for (size_t YD_index = (0); YD_index < (local_Y_Cregion); YD_index ++) {

#pragma omp simd

for (size_t XD_index = blk_start; XD_index < blk_end; XD_index ++) {

float df = (f_F[YD_index ][( XD_index) + (1)] -

f_F[YD_index ][ XD_index ]) * invdx;
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float dg = (f_G[( YD_index) + (1)][ XD_index] -

f_G[YD_index ][ XD_index ]) * invdy;

f_HT[YD_index ][ XD_index] = df + dg;

}

}

...

Results of scaling on multiple nodes are shown in Section 5.4.

4 Test-Application

To test our techniques and tools, we developed a test application that solves shallow water equations. A regular
grid configuration was used for the purpose of the run experiments. An explicit time-stepping scheme with the
finite difference method are used.
The application runs mainly eight kernels to compute flux components, velocity components, and the surface
level. Different grid widths were tested to understand performance with blocking and single/multiple node
configurations.
To access the code of the test code, it is available online under
https://github.com/aimes-project/ShallowWaterEquations.

5 Experiments

In this section, we demonstrate experimental results of using the tools and the discussed translation technique.
Experiments included different optimization procedures. Configurations were prepared for different experiments
targeting different architectures. The multi-core processor experiments were run on Broadwell processors, GPU
experiments were run on P100 GPUs, besides to experiments run on Aurora-SX vector engine. We used likwid,
nvprof, and ftrace tools to record measurements on the Broadwell, P100, and Aurora respectively.

5.1 Blocking

In this section we discuss some experiments that we did to better understand how to transform the source code
of a model to use blocking. This optimization allows the models to improve the use of the caches.
In first experiments, we generated two versions of the code for the Broadwell multi-core processor: with and
without blocking. We ran the codes and recorded the performance of the test application using different grid
widths. The results are shown in Figure 3. The results show that the performance drops when the code is run
with wider grids. Blocking allowed to hold performance at a specific level instead of dropping, as data within
the caches are reused. That is because the blocking takes into account the cache sizes, and hence maximizes
the data reuse while they are still in the caches.
To better explore the blocking optimization, we also fixed the grid width and varied the blocking factor. The
results are shown in Figure 4. The experimental results supported our theoretical estimations of the optimal
blocking factors to maximize the data reuse within caches. Our theoretical estimations relate the cache sizes
and the stencil structure to find the optimal blocking factor.
Similar experiments were repeated again with GPUs. We generated code for GPUs through the necessary
configurations. Then we ran the two code versions (with and without blocking) on a P100 GPU. The results
are shown in Figure 5. Again the caching allowed to keep performance over wider grids. However, we notice
that the blocking is not necessary for smaller grids, in the contrary, it harms performance.
To find optimal blocking factor, we have done some theoretical estimations using the cache size and the structure
of the stencil, and we tried to check the impact of the blocking factor experimentally. We ran the code with a
fixed grid width, while varying the blocking factor over a wide spectrum of values. Figure 6 shows that small
blocking factors yield much less performance in comparison to the optimal factor. Factors higher than that
optimal value lead also to degraded performance.

5.2 Vectorization and Memory Layout

To understand the impact of the memory layout of the model code, we prepared different configurations to
test different memory layout. First, we tested the impact of the access patterns and the distances between
the data element on the performance of the model code. Table 1 shows the recorded application performance
under three tested configurations, under two different architectures. In the first configuration, we investigated
using contiguous unit-stride arrays to store the data of the model fields. The second configuration emulates
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Figure 3: Performance measurements with variable grid width with and without blocking on Broadwell processor

Figure 4: Performance measurements with variable blocking factor on Broadwell processor

the AoS structure2, with a constant short distance separating the consecutive field data elements. In the third
configuration, the code accessed scattered data elements separated with long distances.

GFLOPS

Architecture Scattered
Short

distance
Contiguous

Broadwell 3 13 25
NEC Aurora 80 161 322

Table 1: Performance measurements of both code versions with variable grid width with and without blocking
on Broadwell processor

Looking at the Broadwell results, we find that the unit-stride code version performs well on the processor, taken
into account the maximum memory bandwidth and the arithmetic intensity of the code. However, separating

2With AoS (Array of structures) data is interleaved such that consecutive data elements of the same field are separated with a
constant distance, were data of other fields fit within those gaps separating field elements
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Figure 5: Performance measurements with variable grid width with and without blocking on P100 GPU

Figure 6: Performance measurements with variable blocking factor on P100 GPU

each data element (single precision floating point) with four bytes from the previous element reduced the
performance of the application to the half. This is a result of two factors: first is the misuse of the caches, and
the second is suboptimal use of the vector units. The details of the measurements show that some of the kernels
were not vectorized. This was even much worse using the distant data elements. In that case the performance
dropped vary much and non of the kernels were vectorized. So, the AVX2 features were not used, besides to
the bad use of the caches.
Again, looking at the Aurora vector engine results, we find that the unit-stride code version performs well. The
performance drops with nearly the same ratio as the Broadwell for the constant short distance separated values.
Those reductions are again because of the bad use of the memory bandwidth. However, the performance drop
ratio in the version with the scattered data elements is less compared to the Broadwell. That is because the
vector units are still working, but with degraded performance of the data exchange between the vector units
and the memory.
The results lead to focus on matching the right loop order and the memory access patterns. Our translation
tool allows the user to control the loop order transformations and to fully control the data layout of the model
fields.
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5.3 Inter-kernel Optimization

To evaluate the impact of the inter-kernel optimization of loop fusions to exploit cache reuse, we ran some
experiments on three different architectures: multi-core processors, GPUs, and vector engines. The eight
kernels of the original source code are merged in some way to keep the consistency of the results. The new code
resulting from the kernel merge is run to measure performance gain. This process was on the three architectures.
Table 2 shows the results.

Before merge After merge

Architecture

Theoretical
Memory

bandwidth
(GB/s)

Measured
memory

throughput
(GB/s)

GFLOPS

Measured
memory

throughput
(GB/s)

GFLOPS

Broadwell 77 62 24 60 31
P100 GPU 500 380 149 389 221
NEC Aurora 1,200 961 322 911 453

Table 2: Performance measurements of both code versions with variable grid width with and without blocking
on Broadwell processor

The table shows the maximum memory bandwidth of each architecture, and the achieved memory throughput.
The arithmetic intensity of the code explains the achieved performance in terms of GFLOPS. The code runs
approximately at comparable memory throughput before and after the kernel merges. However, we found that
the efficiency of using that achievable memory throughput can be improved. This is done by using the data
that is stored in the cache to compute more expressions while still being in the cache. This reduces the access
to the memory and increases the arithmetic intensity.
The numbers in the table show the improvement in the application performance.

5.4 Scaling with Multiple-Node Runs

To experimentally examine the scalability of the code that the translation tool generates, we tested multiple node
configurations. We generated code for multiple nodes with multi-core processors (Broadwell), using OpenMP
besides to MPI. Also, we generated code for multiple nodes with GPUs (P100), using OpenACC besides to
MPI. Figure 7 shows the measured performance of running the application on different numbers of nodes. The
measurements were taken for 1,10,20...100 nodes. On the Broadwell processor, we used 36 OpenMP threads on
each node.

6 Summary

In this report we discussed the development of the source-to-source translation tools that translate the high-level
code, which uses the language extensions, into optimized code. We discussed the reqirements that guided the
development of the needed tools. Then an overview of the high-level design of the translation technique was
presented. Following the discription, we discussed some details regarding some optimization procedures that
the tools apply during the code translation process. Some experimental results were presented to reflect the
impact of the applied optimization procedures.

The analysis of the performance of the generated codes for the different architectures shows that the tools
allowed to achieve near optimal performance. The tested code belongs to the stencil computation family of
applications and hence is memory bound. Achieving a high percentage of the maximum memory bandwidth of
an architecture that aligns with the theoretical estimations according to the arithmetic intensity of the code leads
to the results that the optimization at the kernel level is nearly optimal. Besides to kernel level optimization,
through the inter-kernel optimization we could increase the arithmetic intensity at the application level. Thus,
the tools allowed to achieve also near optimal performance at the application level.

The measured performance, taking into account the maximum memory throughput on the different architectures,
shows that the tools succeeded to provide performance portability. We used a single source code. Using this
code, we could generate code for multi-core processors, which efficiently used the memory bandwidth. The same
is true for the GPUs and the vector engines, where we also used the memory bandwidth efficiently. Therefore,
the ratios of the achieved performance on one architecture to another reflects the ratio between the maximum
memory throughputs of those architectures.
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6 SUMMARY

Figure 7: Performance measurements of both code versions with variable grid width with and without blocking
on Broadwell processor

Important optimizations to let stencil operations run efficiently on the differnt architectures are implemented.
Such optimizations are normally applied manually by scientists, which needs scientists to spend time and learn
technical details regarding architectures and optimization. Thanks to the developed tools, scientists can focus
their efforts on the scientific problems. The tools can add the optimization through the code translation process.
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