2.3 Universitat Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

D2.2 Code Co-Development

Sandra Schroder

Work Package: WP2
Responsible Institution: Universitat Hamburg
Date of Submission: October 2019

CONTENTS

Contents
(1_Introduction| 3
2 Code Co-Development] 4
|2.1 Describing Success Stories| o 0oL 4
|3 Success Story| 5
3.1 Software Engineering Concepts|. 5
B2 Procedurel 6
|13.2.1 Tutorial Setup and Execution| 6
B3TRESUITS . . . ¢ o o e 6
13.3.1 Perceived Advantages|. 6
|3.3.2 Challenges in Code Co-Development, 7
4 Summary and Conclusions| 8
D> Material 9
1 Tutorial Intr 10D . . . L e e e e e e e e e e 9
5.1.1 Howtousethisguide? 9
1.2 Part 1: Eclipse|. 9
0.2.1 Terms| e e e e e e e 9
|5.2.2 Setting up the Python Eclipse Plugin PyDev| 10
0.2.3 Windows| L e 10
2.2.4 Linux (Debian and derivatives)|. 10
|5.2.5 Create a Python Project]. 11
5.2.6 Create a Python Module| 11
[5.2.7 Runa PythonModule| 11
[5.2.8 Import an existing project| 12
5.3 Part 2: Unit Testing|. e 12
B3I TErmS] . .« . o v v o e e e e e e e 12
B.32 Assertions] 12
19.3.3 Writing a Test for the Quicksort Algorithm| 13
9.3.4 SUTVEY| o o e e e e e e e e e e e e e 14
[5.4 Part 3: Debugging| e 14
BATTTEIMS -« - o v o o e e e e e e e 14
|5.4.2 Debugging the Application| 15
9.5 UserSurveyl e e e e e e e e 16
5070 D 27 16
0.0.2 Part 2] e 16
0.0.3 Part 3 e e e e e 17
D2.2 Code Co-Development 2/18

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Software engineering is often neglected in computational science [Kel07]]. However, it
can increase productivity by providing scaffolding for the collaborative programming,
reducing the coding errors and increasing the manageability of software. In work pack-
age 2 (WP2), Task 2.1, suitable concepts from the software engineering perspective
have been collected. A subset of these concepts have been chosen for evaluation that
are considered suitable and useful for scientists during their programming tasks. These
concepts have then been discussed with the scientists and they adopted them in their
everyday work. In order to teach the concepts, they carried out a tutorial that teaches
the selected concepts.
This report constitutes an experience report on the code co-development process.

The following paragraph is taken from the project proposal for describing the pur-
pose of code co-development:
”In this service, a few joint efforts with scientists are implemented to evaluate and utilize
new software concepts such as programming languages and tools but also understand
the potential of novel architectures and processing systems. This is achieved by infer-
ring knowledge from existing studies and by providing simplified performance and cost
models for those alternatives. Together with scientists we establish pilot studies to sup-
port re-write of existing codes and document those results as success stories. While we
conduct the co-development, we will periodically capture the fraction of work time spent
in different tasks, e.qg., design, programming and runtime. This will allow to understand
the required programming time and combined with our cost analysis, the cost-efficiency
of novel approaches can be made more visible. To allow other scientists to conduct simi-
lar studies, we will develop and publish a quality control method for conducting surveys
that assess the benefit of systematic performance engineering.”

The experiences and conclusions of the code co-development process are described
and reflected in this report. A summary of the results, the advantages, and challenges
of adopting the selected concepts and of the whole process is given. Additionally, some
solutions for further improvement of the code co-development process are proposed.

D2.2 Code Co-Development 3/18

CHAPTER 2. CODE CO-DEVELOPMENT

Chapter 2

Code Co-Development

This chapter reports about the results of Task 2.5. First, the code co-development pro-
cess how it was performed is described. Second, the experiences made during the code
co-development process are described including a list of expected advantages and chal-
lenges of adopting the selected concepts.

2.1 Describing Success Stories

In the following chapter, we describe a success story about introducing software engi-
neering concepts to scientists who are asked to use them throughout their development
tasks. The success story is described according to this structure. As new success sto-
ries are collected, this structure can be reused. The structure contains the following
elements:

Software Engineering Concepts This part describes the software engineering con-
cepts that have been selected for the code co-development. The detailed list of
software engineering concepts is given in D2.1.

Procedure This part outlines the concrete steps and used methods (e.g., tutorials, work-
shops, inspections) that have been performed for code co-development and to col-
lect the results.

Results This part lists and explains the results obtained through code co-development.
This section should also especially emphasize advantages and disadvantages of the
applied concepts. This includes a description of challenges that appeared during
the code co-development process (was it difficult to introduce/use concepts, why
was it difficult?)

Material This part contains supplementary material that have been used in the code
co-development process. For example, this part can contain step-by-step tutorial
descriptions, task assignments for hands on sessions, user surveys, cheat sheets
etc.

D2.2 Code Co-Development 4/18

CHAPTER 3. SUCCESS STORY

Chapter 3

Success Story

In the following, we describe a success story about introducing software engineering
concepts to scientists who are asked to use them throughout their development tasks.
To describe the success story, we use the suggested structure from Section [2.1]

3.1 Software Engineering Concepts
The following practices have been chosen and performed by the scientists.

Integrated Development Environment Normally, scientists use text editors like Vimﬂ
emacﬂ or nanoﬂ to write the source code. While those editors provide rich support
of source code highlighting, they lack advanced features like debugging, automatic
refactoring (e.g., extract method/function, rename variable), code structure views,
or formatting support, just to name a few. That is why the Eclipse IDE (Integrated
Development Environment) has been chosen as an exemplary IDE. In Section
the tutorial for introducing the IDE is presented.

Refactoring Refactoring is defined as a “technique for restructuring an existing body
of code, altering its internal structure without changing its external behavior. ﬁ It
supports to remove so-called bad smells [Fow99] that indicate bad code design. As
an exemplary refactoring, the extract function is applied to reduce the complexity
and readability of functions.

Coding Style A consistent coding style enhances the understandability of the source
code. The participants were asked to conform to indentation of code statements
and to conform to naming conventions.

Documentation Documentation is an appropriate means to preserve different kind of
knowledge about a software system [SomO1[]]l. The participants were asked to add
comments in source code that explain the functionality of functions. This technique
aims for making the code clearer to the reader who is not the original author of the
code.

Debugging Debugging is a very helpful and supportive method to find and resolve de-
fects within a program. In Section[5.4] the corresponding tutorial for explaining the

Ihttps://wiki.ubuntuusers.de/VIM/
Zhttps://www.gnu.org/software/emacs/
3https://wiki.ubuntuusers.de/Nano/
“https://refactoring.com/

D2.2 Code Co-Development 5/18

CHAPTER 3. SUCCESS STORY

main concepts of debugging is presented. In this tutorial, a debugger for Python
programs is used as an example, since the scientists participating in the tutorial
write their programs in Python.

Unit Testing Testing is a process for software quality assurance [NT11]. In this tutorial,
unit testing [HT03]] [Osh09]] was chosen as a specific technique. Unit testing is used
to ensure that a part of an application - the unit - meets its requirements, i.e., that
it behaves as intended.

3.2 Procedure

3.2.1 Tutorial Setup and Execution

Introduction of practices The selected concepts are discussed with and presented to
the participants. For each selected concept, a tutorial has been designed that has been
used by the participants to learn the most important principles. The tutorial contains an
explanation of important terms and a step-by-step guide. The participants were asked to
follow each step of the tutorial.

User Feedback Survey The participants were asked to fill out a survey after each tu-
torial part. This survey captures feedback on the perceived usefulness on applying the
selected practices referred in the respective tutorial part. Based on the feedback, we
collect experiences on the code co-development process. The complete survey is given
in Section

3.3 Results

This section reports on the experiences obtained by performing code co-development.
Experiences are collected based on the feedback from the user survey and by interview-
ing the participants. First, the perceived advantages of the concepts are presented.
Second, the challenges as perceived by the participants when applying the concepts and
practices are discussed.

3.3.1 Perceived Advantages

Coding Style Indentation and naming conventions helped to enhance and keep the un-
derstandability of the code. The participants used descriptive names for variables.
The names helped them to better understand the purpose of a specific variable.
From their point of view, introducing naming convention does not require high
effort, but provides a great benefit during development.

Refactoring Participant found that dividing the code into functions of shorter length
keeps the structure of the code and improves understandability. However, as will
be illustrated in the next section, refactoring sometimes could not be performed.

Documentation Documentation in form of code comments improved understandability
of code. However, as reported in the next section, documentation requires a lot of
effort.

D2.2 Code Co-Development 6/18

CHAPTER 3. SUCCESS STORY

3.3.2 Challenges in Code Co-Development

During the code co-development process, we found that is challenging to introduce soft-
ware development methods into the development process of scientists in the context of
high performance computing. Mainly, this is due to the focus of scientists on produc-
ing and publishing new research results. The effort in applying software development
methods is too high from their point of view. Interviewed scientists fear that follow-
ing SE practices might slow down the entire research process. Scientists mostly write
code without having sustainability in mind and without considering that the code will be
shared with other scientists. That is why most scientists do not see any value for most
of the proposed practices.

Especially code documentation was considered time consuming. Interrupting the
coding process in order to add code comments was perceived as “disruptive”. Partic-
ipants mentioned that an appropriate balance between the amount of code comments
and the clarity of the code is important.

Automatic refactoring such as extract function was not applicable for all code parts.
For instance, one software system is written as a mixture of C and a Domain-Specific
Language (DSL). For the C programming language, a rich support for refactoring is
provided by the IDE. However, refactoring for DSL code is not provided. That is why,
refactoring the DSL code is a manual process. Manual refactoring can become time
consuming and is error prone.

D2.2 Code Co-Development 7/18

CHAPTER 4. SUMMARY AND CONCLUSIONS

Chapter 4

Summary and Conclusions

In this deliverable, we have summarized an experience report on applying the code co-
development process. We have selected a subset of software engineering concepts and
asked scientists to apply them in their everyday work. We designed a tutorial to teach
them the most important principles of the software engineering practices. In order to
collect the experiences of the code co-development process, the participant needed to
fill out a survey. Additionally, we interviewed the participants.

In this report, several challenges of introducing software engineering concepts to the
HPC field are described. Those challenges are due to several reasons. Often, scientific
software is written by PhD students that use their programs in order to produce results
for their research. The software is only developed for the scope of their thesis. The
software is not intended to be developed and used by others after the thesis is finished.
However, it is very likely that future students make use of the software for answering
new research questions based on existing results obtained with this software. It seems
that this is a situation scientists are not aware of. At this point, software engineering
methodologies and techniques can be prove to be beneficial in order to increase the
productivity of scientific software development processes.

Despite the challenges reported in the previous section, we think that scientists in the
HPC field can greatly benefit from such methods. It is necessary to convince them that
software engineering practices can greatly support them in their programming tasks.
For this, it is necessary to collect and provide more success stories of scientists that
have applied the selected concepts.

D2.2 Code Co-Development 8/18

CHAPTER 5. MATERIAL

Chapter 5

Material

5.1 Tutorial Introduction

5.1.1 How to use this guide?

Each part starts with an explanation/description of terms used in order to understand the
following instructions. Please read them carefully and make yourself familiar with the
terms. Please capture the time when you start the respective part and capture the time
when you finished the part. At the end of each part, please provide some impressions
about the benefits and challenges that you experienced while you performed the tasks.
Please provide the information in the survey User-Feedback. pdf (either handwritten or
in the corresponding tex file).

This guide contains three parts:

Part 1 Foundations of Python IDE, introducing Eclipse and Python
(file: 1tutorial-eclipse.pdf)

Part 2 Debugging Python programs with PyDev
(file 2tutorial-unit-testing.pdf)

Part 3 Test Automation and Unit Tests in Python with Eclipse
(file 3tutorial-debugging-eclipse.pdf)

Please work through the parts in order.

Actions that need to be performed by the reader are marked with ACTION.

5.2 Part 1: Eclipse

5.2.1 Terms

Workspace The Workspace is the physical location (file path) where certain meta-data
and the development artifacts (projects, source files, images and other artifacts)
are stored. The meta-data stored for the workspace contains preference settings,
plug-in specific meta data, logs etc.

Perspectives, views, and editors Views are used to navigate and change content. Views
and editors are grouped into perspectives. For example, the python perspective
contains python specific views and editors. A view is typically used to work on a
set of data. This data might be a hierarchical structure. If data is changed via the

D2.2 Code Co-Development 9/18

CHAPTER 5. MATERIAL

view, the underlying data is directly changed, without the need to save. For exam-
ple, Project Explorer view allows you to browse and modify files of Eclipse projects.
Any change in the Project Explorer is directly applied to the files, e.g., if you re-
name a file, the file system is directly changed. Editors are typically used to modify
a single data element, e.g., the content of a file or a data object. For example, the
python editor is used to modify python files. An editor with files modified by the
user (a dirty editor) is marked with an asterisk left to the name of the modified file.

Outline The Outline view shows the structure of the currently selected source file.

Project/package explorer The Package Explorer view allows you to browse the struc-
ture of the projects and to open files in an editor via a double-click on the file. It is
also used to change the structure of the project. For example, files and folders can
be renamed or moved via drag and drop. A right-click on a file or folder shows the
available options.

Problems view The Problems view shows errors and warning messages. Sooner or
later you will run into problems with your code or your project setup. To view
the problems in your project, you can use the Problems view which is part of the
standard Java perspective. If this view is closed, you can open it via Window>Show
View>Problems.

5.2.2 Setting up the Python Eclipse Plugin PyDev

Installation of the software is OS dependent, follow the instructions in the appropriate
subsection. After you have installed the software, make yourself familiar with the user
interface of Eclipse, e.g., investigating the package explorer, the views of the python
perspective etc.

5.2.3 Windows
Please follow the steps below in order to setup Eclipse and the PyDev plugin.
1. Download and install latest eclipse (Eclipse Photon)

2. Eclipse requires Java to be executed. If not already installed on your system, please
do so.

3. Start Eclipse, choose a workspace. If there does not exist a workspace on that
path, it will be created. When chosen, Eclipse starts and shows a welcome page.

4. Install Python Plugin: Help > Eclipse Marketplace; Find: PyDev > Install
5. Restart Eclipse.

6. Finished.

5.2.4 Linux (Debian and derivatives)
Use apt to install the required packages:

$ sudo apt install eclipse eclipse-pydev

D2.2 Code Co-Development 10/18

CHAPTER 5. MATERIAL

5.2.5 Create a Python Project

In this part, you will create your first python project. Please perform the following steps:

1.

2.

Open the PyDev Perspective: Window > Perspective > Other Perspective > PyDev

File > New > Project...

. New window: PyDev > PyDev Project

. Click Next.

. Choose a project name, e.g., “Test”.

. Choose a python version that is installed on your computer, e.g., 3.6 or 2.7.
. Choose the interpreter (same as on your computer or other).

. Click Finish.

5.2.6 Create a Python Module

In this part, a python module is created. This will be a simple python script that will
print “Hello” to the Eclipse console. For this, do the following:

1.

2.

First create a source folder.

For this, right click on the python project that you have just created. Then choose
New > Source Folder; The name of the source folder should be “src”.

. Create a python module. For this, Right click on folder “src” and choose New >

PyDev Module.

. Choose a Name for the Python module, e.g., “TestModule”.
. Accept eclipse default settings for PyDev.
. Choose a template for the module: Module:Main.

. This creates a python main module stub that can be executed. There are also other

templates available, e.g., Python Class template. You should see this source code:

1 if __name__ == ’__main__":
2 pass
. Intheline below 1f __name__ == ’__main__’:, replace the pass command with
print(’Hello’), resulting in:
1 if __name__ == ’__main__":
2 print("Hello™)

.7 Run a Python Module

Right click on the created python module in the package explorer.
Run as > Python Run

Console in Eclipse should show the text Hello.

D2.2 Code Co-Development 11/18

CHAPTER 5. MATERIAL

5.2.8 Import an existing project

For this tutorial, an existing project is provided that implements the Quicksort algorithm.
The next parts of the tutorial (Part 2 and Part 3) are based on this example. That is why
the project needs to be imported into the workspace. The project is delivered as a zip
archive. In order to import the archive into the workspace, perform the following steps:

1. Right click in the package explorer, choose import.

2. Choose General > Existing Projects into Workspace; Next.
3. Check "Select archive file".

4. Browse to the archive file containing the project.

5. Choose the path where you have stored the archive.

6. Click the "Finish" button.

7. The project is now imported into the workspace.

5.3 Part 2: Unit Testing

5.3.1 Terms

Unit Test: A unit test is an automated piece of code that invokes a unit of work in the
system and then checks a single assumption about the behavior of that unit of work.

Test framework: A test framework provides specific methods in order to verify assump-
tions about the behavior of the unit (assert methods). The framework unittest for
Python will be used in this tutorial.

Test Case: A test case is the individual unit of testing. It checks for a specific response
to a particular set of inputs.

Test Fixture: A test fixture represents the preparation needed to perform one or more
tests, and any associate cleanup actions. This may involve, for example, creating
temporary or proxy databases, directories, or starting a server process.

Test Suite: A test suite is a collection of test cases, test suites, or both. It is used to
aggregate tests that should be executed together.

Test Runner: A test runner is a component which orchestrates the execution of tests
and provides the outcome to the user. The runner may use a graphical interface, a
textual interface, or return a special value to indicate the results of executing the
tests.

5.3.2 Assertions

Each test needs to call an assert method in order to verify the assumption about the
behavior of a unit. Python’s testing framework uses Python’s built-in assert() function
which tests a particular condition. If the assertion fails, an AssertionError will be raised.
The testing framework will then identify the test as Failure. Other exceptions are treated
as Errors. The following assertions are basic assertions:

D2.2 Code Co-Development 12/18

CHAPTER 5. MATERIAL

assertEqual/assertNotEqual(argl,arg2): Test that argl and arg2 are equal/not equal.
If the values do not compare equal/do compare equal, the test will fail.

assertTrue/assertFalse(expr): Test that expr is true/false. If false/true, the test fails.

assertlIs/assertIsNot(argl,arg2): Test that argl and arg2 evaluate to the same objec-
t/do not evaluate to the same object.

assertIsNone/assertIsNotNone(expr): Test that expr is/is not None.
assertTrue, assertFalse: verify a condition

assertRaises: verify whether a specific exception has raised

5.3.3 Writing a Test for the Quicksort Algorithm

In the following, the Quicksort Algorithm from the exemplary project will be tested. For
this, create a unit test class:

1. Create a new python module “quicksort test.py”
2. Choose the Unittest Template for the module

You should see the following code:

1 import unittest
2
5 class Test(unittest.TestCase):

4

5 def testName(self):

6 pass

7

s if __name__ == "__main__":
9 unittest.main()

A testcase is created by subclassing unittest.TestCase. Initially, one test is de-
fined in this template, namely testName. The name of any tested function starts with
the letters “test”. This naming convention informs the test runner about which methods
represent tests. The final block shows a simple way to run the tests. unittest.main()
provides a command-line interface to the test script. Execute the test by right clicking
on the editor of the test class and choose Run As > Python unit-test.

You should see the following output:

1 Finding files... done.
> Importing test modules ... done.

3

4

s Ran 1 test in 0.001s

7 OK

Since the test method is not implemented yet, it will run successfully.

In a next step, the test class will be completed with two test cases. It should be tested
that

D2.2 Code Co-Development 13/18

CHAPTER 5. MATERIAL

1. The length of the resulting, sorted list is the same after sorting even when the
list contains duplicated entries, e.g., [1,0,0,2] should result in [0,0,1,2] and not in
[0,1,2].

2. The list is sorted after calling the quicksort method.

Since unittest prints only the name of the successful/failed test method, it is important
to choose a descriptive name that allows readers to quickly grasp what the method is
supposed to test.

ACTION: Please add two test method with a meaningful name that best represent the
tests mentioned above.

As a next step, the test methods will be implemented. In the test, an unsorted, arbi-
trary list with integers is taken as input. To test the Quicksort algorithm, the expected
output needs to be compared with the actual output.

ACTION: Implement the test methods. Use an appropriate assertion method to test
the Quicksort algorithm.
The tests should fail, since there is a (rather simple) bug in the implementation of the
algorithm. The bug will be discovered in the next part using debugging.

5.3.4 Survey

Please answer the questions provided in the tutorial’s introduction.

5.4 Part 3: Debugging

Debugging is used to find and resolve defects within a program. In this part, we will use
the Eclipse debugger in order to locate the bug currently implemented in the example
project.

5.4.1 Terms

Breakpoint A breakpoint in the source code specifies where the execution of the pro-
gram should stop during debugging. Once the program is stopped you can investi-
gate variables, change their content, etc.

Debug Perspective Eclipse provides a Debug perspective which gives you a pre-configured
set of views. Eclipse allows you to control the execution flow via debug commands.

Debug View The Debug View allows you to manage the debugging or running of a pro-
gram in the workbench. It displays the stack frame for the suspended threads for
each target you are debugging.

Breakpoints View The Breakpoints view allows you to delete and deactivate break-
points and watchpoints (not covered in this tutorial).

Variables/Expression View The Variables view displays fields and local variables from
the current executing stack. Please note that you need to run the debugger to see
any variables in this view.

D2.2 Code Co-Development 14/18

CHAPTER 5. MATERIAL

Stepping Stepping is the core feature of any debugger which allows you to execute
(step through) your code line by line. This allows you to examine each line of code
in isolation to determine whether it is behaving as intended. The eclipse debugger
provides the following stepping modes:

¢ F5: Go to the next step in the program. If the next step is a method / function,
this command will jump into the associated code.

* F6: Step over function calls, e.g., it will call a method / function without en-
tering the associated code.

¢ F7: Step out of the current function. So this will leave the current code and
go to the calling code.

* F8: Resume execution. If no further breakpoint is encountered, the program
will continue its work, and possibly exit normally.

5.4.2 Debugging the Application

The tests in the previous tutorial part revealed that the Quicksort algorithm contains a
bug. In this part of the tutorial, the bug will be discovered using the debugging features
of Eclipse.

In order to find the location of the bug, a breakpoint needs to be set. To create a
breakpoint at a specific line, double click in the left margin in the Python editor.

1. Create a breakpoint at if len(numbers) == 0: (the first line of the quicksort
implementation).

2. Then right click on the file “quicksort test.py” in the package explorer (or right
click in the editor) and choose Debug As > Python Run.

3. Eclipse will ask to change to the Debug perspective. Confirm that you want to
change the perspective (click “Switch”); You can make eclipse remember your de-
cision.

Eclipse will run the code until it reaches the breakpoint. Eclipse shows a blue arrow in
the line where the breakpoint has been reached. The line has not been executed at this
point. After stopping at the breakpoint, we can investigate the current program state
using the Eclipse debugger, e.g., current variables in the variable view.

ACTION: Continue investigating the program by stepping through it using F6 (Step
Over).

In the variables view you see how variables (e.g., first, numbers, and remaining)
are added and filled with values as you proceed with F6.
In the debug view, the stack frame is depicted showing how the quicksort function is
called recursively as you step through the program.
Try to find the location that lets the test fail that verifies that the length of the list stays
the same by investigating the code step by step and using the variable view as support.

Fix the code and re-run the test to verify whether they pass successfully.

D2.2 Code Co-Development 15/18

CHAPTER 5. MATERIAL

5.5 User Survey

5.5.1 Part1l

Start

End

Do you think you could apply the IDE in your project? Please indicate why (or why not)
this is the case.

Will you start using an IDE in your project / or do you think that this might become
interesting in a future project?

5.5.2 Part 2

Start

End

Do you think you could apply test-driven development in your project? Please indicate
why (or why not) this is the case.

Will you start applying test-driven development in your project / or do you think that this
might become interesting in a future project?

D2.2 Code Co-Development 16/18

CHAPTER 5. MATERIAL

5.5.3 Part3

Start

End

Do you think you could apply a debugger, e.g., the Eclipse debugger, in your project?
Please indicate why (or why not) this is the case.

Will you start applying a debugger in your project / or do you think that this might
become interesting in a future project?

Acknowledgement

The PeCoH project has received funding from the German Research Foundation (DFG)
under grants LU 1353/12-1, OL 241/2-1, and RI 1068/7-1.

UH
iti
L2 ¥ Universitdt Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

D2.2 Code Co-Development 17/18

BIBLIOGRAPHY

Bibliography

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[HT03] Andy Hunt and Dave Thomas. Pragmatic unit testing in Java with JUnit. The
Pragmatic Bookshelf, 2003.

[Kel07] D. F. Kelly. A software chasm: Software engineering and scientific computing.
IEEE Software, 24(6):120-119, Nov 2007.

[NT11] Kshirasagar Naik and Priyadarshi Tripathy. Software testing and quality assur-
ance: theory and practice. John Wiley & Sons, 2011.

[Osh09] Roy Osherove. The Art of Unit Testing: With Examples in .Net. Manning Publi-
cations Co., Greenwich, CT, USA, 1st edition, 2009.

[Som01] Ian Sommerville. Software documentation. Software engineering, 2:143-154,
2001.

D2.2 Code Co-Development 18/18

	Introduction
	Code Co-Development
	Describing Success Stories

	Success Story
	Software Engineering Concepts
	Procedure
	Tutorial Setup and Execution

	Results
	Perceived Advantages
	Challenges in Code Co-Development

	Summary and Conclusions
	Material
	Tutorial Introduction
	How to use this guide?

	Part 1: Eclipse
	Terms
	Setting up the Python Eclipse Plugin PyDev
	Windows
	Linux (Debian and derivatives)
	Create a Python Project
	Create a Python Module
	Run a Python Module
	Import an existing project

	Part 2: Unit Testing
	Terms
	Assertions
	Writing a Test for the Quicksort Algorithm
	Survey

	Part 3: Debugging
	Terms
	Debugging the Application

	User Survey
	Part 1
	Part 2
	Part 3

