
D4.1 HPC Competences and Certification Program

Kai Himstedt

Work Package: WP4
Responsible Institution: RRZ, DKRZ
Date of Submission: June 2018

Abstract

In the Performance Conscious HPC (PeCoH) project we will increase transparency on the
benefit of HPC competences, especially those relevant for performance engineering. The-
refore, relevant competences were identified. The classification according to necessity and
usefulness for different scientific domains is technically supported. To make the competences
more visible in the community, we have established three HPC certification levels (Basic, In-
termediate, and Expert). In the further progress of the project we will also add more content
for the basic level of the HPC skills and plan to bundle teaching material required to master
the various certification levels and to organize standardized online examinations to validate
the HPC skills of a user.

CONTENTS

Contents

1 Relation to the Project 2

2 Introduction 3
2.1 Motivation . 3

3 Classification of HPC competences (Task 4.1) 4

4 Development of the Certification Program (Task 4.2) 5

5 Summary and Conclusions 6

6 Appendix 8

D4.1 HPC Competences and Certification Program 1/43

CHAPTER 1. RELATION TO THE PROJECT

Chapter 1

Relation to the Project

The following text is the description of the project proposal for work package (WP) 4:

Based on our experience, typically users lack the following performance critical
knowledge about 1) process mapping and pinning of threads to nodes and cores,
2) the importance of appropriate file system usage (local vs. global, sequential vs.
parallel, SSD vs. HDD), 3) options to setup up a job chain in order to achieve
reasonable run-times, 4) running many small tasks efficiently on multi-core com-
pute nodes, 5) planning usage of temporary storage capacity and movement of
large data sets and the ability to write scripts for automated data movement, 6)
using software (needed for pre- and post-processing) that is not installed on the
production system, i.e., by compiling it themselves or simply employing sshfs and
use the existing software environment on the oomputer.

This deliverable covers the classification of relevant HPC competences (Task 4.1) and
the certification program (Task 4.2). A major part of the deliverable is represented by
the results given in our corresponding concept paper titled “An HPC Certification Program
Proposal Meeting HPC Users’ Varied Backgrounds”, which is available at our website https:
//www.hhcc.uni-hamburg.de and as an attachment to this deliverable.

D4.1 HPC Competences and Certification Program 2/43

https://www.hhcc.uni-hamburg.de
https://www.hhcc.uni-hamburg.de

CHAPTER 2. INTRODUCTION

Chapter 2

Introduction

The steadily increasing computing power and complexity of HPC systems lead to an increa-
sing demand for a good education of their users so that they can use such systems adequately.
According to our experience problems of the scientists are nowadays already often dominated
at the level of getting things to work, i.e. the user focuses on getting a parallel job to run,
rather than being aware of how to use the expensive HPC resources appropriately. This
section motivates the need for an HPC certification program.

2.1 Motivation

Well trained users feel comfortable in using an HPC system so their productivity will be
increased. Additionally they are able to better exploit the HPC resources which reduces the
operating costs of compute centers. This leads to a typical win-win situation. We named our
certification program “HPC Führerschein” (in German) to indicate that users should have a
set of validated skills before they start using an HPC system.

D4.1 HPC Competences and Certification Program 3/43

CHAPTER 3. CLASSIFICATION OF HPC COMPETENCES (TASK 4.1)

Chapter 3

Classification of HPC competences
(Task 4.1)

We have initially identified four major topics for our classification of competences as “HPC
Knowledge”, “Use of the HPC Environment”, “Performance Engineering”, and “Software
Engineering”. It is in the nature of the subject that HPC competences (named skills) are
generally built upon one another, which results in a tree structure for representing skills
depending on sub-skills. The tree of HPC skills is a key component of our approach and
has a role of a database for the HPC certification program. The implementation is based
on the Extensible Markup Language (XML) [W318a] and a corresponding XML Schema
Definition (XSD) [W318b] assures consistency. The skill tree modeling is based on a data
structure that allows the definition of different skills depending on the same sub-skill. This
is similar to using a Makefile for the well-known make build automation tool [Fel79] to define
the dependencies of compilation units. Skills have unique names and contain a description of
the HPC competences and knowledge that are associated to them. Furthermore, each skill is
assigned to one of the four top level competences A depth-first search is used to fully expand
the skill tree (e.g. for presentation purposes).

The skill tree is browsable at our website [HHC18]. In further stages of the project,
the skill tree will be extended to support links to learning material. Additional attributes
can be used to describe a level of a skill (Basic, Intermediate, and Expert), its suitability
for a user role (Tester, Builder, and Developer) and the suitability for a cientific domain
(Chemistry, Physics, Computer Science, ...). This way the skill tree supports different views
on the content.

For a detailed description of the classification of HPC competences refer to our correspon-
ding concept paper [HHKS18], which is also attached as an Appendix to this deliverable.

D4.1 HPC Competences and Certification Program 4/43

CHAPTER 4. DEVELOPMENT OF THE CERTIFICATION PROGRAM (TASK 4.2)

Chapter 4

Development of the Certification
Program (Task 4.2)

In our approach we separate the certificate definition from content providing. This is simi-
lar to the concept of a high school graduation exam (Zentralabitur in German). Thus, the
learning material can be provided by different (scientific) institutions. A certification board
acts as an (virtual) institution that establishes accepted certificate definitions and correspon-
ding exams. It is at the discretion of a content provider to decide which learning material is
most appropriate to teach a skill. That offers freedom and flexibility in creating the learning
content.

A certificate definition bundles an appropriate set of skills. For a certificate named “Get-
ting started with HPC Clusters”, for example, we bundled top level skills at the basic le-
vel from the field of “System Architectures”, “Hardware Architectures”, “Performance Mo-
deling”, “Parallelization Overheads”, “Domain Decomposition”. “Job Scheduling”, “Use of
the Cluster Operating System”, and “Benchmarking”. In the further progress of the project
a users’ HPC qualification will be certified by successful exams.

A special challenge was to determine a reasonable granularity of skills. A too fine granu-
larity would result in predefining the content, e.g. if one would try to describe a frequently
used Linux command like cd, ls, less, cat, cp, mv, mkdir, rm, help, info, chmod, chown, chgrp,
...) as a single skill. An all too coarse granularity would be of no help at all for the content
providers for structuring the learning material. The actual skill tree contains 76 skills, which
we consider to be a suitable compromise.

For a detailed description of the classification of HPC competences refer to our correspon-
ding concept paper [HHKS18].

D4.1 HPC Competences and Certification Program 5/43

CHAPTER 5. SUMMARY AND CONCLUSIONS

Chapter 5

Summary and Conclusions

Improving the users’ HPC education will enable them to use the HPC resources appropriately.
This will not only increase their productivity but also reduce the costs in the operation at
compute centers. With the development of the HPC certification program we try to establish
a standard for the education of HPC users.

Our approach is based on a skill tree that supports different views on the HPC content
by the help of additional attributes to define the level of a skill, its suitability for the role of
a user, and its suitability for a scientific domain. The development of the HPC skill tree is
completed and its 76 skills are browsable at our website in a standard view.

We strictly separate the certificate definition from content providing (similar to the con-
cept of a “Zentralabitur”) and assume that collaborating scientific institutions will comple-
ment each other in producing content, whereas the certification board has the power to esta-
blish generally accepted certificate definitions and corresponding exams without the burden
of being responsible for the content.

For further details refer to our corresponding concept paper which is attached in the
Appendix.

Acknowledgement

The PeCoH project has received funding from the German Research Foundation (DFG) under
grants LU 1353/12-1, OL 241/2-1, and RI 1068/7-1.

D4.1 HPC Competences and Certification Program 6/43

BIBLIOGRAPHY

Bibliography

[Fel79] Stuart I. Feldman. Make — a program for maintaining computer programs. Soft-
ware: Practice and Experience, 9(4):255–265, 1979.

[HHC18] HHCC. Hamburg HPC Competence Center — home page. https://www.hhcc.
uni-hamburg.de, 2018.

[HHKS18] Kai Himstedt, Nathanael Hübbe, Julian Kunkel, and Hinnerk Stüben. An HPC
certification program proposal meeting HPC users’ varied backgrounds. Concept
paper, DKRZ and RRZ, 2018.

[W318a] W3. World Wide Web consortium – extensible markup language (XML). https:
//www.w3.org/XML/, 2018.

[W318b] W3. World Wide Web consortium – XML schema. https://www.w3.org/2001/
XMLSchema, 2018.

D4.1 HPC Competences and Certification Program 7/43

https://www.hhcc.uni-hamburg.de
https://www.hhcc.uni-hamburg.de
https://www.w3.org/XML/
https://www.w3.org/XML/
https://www.w3.org/2001/XMLSchema
https://www.w3.org/2001/XMLSchema

CHAPTER 6. APPENDIX

Chapter 6

Appendix

For a detailed description of the classification of HPC competences our corresponding con-
cept paper titled “An HPC Certification Program Proposal Meeting HPC Users’ Varied
Backgrounds” is attached below. The concept paper can also can be downloaded from our
website https://www.hhcc.uni-hamburg.de

D4.1 HPC Competences and Certification Program 8/43

https://www.hhcc.uni-hamburg.de

Draft Version 0.91 – June 1, 2018

An HPC Certification Program Proposal
Meeting HPC Users’ Varied Backgrounds

Kai Himstedt1, Nathanael Hübbe1, Julian Kunkel2, and Hinnerk Stüben1

1 Universität Hamburg
2 Deutsches Klimarechenzentrum
3 Technische Universität Hamburg

Acknowledgements

The authors acknowledge the discussion with Hendryk Bockelmann2, Michael Kuhn1,
Thomas Ludwig1,2, Stephan Olbrich1, Matthias Riebisch1, Sandra Schröder1, and
Markus Stammberger3

This work was supported by the German Research Foundation (DFG) under grants LU
1353/12-1, OL 241/2-1, and RI 1068/7-1.

1 Introduction

Computing power and complexity of HPC systems are steadily increasing. This leads to an
increasing demand for a good education of their users so that they can use such systems
adequately. A special challenge is to provide users with skills according to their scientific
backgrounds and specific demands in terms of the usage of the system. Users in the role of
testers, who want to simply run a parallel program for benchmark purposes, must e.g. have
a solid knowledge of operating system basics and should be able to use a workload manager
like SLURM [SLUR 17] or TORQUE [TORQ 17], but in general they do not need a deeper
understanding of the technical refinements of the parallelization of the program. A user who
wants to develop a parallel program will usually already be able to use the operating system
and the workload manager but will need further skills to apply parallelization techniques
like OpenMP [OpMP 17] or GPU-computing based on CUDA [NVID 17] at the intra-node
level, MPI [MPI 17] at the inter-node level or even combinations of such techniques in the
sense of a hybrid or multi-level approach.

In recent years, the growing demands to improve the HPC education are in the research
focus of many projects. Rüde, for example, in the final report on exascale education in the
context of the ”European Exascale Software Initiative 2” [Cordi 18], describes strengthening
of HPC education as an important subfield of computational science and engineering (CSE)
[Rüde 15]. The urgent demand for an appropriate HPC education is also indicated by the
efforts of the HPC advisory council [HPCA 17] to push it, e.g. by offering workshops and
releasing best practice as well as case studies. Therefore, it comes as no surprise that recently
initial results of a Scientific Computing World HPC readership survey have shown that “...
training and support for HPC resources are the number one concern for both those that
operate and manage HPC facilities and researchers using HPC resources.” [SCW 17].

1

Establishing an HPC Certification Program is a central part1 of the joint Performance
Conscious HPC (PeCoH) project. In April 2017, the three Hamburg compute centers in-
volved in PeCoH, German Climate Computing Center (DKRZ), Regional Computing Cen-
ter at the Universität Hamburg (RRZ), and Computer Center at the Technische Universität
Hamburg (TUHH RZ) started the Hamburg HPC Competence Center (HHCC) as a virtual
institution and central contact point for their users [HHCC 17a]. HHCC will also serve as
an open-for-all education platform for HPC knowledge and competences. Our HPC Cer-
tification Program approach takes the users’ varied backgrounds (e.g. research area and
prior knowledge) into account and focuses on performance engineering to enable them to
achieve further speedups for parallel applications with efficient utilization of the HPC re-
sources. The performance engineering aspect is of particular importance because, according
to our experience at DKRZ, RRZ, and TUHH RZ, support requests are currently dominated
by problems at the level of getting things to work, i.e. getting a parallel job to run. Users in
this situation are far from being aware of using the expensive HPC resources appropriately.

The paper is organized as follows: In Section 2 the classical approaches for HPC edu-
cation are sketched. In Section 3 our innovative approach of an HPC Certification Program
will be presented, which is based on defining HPC skills a user must have to perform cer-
tain tasks like testing, building or developing parallel programs in an HPC environment.
The project’s progression as well as the data structures and technical modeling to define the
hierarchical dependencies of the skills are also handled in this section. Finally, the major
insights are concluded in Section 4, and some future work is pointed out in Section 5. The
Appendix contains a detailed list of all skills we have identified for the HPC Certification
Program so far.

2 Classical HPC Education

A good user education has traditionally been important, because it leads to cost reductions
in the operation at compute centers by reducing efforts for user support and by more effi-
ciently used HPC resources by well-trained users. From our observations at DKRZ, RRZ,
and TUHH RZ, new users without a proper HPC education often use only the defaults of
the respective workload manager for selecting HPC resources such as main memory or CPU
time and often do not explicitly select an appropriate batch queue to submit their jobs, while
a user with an adequate HPC education will take meaningful estimates into consideration to
avoid reserving unnecessary amounts of HPC resources, long waiting times for the job start,
or reaching the runtime limit of his job. At the same time the productivity of the users will
be increased, because they feel comfortable in using an HPC system. This leads to a typical
win-win situation.

Institutions which operate HPC systems usually offer regularly recurring teaching events
about general aspects of Supercomputer hard- and software architectures and parallel pro-
gramming at beginners’ level as well as higher levels. For some time now, there have also
been joint efforts to support the HPC education in Europe. The education and training stra-
tegy at the Barcelona Supercomputing Centre (BSC) as outlined in [Sanc 15] may serve as
an example: as part of the Partnership for Advanced Computing in Europe (PRACE), BSC
is working on the development of an appropriate European HPC professional training cur-
ricula. Classical HPC education is based on lectures, tutorials, and workshops addressing

1 Further goals of PeCoH are e.g. to develop models to estimate the costs of batch jobs in order to give HPC
users feedback indicating the impacts of running non-optimized workloads, and to develop analysis tools to
(automatically) identify performance issues caused by well-known configuration mistakes in job scripts.

2

the various HPC topics. An HPC lecture usually involves a teacher presenting topics and
concepts related to a course addressing HPC topics to users enrolled in that course and has a
rather static character. An HPC tutorial is typically run in smaller groups and allows discus-
sion of the content and interaction with other users. However, the general procedure stays
rather static, which also applies to HPC workshops where users typically acquire HPC skills
by involving more hands-on learning activities.

Nowadays, it is very simple to publish a live or recorded lecture on an online platform,
which gives users the possibility to watch the video where and when they like. Tutorials
commonly make the content (additionally) available online via the internet (see [LLNL 17]
for an example). The interactive aspect of a classical tutorial may suffer, but that can be
more than compensated by the improved accessibility of the hyperlinked content. In addi-
tion there are hybrid approaches. Zarestky and Bangerth [ZaBa 14], for example, performed
an experiment to teach HPC with a so-called flipped classroom format that requires students
to watch content videos before coming to class, thus freeing time in class. Based on quali-
tative data Zarestky and Bangerth report positive results in terms of being able to use the
time in class efficiently, and instructors and students enjoyed the new format. Reflecting the
workshop idea, there exists online content with a focus on practical HPC examples showing
how to get things to work (e.g. [CAC 17]). The Extreme Science and Engineering Discovery
Environment (XSEDE), a virtual organization to support open research, helps their users
among other things by an online system to train the usage of an HPC system, structuring
the corresponding information on their website by the help of major topics like “Getting
Started”, “Working with the System”, “Visualization Resources”, and “HPC System Resour-
ces”. The user can select additional information about each topic to navigate within the
content [XSED 17]. There are also Websites offering (online) HPC learning material (e.g.
[FuLe 18], [PRACE 18]). However, sophisticated Web-based E-learning systems which cover
the users’ varied backgrounds and their individual learning progresses do not exist – to the
best of our knowledge – for teaching HPC competences.

In addition to the benefits of using a modern Web-based approach to present the HPC
content in a more dynamic and, if needed, multimedia based way, there are ideas to use
computing resources more generally for additional HPC education purposes. Holmes and
Kureshi [HoKu 15], for example, reported – against the background of a shortage of HPC
skills and available HPC training in the UK – experiences using recycled laboratory PCs to
build cluster systems for educational purposes. Not only can the students use the clusters
for experiments, but the challenge to build these laboratory clusters had a positive impact
in that it encourages them to search for information from a variety of sources in order to
complete the building tasks, and that developed their skills and confidence in the process.
Czarnel [Czar 14] presents a successful middleware approach including a Web-based inter-
face to support easy access to HPC systems for HPC novices by hiding the queuing systems.
Suh et al. [Suh+ 16] adopt an approach which rather focuses on encapsulating simulation
systems behind a user-friendly graphical user interface (GUI) supporting scientific work-
flows. This system is also made to support the education of students, but rather in the field
of computational science and engineering (CSE) than in the field of HPC competences.

Summing up, online platforms for HPC education are successfully used in practice and
provide great potential. However, in contrast to other areas of information technology (IT),
where certificates are often used to prove IT skills2 of the users, in the field of HPC neither

2 There is a certification program for various levels of Linux system administration skills from the Linux
Professional Institute [LPI 17] and a certification program for general (personal) computer skills from the Eu-
ropean Computer Driving Licence [ECDL 17a] organization, which could serve as representative examples
here.

3

commonly accepted standards exist, nor a certification program for the education. If a scien-
tific institution provides learning material it will be determined by the special demands of
the respective institution and its specific HPC environment. Therefore, this content will only
cover a very small part even of basic HPC skills and a user with a lack of basic skills will pre-
sumably have difficulties to readily use other HPC systems. These are the issues addressed
by our proposal for an HPC Certification Program.

3 New Approach

Living in the age of so-called digital natives, one might suppose that computer skills are
picked up intuitively. The ECDL organization notes, however, that this is not the case for
basic computer skills and the idea of digital natives is a dangerous fallacy that risks leaving
young people without the competences they need for the workplace, and risks leaving bu-
sinesses without the skilled employees they need [ECDL 17b]. It can be assumed that this is
all the more true for the complex field of HPC.

The ambitious EuroLab-4-HPC project, funded in the context of the Horizon 2020 rese-
arch and innovation programme, focuses on developing a structured HPC systems curricu-
lum and training practices based on (online) courses [EURO 18a]. As a project result it is
shown how the courses can also be mapped to other degree programs (e.g. physics, mat-
hematics) at the master’s level or how they can be used for a single year’s program that is
Bologna-aligned ([EURO 18b] p. 12). Certificates are clearly of less significance compared for
example to a master’s or Phd degree, but on the other hand university degrees, with their
rather great scope and possibly more national character, do not attest knowledge or skills
of specific and topical technologies. This training gap can be filled ideally by the help of
certification programs.

We named our HPC Certification Program “HPC-Führerschein” (HPC driving licence in
English) to point out that users should have a set of validated skills before they use an HPC
environment for their research. Another analogy is the transferability of skills: Anyone who
is able to drive a certain type of passenger car is able to drive any other passenger car, and
an HPC user who has gained the skill to use a workload manager like TORQUE will be able
to use SLURM after short period of additional training, and vice versa.

Before the new approach of the HPC Certification Program is presented in more detail,
we will introduce a set of terms:

Skill: The abilities and the knowledge specified in the skill description

Certified Skill: Skill of a user validated by an exam

Content: Learning material enabling the user to gain certified skills

Content provider: Institution that provides content

Exam: Process to validate a user’s skill based on multiple-choice tests

Certificate definition: Set of skills as specified in the description of the certificate

Certification provider: Institution that suggests certificate definitions and corresponding ex-
ams

Certification board: Institution that establishes accepted certificate definitions and correspon-
ding exams

4

Certificate: Document based on certified skills according to the corresponding certificate
definition

In our approach the certificate definition is separated from content providing. While the
certification board has the role of a (virtual) central authority, the learning material can be
provided by different content providers, e.g. by different scientific institutions. This is com-
parable to the concept of a central high school graduation exam (Zentralabitur in German),
where the examination is created by a central organization while the pupils are prepared
for the exam by their schools. Since the start of the PeCoH project, when we had the role
as certification provider as well as the role as content provider for basic HPC skills3, we
welcomed the collaboration with other scientific institutions to establish generally recogni-
zed certificate definitions. Essentially, it is at the discretion of a content provider to decide
which learning material is most appropriate to teach a skill. That offers freedom and flexibi-
lity in creating the learning content. We assume that collaborating scientific institutions will
complement each other in producing content.

3.1 Previous Work

We started our development of the HPC Certification Program with the classification of
HPC topics which were relevant to the three compute centers (DKRZ, RRZ, and TUHH RZ)
involved. We initially identified four top level competences: “HPC Knowledge”, “Use of
the HPC Environment”, “Performance Engineering”, and “Software Engineering for HPC”
as shown in Figure 1.

Fig. 1: Top Level Competences

We presented a poster of the current state and goals in the PeCoH project at the ISC 2017
[Kunk+ 17] and distributed a handout containing the initial classification of HPC compe-
tences and the work in progress of our HPC Certification Program [HHCC 17b], which was
one of the major topics of the poster. We also presented the idea of the HPC Certification
Program at the Flexible Framework for Energy and Performance Analysis in HPC Centers
(FEPA) workshop [FEPA 17]. At both events we received positive feedback in several meet-
ings and discussions, which underlines again the urgent demand for an appropriate HPC
education at other compute and data centers. Additionally, we are hosting a mailing list for
the HPC Certification Program [HHCC 17c].

3 Within the PeCoH project we will establish all significant certification definitions. To produce content for
all HPC skills listed in the Appendix we depend on the collaboration of others.

5

3.2 HPC Skill Tree

It is in the nature of the subject that HPC skills are generally built upon one another, which
results in a tree structure for representing skills depending on sub-skills. The tree of HPC
skills is a key component of our approach and has a role of a database for the HPC Cer-
tification Program. First of all, skills have unique names and contain a description of the
HPC competences and knowledge that are associated to them. Furthermore, each skill is
assigned to one of the four top level competences as described in the previous section and
has additional attributes to describe its properties in more detail, like its special significance
to a scientific domain (e.g. social sciences, natural sciences, earth sciences), the suitability
for a user’s role (e.g. tester, developer), or its educational level (e.g. basic, intermediate, or
expert). This information allows to easily create different views of the skill tree in order to
consider the users’ varied backgrounds, e.g. for navigating within the skill tree by the help
of a Web-based GUI using the attributes to filter the relevant information for them.

The implementation of the skill tree is based on the Extensible Markup Language (XML)
[W3 17a] and a corresponding XML Schema Definition (XSD) [W3 17b]. XML is an open de-
facto standard to process and exchange information in heterogeneous environments. XML
data is human- as well as machine-readable, which supports the shared working on the skill
tree implementation: XML files can e.g. be opened and inspected by project participants
with their favoured (simple) text editor. With the machine-readable property of XML it is
possible to check the syntax of an XML file having been changed, with respect to the so-
called well-formedness, and validate it with the corresponding XML schema definition. A
further potential is the ability to process the data with sophisticated tools, e.g. parsers, in a
variety of ways. Another reason we decided to implement the skill tree on the basis of XML
is the variety of powerful tools and integrated development environments (IDEs) availa-
ble to support such development (e.g. MissionKit [Alto 17], Stylus Studio X16 [StSt 17], or
Eclipse XML Editors and Tools [Ecli 17]). Since the skill tree is of manageable size, there is
no need to use a more complex database design for its representation. JSON [JSON 17] is
another popular human- and machine-readable data-interchange format, which is rated a
little bit more lightweight than XML, and was also worth considering to be used to imple-
ment the skill tree. While JSON focuses on the temporary exchange of data, the XML world
provides a rich family of languages, which seems to offer more potential for the modelling
process. If necessary, however, XML data can easily be converted to other formats like JSON
(and vice versa), in particular by the help of XSLT [W3 17c].4

The essential data structure of the skill tree is presented in Figure 2 based on the relevant
part of its XML Schema Definition.

As is typical for popular naming conventions of XML data structures, the Skills defini-
tion in the Figure shows that the XML data of the skill tree contains, first of all, a list of Skill
items, i.e. the XML data contains all the nodes of the skill tree in a flat data structure. In
order to describe the tree, each Skill that depends on other sub-skills has – besides its unique
name, description, and further attributes – a list of references to these sub-skills. For exam-
ple, in our design, the skill to build a parallel program, e.g. via an open source package, will
at least require the skill to run a parallel program in an HPC environment and that in turn
will require skills to use the command line interface of the operating system and a workload
manager like SLURM or TORQUE. Unique skill names are used for this referencing to other
skills in the Skills list.

4 At the implementation level, we plan to use JavaScript [JaSc 17], which has a native support for JSON, to
make the skill tree browsable in a Web-based GUI.

6

Fig. 2: XML Schema Definition for Showing the Essential Skill Tree Structure

Obviously, this data structure allows the definition of different skills depending on the
same sub-skill, so, strictly speaking, the skill tree becomes a directed acyclic graph (DAG).5

This is similar to using a Makefile for the well-known make build automation tool [Feld
79] to define the dependencies of compilation units: in C, for example, header files often
contain declarations that are used (i.e. included) in different source files and other header
files. The Makefile allows to rebuild libraries and the target program in the correct order
after source code changes by the help of a depth-first search to resolve all transitive depen-
dencies between the compilation units. Similarly, a user could aqcuire relevant skills at the
leaf level of the skill tree first and than proceed to acquire skills nearer to the root. To be able
to show all skills in a tree format, e.g. in a Web-based GUI, multiple references to the same
skill could be resolved by presenting the more than once referenced skill several times, so,
for the sake of simplicity, the DAG property shall be neglected here.

In contrast to a Makefile defining a single type of relationship between dependencies6,
two types of relationships are supported by the skill tree structure to define dependencies
for skills: In the standard case, all skills in the list of referenced sub-skills are combined
implicitly by a logical and operation, i.e. a skill can only be gained if all of its sub-skills have
been gained. The second relationship is based on logical or operations, and allows users
to gain a skill when at least one of the referenced sub-skills has been gained. For example,
the skill to use a workload manager can be awarded to users who are able to use one of
the workload managers SLURM or TORQUE. In practice, it will follow from context when
which list type should be used in the skill definition to reference sub-skills. Within the same
skill, however, it is not possible to use both types of reference lists at the same time. It
would be possible to support this directly by using the composite pattern [Gamm+ 95]: The
basic list of implicitly and-combined referenced sub-skills could additionally contain lists of
or-combined referenced sub-skills. This could be expressed in the XML Schema Definition
without greater effort. But since it is easily possible to create an additional skill containing

5 In the Appendix containing the detailed list of all skills, for the sake of simplicity as plain text format,
such cross references to other skills begin with ”see also ...”.

6 The time stamp of a file can be out of date in relation to the time stamps of the files it depends on. This
way make can for example rebuild an object file if it is out of date in relation to more recently changed source
files it depends on.

7

the list of or-combined referenced sub-skills and referencing to this additionally created skill
in the list of and-combined referenced sub-skills, we preferred to keep the data structures as
simple as possible.

The attributes of the skills allow to present the skill tree in a highly dynamic manner.
This way users can first of all get an overview of those custom-tailored skills which they
need for the HPC environment they would like to use or the parallel program they would
like to speed up. However, the skill tree itself is content-free and solely describes which HPC
competences have to be taught and learned. This reflects the separation of the certificate
definition, which is based in our approach on skills, from the learning material that allows
the user to gain the associated skills. In the sense of an E-learning environment it is possible
to present a specific content in a Web-based system, which in turn maps it to the skill tree.
In further stages of the project, the skill tree can be extended to support links to learning
material. In this way, a single Web-based system can be used for browsing the skill tree as
well as the content.

A special challenge is to determine a reasonable granularity of skills as defined by their
descriptions. One can easily imagine that an increasingly finer granularity results if one
attempts to dissolve the leaves of the skill tree more and more, with a skill at the leaf level fi-
nally predefining its content. At the beginning, we actually dissolved basic skills how to use
the Linux command line interface to verify the practicability of our XML implementation
of the skill tree. This was indeed possible without any problems, but from the fine granu-
larity almost a one-to-one relationship results between the skill description and the related
content, so that simply put each skill would have been imparted to the extent of a single pre-
sentation slide. A representative skill definition from this ad hoc example can illustrate this:
the skill “Navigate the file system” was dependent on the sub-skills “Understand the file
system tree”, “Print name of current working directory”, “Change directory”, and “List di-
rectory contents”. For the entire ad hoc example the definition of 59 skills was required just
for describing some frequently used Linux commands (cd, ls, less, cat, cp, mv, mkdir,
rm, help, info, chmod, chown, and chgrp).

It is obvious that a very fine granularity not only restricts the freedom in providing the
content, but also makes it more difficult to define certificates because the number of skills
will strongly increase accordingly. A granularity that is too coarse, such as a limitation to
the top level competences shown in Figure 1, is also not useful as it would give the content
providers essentially no assistance in structuring the learning material. The Appendix con-
tains the list of all 46 skills we have identified for the HPC Certification Program so far, 35
of which are at the leaf level. We think with this granularity we found a good compromise
between both extremes in order to separate skills and content. We will use up to three levels
of education (basic, intermediate, and expert) to further subdivide each skill and to define
the HPC competence level a user has acquired with regard to a skill. The educational levels
are also shown in the Appendix. The process of subdividing requires experience and expert
knowledge. The information about skill attributes and educational levels is contained in the
XML description of the skill tree, which is available on our HHCC website [HHCC 18a].

3.3 Certification Modeling

The basic idea of defining certificates is to bundle a set of skills corresponding to the certifi-
cate description in order to certify – by successful exams – a user’s HPC qualification. Like
skills, certificate definitions have unique names and contain a description of the HPC com-
petences and knowledge that are associated to them. While a skill is a more self-contained

8

unit, a certificate definition describes on a conceptual level a further view on the skills. The
skill tree represents a middle-layer between the certificate definitions and the actual content.

Initially, we intended to implement the certificate definitions by a separate data struc-
ture, which was based, like the definition of the skill tree, on XML and a corresponding XML
Schema Definition. But since both XML structures were so similar that their distinction ser-
ved rather a conceptual purpose than a technical one, it was natural to extend the skill tree
– functioning as a central database – to be able to incorporate the properties additionally
required for the definition of certificates as well, instead of using a separate structure for
defining certificates. At first a skill can be easily tagged for its additional suitability as an
autonomous certificate definition. A user who has gained the skill to run parallel programs
in an HPC environment may thus be granted a corresponding certificate. For the skill tree
it was described that two types of relationships are supported (based on and and or opera-
tions) to define dependencies on sub-skills, so that a skill is gained if all of its sub-skills are
gained (and operation) or if one of its sub-skills is gained (or operation). For the definition
of certificates these two types of operations were supplemented by an n out of m relation-
ship, so a skill is considered to be gained if at least n, or a corresponding percentage value,
of its sub-skills have been gained. With this type of relationship, users can be certified, for
example, for their experienced ability to use version control systems, if they gain sub-skills
to use two systems from the set consisting of the Revision Control System (RCS) [Tich 85],
Subversion (SVN) [TASF 17], and Git [Git 17].

4 Conclusions

There is an urgent demand to improve the users’ HPC education to enable them to use the
HPC resources appropriately. This will increase their productivity and at the same time re-
duce the costs in the operation at compute centers. While certificates are widely applied
in the IT industry to testify that users have certain skills, e.g. to administer Linux systems,
this is not the case for the field of HPC. With the proposal of an HPC Certification Program
we try to establish a standard for the education of HPC users. In our approach we sepa-
rated the certificate definitions from the providing of the learning material. By its role as a
(virtual) central authority the certification board has the power to establish generally accep-
ted certificate definitions and corresponding exams without the burden of being responsible
for the content. The content can be provided in a variety of ways by various collaborating
providers.

Sophisticated Web-based E-learning systems which cover the users’ varied backgrounds
(concerning for example research area and prior knowledge) do not exist for the HPC edu-
cation. For our approach we implemented an HPC skill tree based on XML and a corre-
sponding XML Schema Definition (XSD), which plays the role of a central database (see also
Appendix). Beside its name and description, a skill in the tree has additional attributes to
describe e.g. its special significance to a scientific domain. Such information can be easily
used to create different views of the skill tree in order to consider the users’ varied back-
grounds and to give the user an overview of those custom-tailored skills which he has to
acquire to pass the exams. Not only can well-trained certified users with a good knowledge
of performance engineering concepts speed up their parallel programs to get their scientific
results faster, but also can compute centers reduce their costs because the HPC resources
will be used more efficiently.

One major challenge was to find a good compromise for the scope of the skill descripti-
ons, in particular at the leaf level, so that a too fine granularity will not predefine the content

9

of a skill or an all too coarse granularity will be of no help at all for the content providers for
structuring the learning material. The skill tree for our HPC Certification Program contains
46 skills (see also Appendix), which we consider to be a suitable granularity.

5 Status, Collaboration, and Future Work

The development of the HPC skill tree is nearly completed. At DKRZ, RRZ, and TUHH RZ
we already have some content to teach HPC topics, which can be used to fill the content-free
structure level formed by the HPC skill tree for our online education platform. We welcome
suggestions from interested readers on the tree structure and the actual classification of HPC
skills. Furthermore, we encourage readers to provide us with content for HPC skills and
will express our gratitude by a corresponding entry in the acknowledgement area on our
website. (See also Appendix for the list of skills.)

A user will have to participate in online examinations based on multiple-choice tests to
gain an HPC certificate. For each HPC skill a pool of questions is developed, of which a
subset is selected for each individual examination. Once the test is completed, the system
will automatically assess the results and create a PDF with the certificate. At the beginning,
we will manually approve the test results. Later on in the development, the individual
learning progress could be stored as a part of the user account, allowing users to interrupt
their exam preparation at any time and continue later to navigate seamlessly in the learning
content.

It will be particularly interesting to measure the success of the certificate-based approach
for the HPC education. One idea is to see if there will be less support requests of new users
with simple demands for running parallel programs on the clusters at DKRZ, RRZ, and
TUHH RZ. With additional surveys, the users’ satisfaction with the certification program
can be determined. It will also be possible to check if the performance awareness of certified
users is raised, i.e. if they use the HPC resources more appropriately.

10

6 References

[Alto 17] Altova. Altova MissionKit – Award-winning Suite of XML, SQL, & UML
Tools. https://www.altova.com/missionkit

[CAC 17] CAC. Cornell University Center for Advanced Computing – Cornell Virtual
Workshop. https://cvw.cac.cornell.edu/default

[CORDI 18] CORDIS. Community Research and Development Information Service: Euro-
pean Exascale Software Initiative 2 – Towards exascale roadmap implementa-
tion. http://cordis.europa.eu/project/rcn/105840 en.html

[Czar 14] Czarnul, Pawel. Teaching High Performance Computing Using Beesy-
Cluster and Relevant Usage Statistics. International Conference On Compu-
tational Science (ICCS 2014), Procedia Computer Science. Vol. 29 (2015):1458-
1467.

[Ecli 17] Eclipse. Eclipse XML Editors and Tools. https://marketplace.eclipse.org/
content/eclipse-xml-editors-and-tools-0

[ECDL 17a] ECDL. European Computer Driving License – Home Page. http://ecdl.org/

[ECDL 17b] ECDL. European Computer Driving License – The Fallacy of the Digital Native.
http://ecdl.org/policy-publications/digital-native-fallacy

[EURO 18a] EUROLAB-4-HPC. EuroLab-4-HPC – Home Page. https://www.
eurolab4hpc.eu/

[EURO 18b] EUROLAB-4-HPC. D3.2 Best Practices in HPC Training. https://www.
eurolab4hpc.eu/static/deliverables/D3-2–best-practices-HPC-
training.610d055cf370.pdf

[Feld 79] Feldman, Stuart I. Make – A Program for Maintaining Computer Pro-
grams. Software Practice & Experience. Vol. 9 (1979):255-265.

[FEPA 17] FEPA. Flexible Framework for Energy and Performance Analysis in HPC Cen-
ters – Workshop 2017. https://blogs.fau.de/prope/fepa-workshop-2017/

[FuLe 18] FutureLearn. Online Course Supercomputing. https://www.futurelearn.
com/courses/supercomputing#section-topics

[Gamm+ 95] Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley. Bos-
ton, San Francisco, New York 1995.

[Git 17] Git. git –fast-version-control. https://git-scm.com/

[HPCA 17] HPCA. HPC Advisory Council – Home Page. http://www.hpcadvisory
council.com/

[HHCC 17a] HHCC. Hamburg HPC Competence Center – Home Page. https://www.
hhcc.uni-hamburg.de

[HHCC 17b] HHCC. Hamburg HPC Competence Center – Handout to the work in
progress of the HPC Certification Program. https://www.hhcc.uni-
hamburg.de/en/files/isc2017-hpc-certification-program.pdf

11

[HHCC 17c] HHCC. Hamburg HPC Competence Center – Mailing List of the HPC Certifi-
cation Program. certification.hhcc@lists.uni-hamburg.de

[HHCC 18a] HHCC. Hamburg HPC Competence Center – Download Area. https://www.
hhcc.uni-hamburg.de/en/support/downloads.html

[HoKu 15] Holmes, Violeta, and Ibad Kureshi. Developing High Performance Com-
puting Resources for Teaching Cluster and Grid Computing courses. In-
ternational Conference On Computational Science (ICCS 2015), Procedia Com-
puter Science. Vol. 51 (2015):1714-1723.

[JaSc 17] JavaScript. JavaScript – Reference. https://developer.mozilla.org/
en-US/docs/Web/JavaScript

[JSON 17] JSON. JavaScript Object Notation – Introducing JSON. http://www.json.
org/

[Kunk+ 17] Kunkel, Julian, Michael Kuhn, Thomas Ludwig, Matthias Rie-
bisch, Stephan Olbrich, Hinnerk Stüben, Kai Himstedt, Hendryk
Bockelmann, and Markus Stammberger. Performance Conscious
HPC (PeCoH) – Project Poster. ISC High Performance 2017 (20
June 2017). Frankfurt, Germany. Download via http://isc-
hpc.com/isc17 ap/presentationdetails.htm?t=presentation&o=1196&a=
select&ra=personendetails

[LLNL 17] Lawrence Livermore National Laboratory. Livermore Computing Center –
High Performance Computing: Tutorials. https://hpc.llnl.gov/training/
tutorials

[LPI 17] LPI. Linux Professional Institute – Home Page. http://www.lpi.org/

[MPI 17] MPI. The Message Passing Interface (MPI) standard.www.mcs.anl.gov/
research/projects/mpi/

[NVID 17] NVIDIA. CUDA Zone. https://developer.nvidia.com/cuda-zone

[OpMP 17] OpenMP. The OpenMP API Specification for Parallel Programming. www.
openmp.org

[PRACE 18] Partnership for Advanced Computing in Europe. Training Portal – Trai-
ning Courses. http://www.training.prace-ri.eu/nc/training courses/
index.html

[Rüde 15] Rüde, Ulrich. European Exascale Software Initiative 2: Deliverable D2.3 WP2
Final Report on Exascale Education. www.eesi-project.eu/wp-content
/uploads/2015/05/EESI2 D2.3 Final-report-on-exascale-education.pdf

[Sanc 15] Sancho, Maria-Ribera. BSC Best Practices in Professional Training and
Teaching for the HPC Ecosystem. Journal of Computational Science. Vol. 14
(2015):74-77.

[SLUR 17] SLURM. SLURM Workload Manager Overview. https://slurm.schedmd.
com/overview.html

[SCW 17] Scientific Computing World. Training and Support Number
One Concern for the HPC Community. https://www.scientific-
computing.com/news/training-and-support-number-one-concern-
hpc-community

12

[Suh+ 16] Suh, Young-Kyoon, Hoon Ryu, Hangi Kim, and Kum Won Cho. EDI-
SON: A Web-based HPC Simulation Execution Framework for Large-
scale Scientific Computing Software. 16th IEEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing (CCGrid). IEEE Conference
Publications. (2016):608-612.

[StSt 17] Stylus Studio. X16 – Powerful XML Development. https://www.stylus
studio.com/index.html

[TASF 17] The Apache Software Foundation. Apache Subversion – Enterprise-class
centralized version control for the masses. https://subversion.apache.org/

[Tich 85] Tichy, Walter F. RCS – A System for Version Control. Software Practice &
Experience 15 (1985):637-654.

[TORQ 17] TORQUE. Torque Resource Manager. www.adaptivecomputing.com/
products/open-source/torque/

[W3 17a] W3. World Wide Web Consortium – Extensible Markup Language (XML).
https://www.w3.org/XML/

[W3 17b] W3. World Wide Web Consortium – XML Schema. https://www.w3.org/
2001/XMLSchema

[W3 17c] W3. World Wide Web Consortium – XSL Transformations (XSLT). https://
www.w3.org/TR/xslt/

[XSED 17] XSEDE. Extreme Science and Engineering Discovery Environment – Training.
https://portal.xsede.org/web/xup/training/overview

[ZaBa 14] Zarestky, Jill and Wolfgang Bangerth. Teaching High Performance Com-
puting: Lessons from a Flipped Classroom, Project-Based Course on Fi-
nite Element Methods. Workshop on Education for High Performance Com-
puting (EduHPC) held in conjunction with SC14: The International Confe-
rence for High Performance Computing, Networking, Storage and Analysis.
New Orleans, Louisiana, November 16-21. IEEE Conference Publicati-
ons (2014):34-41.

7 Appendix

At the end of the Appendix, the HPC skill tree is presented as a compact diagram.

In the following, all skills we have identified for the HPC Certification Program so far
are listed in a hierarchical manner to reflect their underlying tree structure as described in
Section 3. The hierarchy here is based on four top level competences: “HPC Knowledge”,
“Use of the HPC Environment”, “Performance Engineering”, and “Software Engineering
for HPC”. The Description section of a skill specifies the abilities and the knowledge a user
will gain. When appropriate, some additional information may be presented in the Short
Background section.

For the sake of simplicity, the attributes of the skills to indicate a special significance for
users in dependence of their varied backgrounds (e.g. social scientist, natural scientist, earth
scientist) or roles (e.g. tester, developer) are not included here. The same holds for the finer
differentiation of a skill description regarding its educational level (e.g. basic, intermediate,

13

or expert). This type of additional information is contained in the full XML description of
the skill tree, which is available on our HHCC website [HHCC 18a].

K-E HPC Knowledge
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of the field of High Performance Computing (according to the respective
level)

K1-E Supercomputers
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of various system-, hardware-, and I/O-architectures used for super-
computers, i.e. computers that led the world in terms of processing capacity, and
particularly in speed of calculations, at the time of their introduction, or share key
architectural aspects with these computers (according to the respective level)
Knowledge of typical operation of data and computing centers (basic level)
Knowledge of the differentiation between Supercomputing and Big Data (basic
level)

K1.1-E System Architectures
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of storage and compute deployments for cluster systems (expert
level)
Knowledge of various system-, hardware-, and I/O-architectures used for su-
percomputers, i.e. shared memory systems, distributed systems, and cluster
systems (basic level)
Knowledge of the typical architecture of cluster systems consisting of nodes
with different roles (e.g. so-called head, login, compute, interactive, visuali-
zation nodes, etc.) (basic level)

K1.2-E Hardware Architectures
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of parallelization techniques at the instruction level of a proces-
sing element (e.g. pipelining, SIMD processing) (expert level)
Knowledge of hybrid approaches, e.g. combining CPUs with GPUs or FPGAs
(expert level)
Knowledge of typical network topologies and architectures used for HPC sy-
stems, like fat trees based on switched fabrics using e.g. fast Ethernet (1 or 10
Gbit) or InfiniBand (expert level)
Knowledge of special or application-specific hardware (e.g. TPUs) (interme-
diate level)
Knowledge of elementary processing elements like CPUs, GPUs, many core
architectures (basic level)
Knowledge of vector systems, and FPGAs (basic level) (background topic)
Knowledge of the NUMA architecture used for symmetric multiprocessing
systems where the memory access time depends on the memory location re-
lative to the processor (basic level)
Knowledge of network demands for HPC systems (e.g. high bandwidth and
low latency) (basic level)

14

Knowledge of typical network architectures used for HPC systems, like fast
Ethernet (1 or 10 Gbit) or InfiniBand (basic level)

K1.3-I I/O Architectures
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of standard file systems like Ext3, Ext4, XFS, and Btrfs and distri-
buted file systems like Lustre, and BeeGFS (intermediate level)
Knowledge of when to use data compression (intermediate level)
Knowledge of typical I/O systems used in HPC environments (basic level)
Knowledge of different types of media (e.g. tape, disk, and SSD) (basic level)
Knowledge of the differentiation between standard file systems and distribu-
ted file systems (basic level)
Knowledge of when to use local and global storage (basic level)

K1.4-B Operation of an HPC System
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of the typical infrastructure of data and computing centers (basic
level)
Knowledge of the typical infrastructure of data and computing centers, also
against the background of economic and business aspects (basic level) (back-
ground topic)
Knowledge of administration aspects of an HPC system (basic level)
Knowledge of user support aspects (typically on different levels) (basic level)

K1.5-E Supercomputing and Big Data
Relevant for: Tester, Builder, and Developer
Short Background: In the recent past, Supercomputing as well as the analysis
of Big Data are increasingly growing in importance for scientific research.
Description:
Knowledge of the differentiation between Supercomputing and Big Data (ex-
pert level) (background topic)
Knowledge of Supercomputing and Big Data (basic level) (background topic)

K2-E Performance Modeling
Relevant for: Tester, Builder, and Developer
Short Background: HPC systems are massively parallel and therefore sophisticated
parallel programs are required to exploit their performance potential as much as
possible.
Description:
Knowledge of how the performance of parallel programs may be assessed (accor-
ding to the respective level)

K2.1-I Performance Frontiers
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of the roofline model, used to provide performance estimates for
parallel programs based on multi-core or accelerator processor architectures,
by showing inherent hardware limitations (intermediate level)
Knowledge of the definitions for key terms like speedup, efficiency, and sca-
lability (basic level)
Knowledge of the key measure floating point operations per second (FLOPS)
for the performance of HPC systems and its pitfalls (basic level)

15

Knowledge of Moore’s law and its significance for performance frontiers in
modern HPC (basic level) (background topic)
Knowledge of Amdahl’s law and its significance for performance frontiers in
modern HPC (basic level)

K2.2-E Bounds for a Parallel Program
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of how performance bounds of the various components of the
HPC system (e.g. CPU, caches, memory) can limit the overall performance of
a parallel program (expert level)
Knowledge of how performance bounds of the various components of the
HPC system (e.g. network, I/O) can limit the overall performance of a paral-
lel program (intermediate level)

K3-E Program Parallelization
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of the typical parallelization techniques used at the intra- and inter-
node level of cluster systems (basic level)
Knowledge of the causes of parallelization overheads, which eventually prevent
efficient use of an increasing number of processing elements (basic level)
Knowledge of domain decomposition strategies (i.e. splitting a problem into pie-
ces that allow for parallel computation) (basic level)

K3.1-B Parallelization Without Modifying the Source Code
Relevant for: Builder and Developer
Description:
Knowledge of the auto parallelization capabilities of current compilers (e.g.
to automatically parallelize suitable loops), which are applicable at the intra-
node level (basic level)

K3.2-E Level of Parallelization
Relevant for: Developer
Description:
Knowledge of hybrid parallelization approaches, combining for instance OpenMP
and GPU-Computing (expert level)
Knowledge of multi-level approaches (e.g. combining OpenMP and MPI)
(expert level)
Knowledge of parallelization techniques at the intra-node level (e.g. based on
advanced OpenMP features and GPU-computing) (intermediate level)
Knowledge of parallelization techniques at the intra-node level (e.g. based on
basic OpenMP features) (basic level)
Knowledge of the message passing paradigm based on environments like
MPI, which is the de-facto standard at the inter-node level for parallelizing
programs using more than a single node (basic level)

K3.3-I Parallelization Overheads
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of the overheads caused by redundant computations (intermedi-
ate level)
Knowledge of the problems of execution speed noise (OS jitter, cache conten-
tion, thermal throttling, etc.), and typical trade-offs (e.g. reducing the syn-

16

chronization overhead by increasing the communication overhead) (interme-
diate level)
Knowledge of the various overheads, i.e. overheads for communication, syn-
chronization (basic level)
Knowledge of the problems of load imbalances (basic level)

K3.4-E Domain Decomposition
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of how to map domains to machines (expert level)
Knowledge of typical decomposition strategies to split a domain into subdo-
mains to make it suited for parallel processing (basic level)
Knowledge of measures like surface to volume ratio (basic level)

K4-E Job Scheduling
Relevant for: Tester, Builder, and Developer
Description:
Knowledge of sophisticated scheduling principles (e.g. fair share) to achieve ob-
jectives like treating the users fair, and maximizing the utilization of the available
HPC resources (expert level)
Knowledge of advanced scheduling principles (e.g. backfilling) to achieve objecti-
ves like minimizing the averaged elapsed program runtimes, and maximizing the
utilization of the available HPC resources (intermediate level)
Knowledge of how workload managers control the unattended background exe-
cution of programs or jobs respectively by the help of job queues (basic level)
Knowledge of typical scheduling principles (e.g. first come first served, shortest
job first) to achieve objectives like minimizing the averaged elapsed program run-
times, and maximizing the utilization of the available HPC resources (basic level)

K5-E Modeling Costs
Relevant for: Tester, Builder, and Developer
Short Background: The user’s awareness of the costs related to the operation of an
HPC system is raised. (basic level) For the resources of an HPC system, a dis-
tinction is made between costs for the computing elements of the supercomputer
and costs for the storage system. (basic level)
Description:
Knowledge of how to assess the costs for the infrastructure of data and computing
centers as well as their personnel costs (expert level)
Knowledge of economic and business aspects, e.g. break-even considerations,
when personnel costs for tuning a parallel program and savings through speedups
achieved are compared (expert level)
Knowledge of how to assess runtime costs for jobs (intermediate level)
Knowledge of the impact of a cluster nodes type (e.g. CPU type, main memory
expansion, or GPU extensions) and of the storage media type (SSD, disk, or e.g.
tape for long term archiving (LTA) purposes) on its costs (basic level)

USE-E Use of the HPC Environment
Relevant for: Tester, Builder, and Developer
Description:
Ability to use a cluster operating system as well as to run, build, and develop parallel
programs (according to the respective level)

17

USE1-E Use of the Cluster Operating System
Relevant for: Tester, Builder, and Developer
Short Background: HPC systems are usually accessed via a command line interface
(CLI). The user acquires skills to use a – generally Linux based – CLI to interact
with the HPC system.
Description:
Ability to use and write shell scripts e.g. to automatically execute several com-
mands in a row in order to automate more complex tasks (intermediate level)
Ability to use and write shell scripts e.g. to automatically execute several com-
mands in a row that otherwise would have to be entered manually one by one
and to automate simple tasks (basic level)
Ability to select the right environment setting to build programs with the proper
compiler, linker, and libraries versions or to run programs (basic level)

USE1.1-I Use of the Command Line Interface
Relevant for: Tester, Builder, and Developer
Description:
Ability to use regular expressions to select or filter several items at once (e.g.
file content) (intermediate level)
Ability to access local and remote files using enhanced features (e.g. via
SSHFS) in remote sessions (intermediate level)
Ability to execute frequently used commands, e.g. to navigate the file system,
copy, rename, and delete files, view the contents of files, and to get detailed
help for the usage of a command with all its options (basic level)
Ability to use wildcards to select or filter e.g. files (basic level)
Ability to login remotely to cluster nodes using e.g. SSH with password or
SSH key authentication (basic level)
Ability to access local and remote files in remote sessions (basic level)
Ability to check disk quotas commonly used to limit the amount of disk space
available for the user (basic level)

USE1.2-E Using Shell Scripts
Relevant for: Tester, Builder, and Developer
Description:
Ability to read keyboard input to add interactivity to scripts (expert level)
Ability to use flow control, e.g. for conditional and/or repeated execution of
statements in scripts (intermediate level)
Ability to use shell functions to break large, complex tasks into a series of
small, simple tasks (intermediate level)
Ability to write robust job scripts, e.g. to simplify job submissions by the help
of automated job chaining (intermediate level)
Ability to use and write shell scripts (according to the respective level)
Ability to use troubleshooting, e.g. to handle syntactic and logical errors in
scripts (according to the respective level)

USE1.3-B Selecting the Software Environment
Relevant for: Tester, Builder, and Developer
Short Background: HPC systems have generally installed multiple versions of a
number of key software tools and software environments. Package managers
like Spack are sketched. (basic level)
Description:
Ability to select the appropriate versions for deployment to the session envi-
ronment, e.g. via the so-called environment modules system (basic level)

18

USE2-E Running of Parallel Programs
Relevant for: Tester, Builder, and Developer
Description:
Ability to use the command line interface (expert level) (see also USE1.1-I Use of
the Command Line Interface)
Ability to write robust job scripts, e.g. to simplify job submissions by the help of
automated job chaining (expert level) (see also USE1.2-E Using Shell Scripts)
Ability to select the appropriate software environment (expert level) (see also
USE1.3-B Selecting the Software Environment)
Ability to consider cost aspects (expert level) (see also PE1-E Cost Awareness)
Ability to measure system performance as a basis for benchmarking a parallel
program (expert level) (see also PE2-E Measuring System Performance)
Ability to benchmark a parallel program (expert level) (see also PE3-I Benchmar-
king)
Ability to tune a parallel program from the outside via runtime options (expert
level) (see also PE4.1-E Tuning without Building a Parallel Program)
Ability to apply the workflow for tuning (expert level) (see also PE5-B Optimiza-
tion Cycle)
Ability to use a workload manager to allocate HPC resources for running a paral-
lel program interactively (intermediate level)
Ability to run parallel programs in an HPC environment (basic level)
Ability to use a workload manager like SLURM or TORQUE to allocate HPC re-
sources (e.g. CPUs) and to submit a batch job (basic level)

USE3-E Building of Parallel Programs
Relevant for: Builder and Developer
Description:
Ability to run parallel programs in an HPC environment (expert level) (see also
USE2-E Running of Parallel Programs)
Ability to use a linker and to assess the effects of advanced linker specific options
and environment variables (e.g. LIBRARY PATH) (expert level)
Ability to configure the relevant settings (e.g. by setting compiler and linker op-
tions), which determine how the application ought to be build with regard to
advanced parallelization technique(s) used (e.g. CUDA) (expert level)
Ability to use the profile guided optimization (PGO) technique (expert level) (see
also PE4.2-I Tuning without Modifying the Source Code)
Ability to use software building environments like Scons, Waf, make, Autotools,
CMake (expert level) (see also SE3.5-E Deployment Management)
Ability to use a compiler and to asses the effects of optimization switches available
for compilers commercially available (e.g. PGI, NAG) (intermediate level)
Ability to use efficient open source libraries (e.g. OpenBLAS, FFTW) or highly
optimized vendor libraries (e.g. Intel-MKL, IBM-ESSL) (intermediate level)
Ability to configure the relevant settings (e.g. by setting compiler and linker op-
tions), which determine how the application ought to be build with regard to the
parallelization technique(s) used (e.g. OpenACC, C++ AMP) (intermediate level)
Ability to build parallel programs, e.g. via open sources packages (basic level)
Ability to use a compiler and to asses the effects of optimization switches available
for the relevant compilers (e.g. GNU, Intel) (basic level)

19

Ability to use a linker and to assess the effects of linker specific options and en-
vironment variables (e.g. -L and LIBRARY PATH, -rpath and LD RUN PATH)
(basic level)
Ability to configure the relevant settings (e.g. by setting compiler and linker op-
tions), which determine how the application ought to be build with regard to the
parallelization technique(s) used (e.g. OpenMP, MPI) (basic level)

USE4-E Developing Parallel Programs
Relevant for: Developer
Description:
Ability to build parallel programs (expert level) (see also USE3-E Building of Pa-
rallel Programs)
Ability to develop parallel software (expert level) (see also SE-E Software Engi-
neering for HPC)

PE-E Performance Engineering
Relevant for: Tester, Builder, and Developer
Description:
Ability to use systematic approaches (e.g. benchmarking and tuning, cost models) to
meet performance requirements in a cost-effective way, i.e. by reducing the runtimes
of parallel programs and using the resources of the HPC system appropriately for that
purpose (according to the respective level)

PE1-E Cost Awareness
Relevant for: Tester, Builder, and Developer
Description:
Ability to assess the costs related to the runtimes of parallel programs against the
background of cost models (expert level) (see also K5-E Modeling Costs)
Ability to assess the ratio of personnel costs to resource costs against the back-
ground of break-even considerations and time to solution constraints (expert le-
vel)

PE2-E Measuring System Performance
Relevant for: Tester, Builder, and Developer
Description:
Ability to measure the system performance by the help of standard tools and by
profiling in order to assess the runtime behavior of parallel programs (according
to the respective level)

PE2.1-I Using Standard Tools to Measure System Performance
Relevant for: Tester, Builder, and Developer
Short Background: Tools used in Linux-based environemnts like htop, iostat,
and perf are sketched. (intermediate level) This includes information about
utilization of resources like CPU as well as elapsed runtimes of a program, its
unshared and shared memory usage, input and output statistics for devices
and file systems, and page faults, with tools like /usr/bin/time, ps, top, and
vmstat in Linux-based environments. (basic level)
Description:
Ability to use standard tools of the operating system to get information about
the behavior of parallel programs in terms of their resource utilization (basic
level)

PE2.2-E Profiling
Relevant for: Developer

20

Short Background: Profiling is explained for the CPU level, where it can be
supported by hardware performance counters and by sampling techniques.
(basic level) Sampling is used to see, by examining the program counter, what
routines and source code lines of a program are responsible for which porti-
ons of the total runtime. (basic level) Automatically adding trace code to
a parallel program by so-called instrumentation to record its execution in a
strict chronology is explained and the difference to profiling is emphasized.
(basic level) Similar techniques are explained for profiling the network level
(e.g. based on InfiniBand counters and I/O server states). (basic level)
Description:
Ability to detect performance issues and bottlenecks caused, for example,
by inefficient programming, memory accesses, I/O operations, cache-misses,
page-faults, and parallelization overheads (expert level) (see also K3.3-I Pa-
rallelization Overheads)
Ability to use advanced performance analysis tools like Vampir (expert level)
Ability to use the standard MPI profiling interface (PMPI) to control the built-
in performance analysis functionality in MPI (expert level)
Ability to get the base data for tuning the performance of parallel programs
by profiling (intermediate level)
Ability to assess how different views of the profiling data (e.g. timeline graphs
and communication matrices to illustrate the traffic between processes) can
give insights in the runtime behavior of the program (intermediate level)
Ability to use performance analysis tools like ScoreP, Scalasca (intermediate
level)
Ability to use environment variables like $I MPI STATS to control the built-in
performance analysis functionality in MPI (basic level)

PE3-I Benchmarking
Relevant for: Tester, Builder, and Developer
Description:
Ability to assess speedups and efficiencies as the key measures for benchmarks of
a parallel program (intermediate level) (see also K2.1-I Performance Frontiers)
Ability to differentiate between strong and weak scaling (intermediate level)
Ability to assess the performance characteristics of parallel programs with regard
to CPU usage, memory accesses (e.g. latencies for random access, cache sizes,
strided access patterns, and bandwidth), I/O operations (e.g. record length, IOPs,
latency, bandwidth, throughput, and multi-stream processing), and communica-
tion (message sizes, network bandwidth and latency) (intermediate level)
Ability to benchmark the runtime behavior of parallel programs, performing con-
trolled experiments by providing varying HPC resources (e.g. 1, 2, 4, 8, ... cores
on shared memory systems or 1, 2, 4, 8, ... nodes on distributed systems for the
benchmarks) (basic level)

PE4-E Tuning
Relevant for: Tester, Builder, and Developer
Description:
Ability to tune a parallel program in order to achieve better runtimes and to opti-
mize the usage of the HPC resources (according to the respective level)

PE4.1-E Tuning without Building a Parallel Program
Relevant for: Tester, Builder, and Developer
Description:
Ability to select appropriate tasks sizes (big vs. small) that may have positive

21

performance impacts on the workflow, and to run several (smaller) tasks by
the help of job chaining (expert level) (see also USE1.2-E Using Shell Scripts)
Ability to use mapping of processes to nodes, pinning of processes/threads
to CPUs or cores, and setting memory affinities to NUMA nodes in order to
speed up a parallel program (intermediate level)
Ability to speed up program execution by setting appropriate runtime opti-
ons (e.g. for MPI and OpenMP) (intermediate level)

PE4.2-I Tuning without Modifying the Source Code
Relevant for: Builder and Developer
Description:
Ability to speed up program execution by setting appropriate compiler/lin-
ker options for the PGO workflow (intermediate level)
Ability to speed up program execution by using optimized libraries and set-
ting appropriate compiler/linker options (basic level)
Ability to speed up program execution by setting package specific options
(e.g. selected by environment variables and command line arguments) (basic
level)

PE4.3-E Tuning via Reprogramming
Relevant for: Developer
Short Background: The potential for tuning via reprogramming exists on the
hardware as well as on the software level. At the software level, performance
improvements are achievable by using more efficient algorithms. This is ex-
plained by the help of popular practice-relevant examples. (expert level)
Description:
Ability to run parallel programs in an HPC environment (expert level) (see
also USE2-E Running of Parallel Programs)
Ability to reprogram appropriate parallel code for improved performance on
the processing element level e.g. by using functional units (for executing fu-
sed multiply-add instructions and variants thereof), by using vectorization
techniques with SIMD instructions, etc. (expert level)
Ability to assess how appropriate computationally intensive functions (which
have been identified earlier by profiling the parallel program) can be ported
to many core archictures like GPUs to achieve further speedups (expert level)

PE5-B Optimization Cycle
Relevant for: Tester, Builder, and Developer
Short Background: The workflow is represented by an optimization cycle with the
steps benchmarking, gathering system performance data (e.g. via profiling), ana-
lyzing, and tuning.
Description:
Ability to apply the full workflow for tuning a parallel program (according to the
respective level)

SE-E Software Engineering for HPC
Relevant for: Developer
Short Background: The user learns how to use practices and methods from software
engineering that are especially important for high performance engineering.

Description:
Ability to understand software engineering methods and practices especially in the
context of high performance computing (according to the respective level)

22

Ability to develop parallel programs and to apply software engineering methods and
best practices (according to the respective level)

SE1-E Programming Concepts for HPC
Relevant for: Developer
Description:
Ability to develop programs for HPC (according to the respective level)
Ability to develop parallel programs for shared memory systems as well as for
message passing systems (according to the respective level)
Ability to understand efficient algorithms and data structures (according to the
respective level)
Ability to assess the efficiency and suitability of algorithms and data structures
for the respective application (according to the respective level)

SE1.1-E Programming Languages
Relevant for: Developer
Short Background: The user learns how to complete programming tasks and
gets a short overview of machine- and assembly-languages toward so-called
high-level programming languages. The focus lies on the programming lan-
guages that are in widespread use within the HPC community.
Description:
Ability to use program language extensions used in HPC environments, such
as HPX, Cilk (expert level)
Ability to program in advanced languages typically used in HPC environ-
ments, such as C++, Python (intermediate level)
Ability to use interoperability between languages, for example by calling C
or C++ from FORTRAN and vice versa (intermediate level)
Ability to program in languages typically used in HPC environments, such
as C, FORTRAN (basic level)

SE1.2-E Parallel Programming
Relevant for: Developer
Short Background: Parallel programming of shared memory systems and mes-
sage passing systems as well as load balancing is addressed.
Description:
Ability to assess the parallel nature of algorithms (according to the respective
level)
Ability to develop parallel programs (according to the respective level)

SE1.2.1-I Parallel Algorithms
Relevant for: Developer
Description:
Ability to assess that there are algorithms having a so-called sequential
nature that have been notoriously difficult to parallelize, for example alpha-
beta game-tree search (intermediate level)
Ability to understand that some algorithms are embarrassingly (i.e. trivi-
ally) parallelizable while their parallelization will vary from easy to hard
in practice (basic level)
Ability to determine the computational complexity of algorithms (basic
level)

SE1.2.2-E Programming Shared Memory Systems
Relevant for: Developer

23

Short Background: The parallel concepts of threads and processes are in-
troduced and their impacts on performance are outlined.
Description:
Ability to assess concepts like software pipelining, e.g. to optimize loops
by out-of-order execution (expert level)
Ability to assess the applicability of parallel language extensions like CUDA
as well as their interoperability (e.g. combining OpenACC and CUDA)
(expert level)
Ability to assess parallel concepts typically used for shared memory sy-
stems, e.g. to exploit temporal locality by data reuse with an efficient
utilization of the memory hierarchy (intermediate level)
Ability to assess concepts like software pipelining, and vectorization prin-
ciples (intermediate level)
Ability to assess the influence of control dependencies by jumps, bran-
ches, and function calls, e.g. on pipeline filling (intermediate level)
Ability to assess the applicability of parallel language extensions like Ope-
nACC, and C++ AMP (intermediate level)
Ability to understand race conditions and to use synchronization mecha-
nisms to avoid them (basic level)
Ability to understand the problems that may result from erroneous use of
synchronization mechanisms (e.g. deadlocks) (basic level)
Ability to assess data dependency situations, i.e. an instruction reading
the data written by a preceding instruction in the source code, and anti
dependencies, i.e. an instruction having to read data before a succeeding
instruction overwrites it, and output dependencies, i.e. instructions wri-
ting to the same memory location (basic level)
Ability to use data parallelism, e.g. applying parallel streams of identical
instructions to different elements of appropriate data structures such as
arrays (basic level)
Ability to understand the concept of functional parallelism, i.e. executing
a set of distinct functions possibly using the same data (basic level)
Ability to assess the applicability of parallel language extensions like OpenMP
(basic level)

SE1.2.3-E Programming Message Passing Systems
Relevant for: Developer
Description:
Ability to assess the impact of communication and synchronization on the
performance of a parallel program (expert level) (see also K3.3-I Paralleli-
zation Overheads)
Ability to understand the concept of overlay networks (expert level)
Ability to understand the various communication modes (e.g. blocking
vs. non-blocking, point-to-point vs. collective) (basic level)
Ability to develop programs using MPI as the de-facto standard for paral-
lelizing programs in distributed environments like HPC cluster systems
(basic level)
Ability to understand how race conditions and deadlocks may occur in
MPI parallelized programs and how they can be avoided, namely by reor-
dering send and receive operations or using non-blocking communication
combined with waiting for completion of the communication operations
concerned (basic level)

24

SE1.2.4-E Load Balancing
Relevant for: Developer
Description:
Ability to apply domain decomposition strategies (expert level) (see also
K3.4-E Domain Decomposition)
Ability to apply more sophisticated approaches e.g. based on tree struc-
tures like divide-and-conquer or work-stealing to achieve an appropriate
distribution of the workloads across the multiple computing resources of
the HPC system (intermediate level)
Ability to apply simple scheduling algorithms like task farming to achieve
an appropriate distribution of the workloads across the multiple compu-
ting resources of the HPC system (basic level)

SE1.2.5-I I/O Programming
Relevant for: Developer
Description:
Ability to assess general concepts of HPC I/O systems (e.g. parallel file
systems) and how to map the data model to the storage system, e.g. by
using appropriate I/O libraries and middleware architectures (interme-
diate level) (see also K1.3-I I/O Architectures)

SE1.3-B Efficient Algorithms and Data Structures
Relevant for: Developer
Description:
Ability to assess the efficiency of algorithms and data structures, especially
with respect to their suitability for typical (scientific) (parallel) programs, e.g.
by the help of popular practice-relevant examples (basic level)

SE2-E Programming Best Practices for HPC
Relevant for: Developer
Short Background: This skill provides knowledge about software development best
practices that will help scientists to develop high-quality scientific software.
Description:
Ability to understand the best practices from software engineering regarding pro-
gramming (according to the respective level)
Ability to apply programming best practices in order to develop robust and main-
tainable programs (according to the respective level)

SE2.1-B Integrated Development Environments
Relevant for: Developer
Description:
Ability to configure and use integrated development environments (IDEs)
like Eclipse, e.g. to seamlessly perform the typical development cycle with
the steps edit, build (compile and link), and test (basic level)

SE2.2-I Debugging
Relevant for: Developer
Description:
Ability to use sophisticated debuggers such as DDT and TotalView (interme-
diate level)
Ability to debug a program using simple techniques such as inserting debug-
ging output statements into the source code, e.g. using printf – also against
the background of potential problems with the ordering of the (stdout) output
that may exist in parallel environments like MPI (basic level)

25

Ability to understand the common concepts and workflows when using a
debugger (commands like step into, step over, step out, breakpoints) (basic
level)
Ability to use sophisticated debuggers such as GDB (basic level)

SE2.3-E Programming Idioms
Relevant for: Developer
Short Background: This skill conveys programming idioms in general and for
specific programming languages in order to help developers to solve recur-
ring programming problems.
Description:
Ability to recognize where programming idioms are violated and to refactor
the code to comply to a specific programming idom (expert level)
Ability to apply programming idioms for a specific programming language,
e.g. FORTRAN, Python, C, C++ (intermediate level)
Ability to understand programming idioms for a specific programming lan-
guage, e.g. FORTRAN, Python, C, C++ (basic level)

SE2.4-E Logging
Relevant for: Developer
Short Background: Logging is necessary in order to comprehend when, where,
and why an error occurs during the execution. Parallel programs are prone
to failures and errors during operation. Knowledge about logging concepts,
the ability to apply them appropriately, and to purposefully analyze the log
files is therefore essential in the context of high performance computing.
Description:
Ability to develop, maintain, and document a consistent logging concept for
a program (expert level)
Ability to implement a logging concept for a program in a specific program-
ming language, e.g. FORTRAN, C, C++ (expert level)
Ability to understand logging demands and challenges especially for distri-
buted systems (intermediate level)
Ability to choose the most appropriate log format for the context (intermedi-
ate level)
Ability to apply structured logging and text logging (intermediate level)
Ability to understand logging in general like log levels etc. (e.g. ERROR,
WARN, INFO, DEBUG, TRACE) (basic level)
Ability to understand different logging formats (basic level)
Ability to choose appropriate information that should be logged e.g. times-
tamp, pid, thread, level, loggername) in order to be able to identify the pro-
blem (basic level)
Ability to differentiate between structured logging and text logging (basic
level)
Ability to understand logging implementations/libraries for a specific pro-
gramming language like FORTRAN, C, C++ (basic level)

SE2.5-I Exception Handling
Relevant for: Developer
Short Background: The skill conveys general concepts about exception hand-
ling, how exception handling can be implemented in a specific programming
language and how a consistent exception handling policy can be defined and
thoroughly followed during implementation.

26

Description:
Ability to use best practices for exception handling (intermediate level)
Ability to understand how exception handling is supported in a specific pro-
gramming language, e.g. FORTRAN, C (e.g. <errno.h>), C++ (i.e. try, catch,
throw) (intermediate level)
Ability to apply appropriate exception handling in a specific programming
language (intermediate level)
Ability to understand the differences between the terms ”mistake”, ”fault”,
”failure”, and ”error” (basic level)
Ability to understand exception handling concepts in general (e.g. Errors vs.
Exceptions) (basic level)
Ability to understand why it helps to write software that is robust (basic level)

SE3-E Software Configuration Management
Relevant for: Developer
Description:
Ability to apply steps of SCM in a HPC project (expert level)
Ability to understand the purpose and importance of software configuration ma-
nagement, especially in the context of high performance computing (basic level)
Ability to understand the basic concepts, terms and processes of SCM (basic level)

SE3.1-B Terminology (IEEE Standard)
Relevant for: Developer
Description:
Ability to understand the basics of SCM from the IEEE standards (e.g. IEEE-
Standard 729-1983, IEEE 828: Software Configuration Management Plans,
IEEE 1042: Guide to Software Configuration Management (basic level)
Ability to understand terms like Configuration Item, Baseline, SCM Directo-
ries, Version, Revision, Release (basic level)

SE3.2-E Version Control
Relevant for: Developer
Short Background: This skill covers how to apply version and configuration
management to the development of (parallel) programs in order to track and
control changes in the sources and how to establish and maintain consistency
of the program or software system throughout its life, and facilitate coopera-
tive development. (basic level) Systems like Revision Control System (RCS),
Subversion (SVN), and GIT are presented. (basic level)
Description:
Ability to apply a specific workflow, such as Feature Branch Workflow, Git-
flow Workflow, Centralized Workflow, Forking Worfklow (expert level)
Ability to apply advanced git concepts and commands (expert level)
Ability to apply Git as a version control system (intermediate level)
Ability to apply SVN as a version control system (intermediate level)
Ability to understand advanced git concepts, such as pull requests, branches,
tags, submodules etc. (intermediate level)
Ability to understand different types of workflows, such as Feature Branch
Workflow, Gitflow Workflow, Centralized Workflow, Forking Worfklow (in-
termediate level)
Ability to understand the basics of version control systems, e.g. what is ver-
sion control (basic level)
Ability to understand the benefits of using version control for software deve-
lopment especially in a team; what is branching and merging (basic level)

27

Ability to assess the difference between distributed and centralized version
control systems (basic level)
Ability to understand basic Git concepts (basic level)
Ability to understand basic SVN concepts (basic level)
Ability to use basic git commands such as git add, git commit, git pull, git
push (basic level)
Ability to use SVN commands (basic level)
Ability to resolve merge conflicts (basic level)

SE3.3-I Issue Tracking and Bug Tracking
Relevant for: Developer
Description:
Ability to apply issue tracking in order to manage tasks, bug reports, and
other issues occuring during development and enabling task assignment in
the team (according to the respective level)
Ability to apply different issue tracking systems, like Jira or Redmine, to the
development project (according to the respective level)
Ability to define a consistent workflow in the development team for issue
tracking (according to the respective level)
Ability to understand concepts of issue/bug tracking systems and their ba-
sic concepts like task, sub-task, new feature, story, release planning, sprint
planning in order to structure and organize the development process (e.g. as-
signing tasks to developers, reporting bugs, writing user stories, managing
the stages of an issue (to do, in progress, in review, done) etc.) (according to
the respective level)
Ability to understand different issue tracking systems, like Jira or Redmine
(according to the respective level)

SE3.4-E Release Management
Relevant for: Developer
Short Background: The benefits of release management are explained. More-
over, it is covered how software releases are managed according to a well-
defined and consistent process.
Description:
Ability to apply frameworks of release planning and management like SCRUM
release planning or ITIL (expert level)
Ability to classify releases according to release categories (e.g. major, minor,
emergency fix) (intermediate level)
Ability to plan and manage releases of scientific software and to document
the release including the release notes (intermediate level)
Ability to apply best practices to make a release identifiable via version num-
bers using appropriate version numbering scheme (e.g. using the version
control system) (intermediate level)
Ability to find the best release management process for the team (e.g. depen-
dending on team size etc.) (intermediate level)
Ability to understand the basics of release management and what the benefits
are of applying a release management process in the context of high perfor-
mance computing ”fault”, ”failure”, and ”error” (basic level)
Ability to understand the differences between Major Release, Minor Release,
Emergency Fix (and potentially other types of releases) and what should be
contained in each of them (basic level)
Ability to understand the tasks and steps of release management (basic level)

28

Ability to understand the steps of the deployment process of the release ver-
sion and the required dependencies (basic level)
Knowledge of best practices of making releases identifiable via version num-
bers using appropriate version numbering scheme (e.g. using the version
control system) (basic level)
Ability to understand the lifecycle of a release (including states such as stable,
unstable) (basic level)
Knowledge of different frameworks of release planning and management,
e.g. SCRUM release planning or ITIL (basic level)

SE3.5-E Deployment Management
Relevant for: Developer
Short Background: This skill conveys how dependencies are managed, how
and why to setup different environments for development, testing, and pro-
duction, how and why to automate the deployment process and the impor-
tance of preserving and documenting reproducible software stacks that can
be used by other users/researchers in order to reliably reproduce the results.
Description:
Ability to setup the production, testing, and development environments (ex-
pert level)
Ability to clearly define and preserve reproducible software stacks to make
computational results reproducible, e.g. by applying virtualization environ-
ments like VirtualBox, Docker, rkt, or BioContainers or tools for defining
scientific workflows like Nextflow, or Singularity (expert level)
Ability to configure an environment for continuous integration, delivery, and
deployment using a selected continuous integration tool like Jenkins, Build-
bot or Travis-CI with basic processing steps like compiling and automated
testing (expert level)
Ability to understand the basics of dependency management for different
programming languages (intermediate level)
Ability to use advanced software building environments like Scons and Waf
(intermediate level)
Ability to to undestand challenges for Portability e.g. for the source code of
programs and job scripts to avoid typical compiler-, linker-, and MPI-issues.
(intermediate level)
Ability to use a software build and installation framework like EasyBuild (in-
termediate level)
Ability to understand the basics of dependency management (basic level)
Ability to understand that different environments for testing, development,
production, and staging are necessary (basic level)
Ability to understand the differences between different deployment environ-
ments, and what specific requirements are for each (basic level)
Ability to use software building environments like make, Autotools, CMake
(basic level)
Ability to understand continuous integration, delivery, and deployment and
the differences between them (basic level)
Ability to understand the benefits, drawbacks, and tradeoffs of continuous
integration, delivery, and deployment (basic level)

SE4-I Agile Software Development
Relevant for: Developer
Short Background: Practices of agile software development are covered in order

29

to convey skills about collaborative, and self-organizing software development
advocating adaptive planning, evolutionary development, and encouring rapid
and flexible response to change. (basic level)
Description:
Ability to understand and apply agile development practices in the context of
HPC (according to the respective level)

SE4.1-I Test-driven Development and Agile Testing
Relevant for: Developer
Description:
Ability to apply unit testing in a specific programming language using an
appropriate unit testing framework, e.g. pfUnit for Fortran, glib testing fra-
mework for C (intermediate level)
Ability to develop (agile) testing strategies (intermediate level)
Ability to write different test types for the test pyramid (intermediate level)
Ability to understand the challenges of testing scientific applications (basic
level)
Ability to understand test-driven and test-first concepts and understanding
the benefits (basic level)
Ability to understand what constitutes a test strategy (basic level)
Ability to understand that there are different test types, e.g. given by the test
pyramid (basic level)

SE4.2-I Extreme Programming
Relevant for: Developer
Description:
Ability to apply the principles in the context of an HPC project (intermediate
level)
Ability to understand the principles of extreme programming and when to
apply it (basic level)

SE4.3-I SCRUM
Relevant for: Developer
Description:
Ability to apply practices of SCRUM (intermediate level)
Knowledge of the concepts of SCRUM, e.g. Sprint, Backlog, Planning, Daily
meetings/Stand up meeting, project velocity (basic level)

SE5-E Software Quality
Relevant for: Developer
Short Background: The benefits of software quality (functional and non-functional)
are presented. Additionally, codings standards are covered helping developers to
increase the quality of the code for better maintainability.
Description:
Ability to assess and improve the quality of the software especially with respect
to functionality and maintainability (according to the respective level)
Ability to have the awareness of technical debt during software development and
how to pay technical debt (according to the respective level)

SE5.1-E Coding Standards
Relevant for: Developer
Description:
Ability to define and establish coding standards and conventions in a project
(expert level)

30

Ability to adhere to coding standards and conventions in a project (interme-
diate level)
Ability to understand common coding conventions, e.g. in order to ensure
portability of the code (that are specific to a programming language, e.g.
MISRA C) (basic level)

SE5.2-E Code Quality
Relevant for: Developer
Short Background: The user learns how to use practices and methods from
software engineering that are especially important for high performance en-
gineering.
Description:
Ability to understand software engineering methods and practices especially
in the context of high performance computing (expert level)
Ability to develop parallel programs and to apply software engineering met-
hods and best practices (expert level)
Ability to assess code quality using different metrics, e.g. length of functions,
length of files, lines of code, complexity metrics, code coverage (intermediate
level)
Ability to use static code analysis tools in order to calculate the metrics (e.g.
http://cppcheck.sourceforge.net/) (intermediate level)
Ability to identify bad code structures (known as bad smells) in order to as-
sess the quality of the code design (intermediate level)
Ability to understand different code metrics that assess code quality (basic
level)

SE5.3-I Refactoring
Relevant for: Developer
Description:
Ability to apply common code refactorings in order to improve code quality,
such as extract method, extract class, rename class and when it is suitable to
apply which refactoring (intermediate level)
Ability to apply refactoring that are specific to programming languages (e.g.
Fortran) (intermediate level)
Ability to understand different types of refactorings that help to improve the
quality of the code and the design (basic level)

SE5.4-E Code Reviews
Relevant for: Developer
Description:
Ability to use a review system like Gerrit to organize the code reviews (expert
level)
Ability to document code review results and resulting tasks in an issue tracking
system (for example Jira) (expert level) (see also SE3.3-I Issue Tracking and
Bug Tracking)
Ability to define checklists for code reviews (intermediate level)
Ability to conduct code reviews in pairs or in a team (intermediate level)
Ability to understand modern code reviews (basic level)
Ability to understand the single steps of a code review (basic level)

SE6-E Software Design and Software Architecture
Relevant for: Developer
Description:
Ability to design and develop programs on a higher level of abstraction by ap-

31

plying software architecture and object-oriented design (according to the respective
level)

SE6.1-I Requirements Elicitation and Analysis
Relevant for: Developer
Short Background: Requirements elicitation, analysis and documentation are
important, but often neglected, stages in developing scientific computing soft-
ware. That is why the user will learn how to follow a systematic approach in
order to appropriately collect and analyse requirements for the application
and how to capture assumptions and constraints. Following this approach
will help the user to significantly improve quality of scientific software.
Description:
Ability to identify functional and non-functional requirements of the software
to be implemented (intermediate level)
Ability to capture a common terminology, constraints, and assumptions (in-
termediate level)
Ability to evaluate the identified requirements against the background of
Software Quality (intermediate level) (see also ??)
Ability to use the identified requirements to validate them by tests (interme-
diate level) (see also SE4.1-I Test-driven Development and Agile Testing)
Ability to use a predefined template in order to capture the requirements (in-
termediate level) (see also SE7.1-I Requirements Documentation)
Ability to understand the role of requirements elicitation and analysis during
software development (basic level)

SE6.2-E Object-Oriented Design
Relevant for: Developer
Description:
Ability to apply design patterns for HPC (expert level)
Ability to understand design patterns for HPC (intermediate level)
Ability to write modular, reusable code by applying software design prin-
ciples like Separation of concerns, loose coupling, information hiding, DRY,
KISS etc. (following best practices like Clean Code by Robert C. Martin) (in-
termediate level)
Ability to apply object-oriented design and programming to scientific appli-
cations (intermediate level)
Ability to understand and use the main concepts of object-orientation (clas-
ses, interfaces, polymorphism) to design and implement a program (basic
level)

SE6.3-E Software Architecture
Relevant for: Developer
Description:
Ability to design the application as a plugin architecture so that the functio-
nality can be extended more easily (expert level)
Ability to design the software architecture of the system based on software
architecture patterns (expert level)
Ability to develop an HPC application according to a reference architecture
and adhering to the standards/guidelines given by the reference architecture
(expert level)
Ability to understand component-based software architecture for scientific
applications and ability to apply component-based architecture design (ex-
pert level)

32

Ability to understand architecture bad smells and ability to identify sub-
optimal design decisions in architecture designs (e.g. sub-optimal commu-
nication between components) (expert level)
Ability to describe the software architecture of a scientific applications, what
the most critical architecture decisions are, what the main structures of the
system are, what the interfaces of the systems are, how they are designed and
how components communicate with each other (intermediate level)
Ability to understand which software architecture patterns are typical for a
specific type of scientific application and which aspects (e.g. quality attribu-
tes) they address (intermediate level)
Ability to apply design patterns to HPC, e.g. patterns for coding of parallel
algorithms and their mapping to various architectures (intermediate level)
Ability to understand reference architectures for scientific applications (inter-
mediate level)
Ability to understand architectural tactics for performance, scalability etc. (in-
termediate level)
Ability to apply software architecture principles during architecture design
(intermediate level)
Ability to understand the characteristics and the architectural challenges of
data-intensive and compute-intensive software systems and how they can be
appropriately addressed (intermediate level)
Ability to understand the importance and impact of software architecture du-
ring software development (basic level)
Ability to understand software architecture principles (basic level)

SE7-E Documentation
Relevant for: Developer
Description:
Ability to appropriately document the entire software system (according to the
respective level)
Ability to to provide a user documentation (according to the respective level)
Ability to provide a documentation for developers (e.g. describing the software
architecture, for extending the software etc.) (according to the respective level)

SE7.1-I Requirements Documentation
Relevant for: Developer
Description:
Ability to document requirements using a specified template (intermediate
level)
Ability to understand which information needs to be captured in a require-
ments document (basic level)
Ability to understand the IEEE standard for software requirements specifica-
tion for a structured requirement specification (basic level)

SE7.2-I Software Architecture and Software Design Documentation
Relevant for: Developer
Short Background: In order to preserve knowledge about the main components
of the software and the related decisions about why the software have been
designed this specific way, it is important to document them. This skill covers
how software architecture and design can appropriately be documented, e.g.
using templates.
Description:
Ability to document the different views of the software architecture according

33

to a specific documentation framework, e.g. 4+1 views, Views and Beyond,
architecture decision frameworks (e.g. Taylor, Olaf Zimmermann) (interme-
diate level)
Ability to apply a modeling language for documenting the design and the
architecture, e.g. Unified Modeling Language (intermediate level)

SE7.3-B Source Code Documentation
Relevant for: Developer
Description:
Ability to appropriately document source code using documentation genera-
tors like doxygen, pydoc, or sphinx (basic level)
Ability to produce a consistent source code documentation according to gui-
delines and best practices (basic level)

SE7.4-E Documentation for Reproducibility
Relevant for: Developer
Description:
Ability to understand software engineering methods and practices especially
in the context of high performance computing (expert level)
Ability to develop parallel programs and to apply software engineering met-
hods and best practices (expert level)
Ability to document all necessary information for end-users so that they are
able to reproduce the results (intermediate level)
Ability to document the software stack, build instructions, input data, results
etc. (intermediate level)
Ability to use tools for literate programming like activepapers knitr, or jupy-
ter to document all necessary information for end-users so that they are able
to reproduce the results especially in the context of concurrency (intermediate
level)

34

ST-E: Skill Tree

Relevant for:
Developer

SE-E: Software Engineering for HPC

Relevant for:
Developer

SE7-E: Documentation

Relevant for: Developer
Description: Ability to understand software engineering methods and practices especially in the
context of high performance computing
Ability to develop parallel programs and to apply software engineering methods and best practices

SE7.4-E: Documentation for Reproducibility

SE7.4-I: Documentation for Reproducibility

SE7.3-B: Source Code Documentation

SE7.2-I: Software Architecture and Software Design Documentation

SE7.1-I: Requirements Documentation

SE7-I: Documentation

Relevant for:
Developer

SE6-E: Software Design and Software ArchitectureRelevant for: Developer
Description: Ability to design the application as a plugin architecture so that the functionality can be
extended more easily
Ability to design the software architecture of the system based on software architecture patterns
Ability to develop an HPC application according to a reference architecture and adhering to the
standards/guidelines given by the reference architecture
Ability to understand component-based software architecture for scientific applications and ability to
apply component-based architecture design
Ability to understand architecture bad smells and ability to identify sub-optimal design decisions in
architecture designs (e.g. sub-optimal communication between components)

SE6.3-E: Software Architecture

SE6.3-I: Software Architecture

Relevant for: Developer
Description: Ability to apply design patterns for HPC

SE6.2-E: Object-Oriented Design
SE6.2-I: Object-Oriented Design

SE6.1-I: Requirements Elicitation and Analysis

SE6-I: Software Design and Software Architecture

Relevant for: Developer
Description: Ability to assess and improve the quality of the software especially with respect to
functionality and maintainability (according to the respective level)

SE5-E: Software Quality

Relevant for: Developer
Description: Ability to use a review system like Gerrit to organize the code reviews
Ability to document code review results and resulting tasks in an issue tracking system (for example
Jira) (see also SE3.3-I Issue Tracking and Bug Tracking)

SE5.4-E: Code Reviews

SE3.3-I: Issue Tracking and Bug Tracking

SE5.4-I: Code Reviews

SE5.3-I: Refactoring

Relevant for: Developer
Short Background: The user learns how to use practices and methods from software engineering
that are especially important for high performance engineering.
Description: Ability to understand software engineering methods and practices especially in the
context of high performance computing
Ability to develop parallel programs and to apply software engineering methods and best practices

SE5.2-E: Code Quality

SE5.2-I: Code Quality

Relevant for: Developer
Description: Ability to define and establish coding standards and conventions in a project

SE5.1-E: Coding Standards
SE5.1-I: Coding Standards

SE5-I: Software Quality

SE4-I: Agile Software Development

Relevant for: Developer
Description: Ability to apply steps of SCM in a HPC project

SE3-E: Software Configuration Management

Relevant for: Developer
Description: Ability to setup the production, testing, and development environments
Ability to clearly define and preserve reproducible software stacks to make computational results
reproducible, e.g. by applying virtualization environments like VirtualBox, Docker, rkt, or
BioContainers or tools for defining scientific workflows like Nextflow, or Singularity
Ability to configure an environment for continuous integration, delivery, and deployment using a
selected continuous integration tool like Jenkins, Buildbot or Travis-CI with basic processing steps
like compiling and automated testing

SE3.5-E: Deployment Management

SE3.5-I: Deployment Management

Relevant for: Developer
Description: Ability to apply frameworks of release planning and management like SCRUM release
planning or ITIL

SE3.4-E: Release Management

SE3.4-I: Release Management

SE3.3-I: Issue Tracking and Bug Tracking

Relevant for: Developer
Description: Ability to apply a specific workflow, such as Feature Branch Workflow, Gitflow
Workflow, Centralized Workflow, Forking Worfklow
Ability to apply advanced git concepts and commands

SE3.2-E: Version Control

SE3.2-I: Version Control

SE3.1-B: Terminology (IEEE Standard)

SE3-I: Software Configuration Management

Relevant for:
Developer

SE2-E: Programming Best Practices for HPC

SE2.5-I: Exception Handling

Relevant for: Developer
Description: Ability to develop, maintain, and document a consistent logging concept for a program
Ability to implement a logging concept for a program in a specific programming language, e.g.
FORTRAN, C, C++

SE2.4-E: Logging

SE2.4-I: Logging

Relevant for: Developer
Description: Ability to recognize where programming idioms are violated and to refactor the code to
comply to a specific programming idom

SE2.3-E: Programming Idioms

SE2.3-I: Programming Idioms

SE2.2-I: Debugging

SE2.1-B: Integrated Development Environments

SE2-I: Programming Best Practices for HPC

Relevant for:
Developer

SE1-E: Programming Concepts for HPC

SE1.3-B: Efficient Algorithms and Data Structures

Relevant for:
Developer

SE1.2-E: Parallel Programming

SE1.2.5-I: I/O Programming

Relevant for: Developer
Description: Ability to apply domain decomposition strategies (see also K3.4-E Domain
Decomposition)

SE1.2.4-E: Load Balancing

K3.4-E: Domain Decomposition

SE1.2.4-I: Load Balancing

Relevant for: Developer
Description: Ability to assess the impact of communication and synchronization on the performance
of a parallel program (see also K3.3-I Parallelization Overheads)
Ability to understand the concept of overlay networks

SE1.2.3-E: Programming Message Passing Systems

K3.3-I: Parallelization Overheads

SE1.2.3-I: Programming Message Passing Systems

Relevant for: Developer
Description: Ability to assess concepts like software pipelining, e.g. to optimize loops by out-of-order
execution
Ability to assess the applicability of parallel language extensions like CUDA as well as their
interoperability (e.g. combining OpenACC and CUDA)

SE1.2.2-E: Programming Shared Memory Systems

SE1.2.2-I: Programming Shared Memory Systems

SE1.2.1-I: Parallel Algorithms

SE1.2-I: Parallel Programming

Relevant for: Developer
Description: Ability to use program language extensions used in HPC environments, such as HPX,
Cilk

SE1.1-E: Programming Languages

SE1.1-I: Programming Languages

SE1-I: Programming Concepts for HPC

Relevant for:
Developer

SE-I: Software Engineering for HPC

Relevant for:
Developer

SE7-I: Documentation

Relevant for: Developer
Description: Ability to document all necessary information for end-users so that they are able to
reproduce the results
Ability to document the software stack, build instructions, input data, results etc.
Ability to use tools for literate programming like activepapers knitr, or jupyter to document all
necessary information for end-users so that they are able to reproduce the results especially in the
context of concurrency

SE7.4-I: Documentation for Reproducibility

SE7.3-B: Source Code Documentation

Relevant for: Developer
Short Background: In order to preserve knowledge about the main components of the software and
the related decisions about why the software have been designed this specific way, it is important to
document them. This skill covers how software architecture and design can appropriately be
documented, e.g. using templates.
Description: Ability to document the different views of the software architecture according to a
specific documentation framework, e.g. 4+1 views, Views and Beyond, architecture decision
frameworks (e.g. Taylor, Olaf Zimmermann)
Ability to apply a modeling language for documenting the design and the architecture, e.g. Unified
Modeling Language

SE7.2-I: Software Architecture and Software Design Documentation

Relevant for: Developer
Description: Ability to document requirements using a specified template

SE7.1-I: Requirements Documentation
SE7.1-B: Requirements Documentation

SE7-B: Documentation

Relevant for:
Developer

SE6-I: Software Design and Software Architecture

Relevant for: Developer
Description: Ability to describe the software architecture of a scientific applications, what the most
critical architecture decisions are, what the main structures of the system are, what the interfaces of
the systems are, how they are designed and how components communicate with each other
Ability to understand which software architecture patterns are typical for a specific type of scientific
application and which aspects (e.g. quality attributes) they address
Ability to apply design patterns to HPC, e.g. patterns for coding of parallel algorithms and their
mapping to various architectures
Ability to understand reference architectures for scientific applications
Ability to understand architectural tactics for performance, scalability etc.
Ability to apply software architecture principles during architecture design
Ability to understand the characteristics and the architectural challenges of data-intensive and
compute-intensive software systems and how they can be appropriately addressed

SE6.3-I: Software Architecture

SE6.3-B: Software Architecture

Relevant for: Developer
Description: Ability to understand design patterns for HPC
Ability to write modular, reusable code by applying software design principles like Separation of
concerns, loose coupling, information hiding, DRY, KISS etc. (following best practices like Clean
Code by Robert C. Martin)
Ability to apply object-oriented design and programming to scientific applications

SE6.2-I: Object-Oriented Design

SE6.2-B: Object-Oriented Design

Relevant for: Developer
Description: Ability to identify functional and non-functional requirements of the software to be
implemented
Ability to capture a common terminology, constraints, and assumptions
Ability to evaluate the identified requirements against the background of Software Quality (see also
SE5-I Software Quality)
Ability to use the identified requirements to validate them by tests (see also SE4.1-I Test-driven
Development and Agile Testing)
Ability to use a predefined template in order to capture the requirements (see also SE7.1-I
Requirements Documentation)

SE6.1-I: Requirements Elicitation and Analysis

SE7.1-I: Requirements Documentation

SE4.1-I: Test-driven Development and Agile Testing

SE5-I: Software Quality

SE6.1-B: Requirements Elicitation and Analysis

SE6-B: Software Design and Software Architecture

Relevant for:
Developer

SE5-I: Software Quality

Relevant for: Developer
Description: Ability to define checklists for code reviews
Ability to conduct code reviews in pairs or in a team
Ability to document code review results and resulting tasks in an issue tracking system (for example
Jira) (see also SE3.3-I Issue Tracking and Bug Tracking)

SE5.4-I: Code Reviews

SE3.3-I: Issue Tracking and Bug Tracking

SE5.4-B: Code Reviews

Relevant for: Developer
Description: Ability to apply common code refactorings in order to improve code quality, such as
extract method, extract class, rename class and when it is suitable to apply which refactoring
Ability to apply refactoring that are specific to programming languages (e.g. Fortran)

SE5.3-I: Refactoring

SE5.3-B: Refactoring

Relevant for: Developer
Description: Ability to assess code quality using different metrics, e.g. length of functions, length of
files, lines of code, complexity metrics, code coverage
Ability to use static code analysis tools in order to calculate the metrics (e.g.
http://cppcheck.sourceforge.net/)
Ability to identify bad code structures (known as bad smells) in order to assess the quality of the
code design

SE5.2-I: Code Quality

SE5.2-B: Code Quality

Relevant for: Developer
Description: Ability to adhere to coding standards and conventions in a project

SE5.1-I: Coding Standards
SE5.1-B: Coding Standards

SE5-B: Software Quality

Relevant for:
Developer

SE4-I: Agile Software Development

Relevant for: Developer
Description: Ability to apply practices of SCRUM

SE4.3-I: SCRUM
SE4.3-B: SCRUM

Relevant for: Developer
Description: Ability to apply the principles in the context of an HPC project

SE4.2-I: Extreme Programming
SE4.2-B: Extreme Programming

Relevant for: Developer
Description: Ability to apply unit testing in a specific programming language using an appropriate unit
testing framework, e.g. pfUnit for Fortran, glib testing framework for C
Ability to develop (agile) testing strategies
Ability to write different test types for the test pyramid

SE4.1-I: Test-driven Development and Agile Testing

SE4.1-B: Test-driven Development and Agile Testing

SE4-B: Agile Software Development

Relevant for:
Developer

SE3-I: Software Configuration Management

Relevant for: Developer
Description: Ability to understand the basics of dependency management for different programming
languages
Ability to use advanced software building environments like Scons and Waf
Ability to to undestand challenges for Portability e.g. for the source code of programs and job scripts
to avoid typical compiler-, linker-, and MPI-issues.
Ability to use a software build and installation framework like EasyBuild

SE3.5-I: Deployment Management

SE3.5-B: Deployment Management

Relevant for: Developer
Description: Ability to classify releases according to release categories (e.g. major, minor,
emergency fix)
Ability to plan and manage releases of scientific software and to document the release including the
release notes
Ability to apply best practices to make a release identifiable via version numbers using appropriate
version numbering scheme (e.g. using the version control system)
Ability to find the best release management process for the team (e.g. dependending on team size
etc.)

SE3.4-I: Release Management

SE3.4-B: Release Management

Relevant for: Developer
Description: Ability to apply issue tracking in order to manage tasks, bug reports, and other issues
occuring during development and enabling task assignment in the team (according to the respective
level)
Ability to apply different issue tracking systems, like Jira or Redmine, to the development project
(according to the respective level)
Ability to define a consistent workflow in the development team for issue tracking (according to the
respective level)

SE3.3-I: Issue Tracking and Bug Tracking

SE3.3-B: Issue Tracking and Bug Tracking

Relevant for: Developer
Description: Ability to apply Git as a version control system
Ability to apply SVN as a version control system
Ability to understand advanced git concepts, such as pull requests, branches, tags, submodules etc.
Ability to understand different types of workflows, such as Feature Branch Workflow, Gitflow
Workflow, Centralized Workflow, Forking Worfklow

SE3.2-I: Version Control

SE3.2-B: Version Control

SE3.1-B: Terminology (IEEE Standard)

SE3-B: Software Configuration Management

Relevant for:
Developer

SE2-I: Programming Best Practices for HPC

Relevant for: Developer
Description: Ability to use best practices for exception handling
Ability to understand how exception handling is supported in a specific programming language, e.g.
FORTRAN, C (e.g. <errno.h>), C++ (i.e. try, catch, throw)
Ability to apply appropriate exception handling in a specific programming language

SE2.5-I: Exception Handling

SE2.5-B: Exception Handling

Relevant for: Developer
Description: Ability to understand logging demands and challenges especially for distributed systems
Ability to choose the most appropriate log format for the context
Ability to apply structured logging and text logging

SE2.4-I: Logging

SE2.4-B: Logging

Relevant for: Developer
Description: Ability to apply programming idioms for a specific programming language, e.g.
FORTRAN, Python, C, C++

SE2.3-I: Programming Idioms

SE2.3-B: Programming Idioms

Relevant for: Developer
Description: Ability to use sophisticated debuggers such as DDT and TotalView

SE2.2-I: Debugging
SE2.2-B: Debugging

SE2.1-B: Integrated Development Environments

SE2-B: Programming Best Practices for HPC

Relevant for:
Developer

SE1-I: Programming Concepts for HPC

SE1.3-B: Efficient Algorithms and Data Structures

Relevant for:
Developer

SE1.2-I: Parallel Programming

Relevant for: Developer
Description: Ability to assess general concepts of HPC I/O systems (e.g. parallel file systems) and
how to map the data model to the storage system, e.g. by using appropriate I/O libraries and
middleware architectures (see also K1.3-I I/O Architectures)

SE1.2.5-I: I/O Programming

K1.3-I: I/O Architectures

SE1.2.5-B: I/O Programming

Relevant for: Developer
Description: Ability to apply domain decomposition strategies (see also K3.4-B Domain
Decomposition)
Ability to apply more sophisticated approaches e.g. based on tree structures like divide-and-conquer
or work-stealing to achieve an appropriate distribution of the workloads across the multiple
computing resources of the HPC system

SE1.2.4-I: Load Balancing

K3.4-B: Domain Decomposition

SE1.2.4-B: Load Balancing

Relevant for: Developer
Description: Ability to assess the impact of communication and synchronization on the performance
of a parallel program (see also K3.3-I Parallelization Overheads)

SE1.2.3-I: Programming Message Passing Systems

K3.3-I: Parallelization Overheads

SE1.2.3-B: Programming Message Passing Systems

Relevant for: Developer
Description: Ability to assess parallel concepts typically used for shared memory systems, e.g. to
exploit temporal locality by data reuse with an efficient utilization of the memory hierarchy
Ability to assess concepts like software pipelining, and vectorization principles
Ability to assess the influence of control dependencies by jumps, branches, and function calls, e.g.
on pipeline filling
Ability to assess the applicability of parallel language extensions like OpenACC, and C++ AMP

SE1.2.2-I: Programming Shared Memory Systems

SE1.2.2-B: Programming Shared Memory Systems

Relevant for: Developer
Description: Ability to assess that there are algorithms having a so-called sequential nature that
have been notoriously difficult to parallelize, for example alpha-beta game-tree search

SE1.2.1-I: Parallel Algorithms

SE1.2.1-B: Parallel Algorithms

SE1.2-B: Parallel Programming

Relevant for: Developer
Description: Ability to program in advanced languages typically used in HPC environments, such as
C++, Python
Ability to use interoperability between languages, for example by calling C or C++ from FORTRAN
and vice versa

SE1.1-I: Programming Languages

SE1.1-B: Programming Languages

SE1-B: Programming Concepts for HPC

Relevant for: Developer
Short Background: The user learns how to use practices and methods from software engineering
that are especially important for high performance engineering.
Description: Ability to understand software engineering methods and practices especially in the
context of high performance computing (according to the respective level)
Ability to develop parallel programs and to apply software engineering methods and best practices
(according to the respective level)

SE-B: Software Engineering for HPC

Relevant for: Developer
Description: Ability to appropriately document the entire software system (according to the
respective level)
Ability to to provide a user documentation (according to the respective level)
Ability to provide a documentation for developers (e.g. describing the software architecture, for
extending the software etc.) (according to the respective level)

SE7-B: Documentation

Relevant for: Developer
Description: Ability to appropriately document source code using documentation generators like
doxygen, pydoc, or sphinx
Ability to produce a consistent source code documentation according to guidelines and best practices

SE7.3-B: Source Code Documentation

Relevant for: Developer
Description: Ability to understand which information needs to be captured in a requirements document
Ability to understand the IEEE standard for software requirements specification for a structured
requirement specification

SE7.1-B: Requirements Documentation

Relevant for: Developer
Description: Ability to design and develop programs on a higher level of abstraction by applying
software architecture and object-oriented design (according to the respective level)

SE6-B: Software Design and Software Architecture

Relevant for: Developer
Description: Ability to understand the importance and impact of software architecture during software
development
Ability to understand software architecture principles

SE6.3-B: Software Architecture

Relevant for: Developer
Description: Ability to understand and use the main concepts of object-orientation (classes,
interfaces, polymorphism) to design and implement a program

SE6.2-B: Object-Oriented Design

Relevant for: Developer
Short Background: Requirements elicitation, analysis and documentation are important, but often
neglected, stages in developing scientific computing software. That is why the user will learn how to
follow a systematic approach in order to appropriately collect and analyse requirements for the
application and how to capture assumptions and constraints. Following this approach will help the
user to significantly improve quality of scientific software.
Description: Ability to understand the role of requirements elicitation and analysis during software
development

SE6.1-B: Requirements Elicitation and Analysis

Relevant for: Developer
Short Background: The benefits of software quality (functional and non-functional) are presented.
Additionally, codings standards are covered helping developers to increase the quality of the code
for better maintainability.
Description: Ability to have the awareness of technical debt during software development and how to
pay technical debt (according to the respective level)

SE5-B: Software Quality

Relevant for: Developer
Description: Ability to understand modern code reviews
Ability to understand the single steps of a code review

SE5.4-B: Code Reviews

Relevant for: Developer
Description: Ability to understand different types of refactorings that help to improve the quality of
the code and the design

SE5.3-B: Refactoring

Relevant for: Developer
Description: Ability to understand different code metrics that assess code quality

SE5.2-B: Code Quality

Relevant for: Developer
Description: Ability to understand common coding conventions, e.g. in order to ensure portability of
the code (that are specific to a programming language, e.g. MISRA C)

SE5.1-B: Coding Standards

Relevant for: Developer
Short Background: Practices of agile software development are covered in order to convey skills
about collaborative, and self-organizing software development advocating adaptive planning,
evolutionary development, and encouring rapid and flexible response to change.
Description: Ability to understand and apply agile development practices in the context of HPC
(according to the respective level)

SE4-B: Agile Software Development

Relevant for: Developer
Description: Knowledge of the concepts of SCRUM, e.g. Sprint, Backlog, Planning, Daily
meetings/Stand up meeting, project velocity

SE4.3-B: SCRUM

Relevant for: Developer
Description: Ability to understand the principles of extreme programming and when to apply it

SE4.2-B: Extreme Programming

Relevant for: Developer
Description: Ability to understand the challenges of testing scientific applications
Ability to understand test-driven and test-first concepts and understanding the benefits
Ability to understand what constitutes a test strategy
Ability to understand that there are different test types, e.g. given by the test pyramid

SE4.1-B: Test-driven Development and Agile Testing

Relevant for: Developer
Description: Ability to understand the purpose and importance of software configuration
management, especially in the context of high performance computing
Ability to understand the basic concepts, terms and processes of SCM

SE3-B: Software Configuration Management

Relevant for: Developer
Short Background: This skill conveys how dependencies are managed, how and why to setup
different environments for development, testing, and production, how and why to automate the
deployment process and the importance of preserving and documenting reproducible software
stacks that can be used by other users/researchers in order to reliably reproduce the results.
Description: Ability to understand the basics of dependency management
Ability to understand that different environments for testing, development, production, and staging
are necessary
Ability to understand the differences between different deployment environments, and what specific
requirements are for each
Ability to use software building environments like make, Autotools, CMake
Ability to understand continuous integration, delivery, and deployment and the differences between
them
Ability to understand the benefits, drawbacks, and tradeoffs of continuous integration, delivery, and
deployment

SE3.5-B: Deployment Management

Relevant for: Developer
Short Background: The benefits of release management are explained. Moreover, it is covered how
software releases are managed according to a well-defined and consistent process.
Description: Ability to understand the basics of release management and what the benefits are of
applying a release management process in the context of high performance computing "fault",
"failure", and "error"
Ability to understand the differences between Major Release, Minor Release, Emergency Fix (and
potentially other types of releases) and what should be contained in each of them
Ability to understand the tasks and steps of release management
Ability to understand the steps of the deployment process of the release version and the required
dependencies
Knowledge of best practices of making releases identifiable via version numbers using appropriate
version numbering scheme (e.g. using the version control system)
Ability to understand the lifecycle of a release (including states such as stable, unstable)
Knowledge of different frameworks of release planning and management, e.g. SCRUM release
planning or ITIL

SE3.4-B: Release Management

Relevant for: Developer
Description: Ability to understand concepts of issue/bug tracking systems and their basic concepts
like task, sub-task, new feature, story, release planning, sprint planning in order to structure and
organize the development process (e.g. assigning tasks to developers, reporting bugs, writing user
stories, managing the stages of an issue (to do, in progress, in review, done) etc.) (according to the
respective level)
Ability to understand different issue tracking systems, like Jira or Redmine (according to the
respective level)

SE3.3-B: Issue Tracking and Bug Tracking

Relevant for: Developer
Short Background: This skill covers how to apply version and configuration management to the
development of (parallel) programs in order to track and control changes in the sources and how to
establish and maintain consistency of the program or software system throughout its life, and
facilitate cooperative development.
Systems like Revision Control System (RCS), Subversion (SVN), and GIT are presented.
Description: Ability to understand the basics of version control systems, e.g. what is version control
Ability to understand the benefits of using version control for software development especially in a
team; what is branching and merging
Ability to assess the difference between distributed and centralized version control systems
Ability to understand basic Git concepts
Ability to understand basic SVN concepts
Ability to use basic git commands such as git add, git commit, git pull, git push
Ability to use SVN commands
Ability to resolve merge conflicts

SE3.2-B: Version Control

Relevant for: Developer
Description: Ability to understand the basics of SCM from the IEEE standards (e.g. IEEE-Standard
729-1983, IEEE 828: Software Configuration Management Plans, IEEE 1042: Guide to Software
Configuration Management
Ability to understand terms like Configuration Item, Baseline, SCM Directories, Version, Revision,
Release

SE3.1-B: Terminology (IEEE Standard)

Relevant for: Developer
Short Background: This skill provides knowledge about software development best practices that will
help scientists to develop high-quality scientific software.
Description: Ability to understand the best practices from software engineering regarding
programming (according to the respective level)
Ability to apply programming best practices in order to develop robust and maintainable programs
(according to the respective level)

SE2-B: Programming Best Practices for HPC

Relevant for: Developer
Short Background: The skill conveys general concepts about exception handling, how exception
handling can be implemented in a specific programming language and how a consistent exception
handling policy can be defined and thoroughly followed during implementation.
Description: Ability to understand the differences between the terms "mistake", "fault", "failure", and
"error"
Ability to understand exception handling concepts in general (e.g. Errors vs. Exceptions)
Ability to understand why it helps to write software that is robust

SE2.5-B: Exception Handling

Relevant for: Developer
Short Background: Logging is necessary in order to comprehend when, where, and why an error
occurs during the execution. Parallel programs are prone to failures and errors during operation.
Knowledge about logging concepts, the ability to apply them appropriately, and to purposefully
analyze the log files is therefore essential in the context of high performance computing.
Description: Ability to understand logging in general like log levels etc. (e.g. ERROR, WARN, INFO,
DEBUG, TRACE)
Ability to understand different logging formats
Ability to choose appropriate information that should be logged e.g. timestamp, pid, thread, level,
loggername) in order to be able to identify the problem
Ability to differentiate between structured logging and text logging
Ability to understand logging implementations/libraries for a specific programming language like
FORTRAN, C, C++

SE2.4-B: Logging

Relevant for: Developer
Short Background: This skill conveys programming idioms in general and for specific programming
languages in order to help developers to solve recurring programming problems.
Description: Ability to understand programming idioms for a specific programming language, e.g.
FORTRAN, Python, C, C++

SE2.3-B: Programming Idioms

Relevant for: Developer
Description: Ability to debug a program using simple techniques such as inserting debugging output
statements into the source code, e.g. using printf – also against the background of potential
problems with the ordering of the (stdout) output that may exist in parallel environments like MPI
Ability to understand the common concepts and workflows when using a debugger (commands like
step into, step over, step out, breakpoints)
Ability to use sophisticated debuggers such as GDB

SE2.2-B: Debugging

Relevant for: Developer
Description: Ability to configure and use integrated development environments (IDEs) like Eclipse,
e.g. to seamlessly perform the typical development cycle with the steps edit, build (compile and
link), and test

SE2.1-B: Integrated Development Environments

Relevant for: Developer
Description: Ability to develop programs for HPC (according to the respective level)
Ability to develop parallel programs for shared memory systems as well as for message passing
systems (according to the respective level)
Ability to understand efficient algorithms and data structures (according to the respective level)
Ability to assess the efficiency and suitability of algorithms and data structures for the respective
application (according to the respective level)

SE1-B: Programming Concepts for HPC

Relevant for: Developer
Description: Ability to assess the efficiency of algorithms and data structures, especially with
respect to their suitability for typical (scientific) (parallel) programs, e.g. by the help of popular
practice-relevant examples

SE1.3-B: Efficient Algorithms and Data Structures

Relevant for: Developer
Short Background: Parallel programming of shared memory systems and message passing systems
as well as load balancing is addressed.
Description: Ability to assess the parallel nature of algorithms (according to the respective level)
Ability to develop parallel programs (according to the respective level)

SE1.2-B: Parallel Programming

Relevant for: Developer
Description: Ability to assess general concepts of HPC I/O systems (e.g. parallel file systems) and
how to map the data model to the storage system, e.g. by using appropriate I/O libraries and
middleware architectures (see also K1.3-B I/O Architectures)

SE1.2.5-B: I/O Programming

K1.3-B: I/O Architectures

Relevant for: Developer
Description: Ability to apply domain decomposition strategies (see also K3.4-B Domain
Decomposition)
Ability to apply simple scheduling algorithms like task farming to achieve an appropriate distribution
of the workloads across the multiple computing resources of the HPC system

SE1.2.4-B: Load Balancing

K3.4-B: Domain Decomposition

Relevant for: Developer
Description: Ability to understand the various communication modes (e.g. blocking vs. non-blocking,
point-to-point vs. collective)
Ability to develop programs using MPI as the de-facto standard for parallelizing programs in
distributed environments like HPC cluster systems
Ability to understand how race conditions and deadlocks may occur in MPI parallelized programs
and how they can be avoided, namely by reordering send and receive operations or using
non-blocking communication combined with waiting for completion of the communication operations
concerned
Ability to assess the impact of communication and synchronization on the performance of a parallel
program (see also K3.3-B Parallelization Overheads)

SE1.2.3-B: Programming Message Passing Systems

K3.3-B: Parallelization Overheads

Relevant for: Developer
Short Background: The parallel concepts of threads and processes are introduced and their impacts
on performance are outlined.
Description: Ability to understand race conditions and to use synchronization mechanisms to avoid
them
Ability to understand the problems that may result from erroneous use of synchronization
mechanisms (e.g. deadlocks)
Ability to assess data dependency situations, i.e. an instruction reading the data written by a
preceding instruction in the source code, and anti dependencies, i.e. an instruction having to read
data before a succeeding instruction overwrites it, and output dependencies, i.e. instructions writing
to the same memory location
Ability to use data parallelism, e.g. applying parallel streams of identical instructions to different
elements of appropriate data structures such as arrays
Ability to understand the concept of functional parallelism, i.e. executing a set of distinct functions
possibly using the same data
Ability to assess the applicability of parallel language extensions like OpenMP

SE1.2.2-B: Programming Shared Memory Systems

Relevant for: Developer
Description: Ability to understand that some algorithms are embarrassingly (i.e. trivially)
parallelizable while their parallelization will vary from easy to hard in practice
Ability to determine the computational complexity of algorithms

SE1.2.1-B: Parallel Algorithms

Relevant for: Developer
Short Background: The user learns how to complete programming tasks and gets a short overview
of machine- and assembly-languages toward so-called high-level programming languages.
The focus lies on the programming languages that are in widespread use within the HPC community.
Description: Ability to program in languages typically used in HPC environments, such as C,
FORTRAN

SE1.1-B: Programming Languages

Relevant for: Tester, Builder,
Developer

PE-E: Performance Engineering

PE5-B: Optimization Cycle

Relevant for: Tester, Builder,
Developer

PE4-E: TuningRelevant for: Developer
Short Background: The potential for tuning via reprogramming exists on the hardware as well as on
the software level. At the software level, performance improvements are achievable by using more
efficient algorithms. This is explained by the help of popular practice-relevant examples.
Description: Ability to run parallel programs in an HPC environment (see also USE2-E Running of
Parallel Programs)
Ability to reprogram appropriate parallel code for improved performance on the processing element
level e.g. by using functional units (for executing fused multiply-add instructions and variants
thereof), by using vectorization techniques with SIMD instructions, etc.
Ability to assess how appropriate computationally intensive functions (which have been identified
earlier by profiling the parallel program) can be ported to many core archictures like GPUs to achieve
further speedups

PE4.3-E: Tuning via Reprogramming

USE2-E: Running of Parallel Programs

PE4.2-I: Tuning without Modifying the Source Code

Relevant for: Tester, Builder, Developer
Description: Ability to select appropriate tasks sizes (big vs. small) that may have positive
performance impacts on the workflow, and to run several (smaller) tasks by the help of job chaining
(see also USE1.2-E Using Shell Scripts)

PE4.1-E: Tuning without Building a Parallel Program

USE1.2-E: Using Shell Scripts

PE4.1-I: Tuning without Building a Parallel Program

PE4-I: Tuning

PE3-I: Benchmarking

Relevant for: Tester, Builder,
Developer

PE2-E: Measuring System Performance
Relevant for: Developer
Description: Ability to detect performance issues and bottlenecks caused, for example, by inefficient
programming, memory accesses, I/O operations, cache-misses, page-faults, and parallelization
overheads (see also K3.3-I Parallelization Overheads)
Ability to use advanced performance analysis tools like Vampir
Ability to use the standard MPI profiling interface (PMPI) to control the built-in performance analysis
functionality in MPI

PE2.2-E: Profiling

K3.3-I: Parallelization Overheads

PE2.2-I: Profiling

PE2.1-I: Using Standard Tools to Measure System Performance

Relevant for: Tester, Builder, Developer
Description: Ability to assess the costs related to the runtimes of parallel programs against the
background of cost models (see also K5-E Modeling Costs)
Ability to assess the ratio of personnel costs to resource costs against the background of
break-even considerations and time to solution constraints

PE1-E: Cost Awareness

K5-E: Modeling Costs

PE1-I: Cost Awareness

Relevant for: Tester, Builder,
Developer

PE-I: Performance Engineering

PE5-B: Optimization Cycle

Relevant for: Tester, Builder,
Developer

PE4-I: Tuning

Relevant for: Builder, Developer
Description: Ability to speed up program execution by setting appropriate compiler/linker options for
the PGO workflow

PE4.2-I: Tuning without Modifying the Source Code

PE4.2-B: Tuning without Modifying the Source Code

Relevant for: Tester, Builder, Developer
Description: Ability to select appropriate tasks sizes (big vs. small) that may have positive
performance impacts on the workflow, and to run several (smaller) tasks by the help of job chaining
(see also USE1.2-I Using Shell Scripts)
Ability to use mapping of processes to nodes, pinning of processes/threads to CPUs or cores, and
setting memory affinities to NUMA nodes in order to speed up a parallel program
Ability to speed up program execution by setting appropriate runtime options (e.g. for MPI and
OpenMP)

PE4.1-I: Tuning without Building a Parallel Program

USE1.2-I: Using Shell Scripts

PE4.1-B: Tuning without Building a Parallel Program

PE4-B: Tuning

Relevant for: Tester, Builder, Developer
Description: Ability to assess speedups and efficiencies as the key measures for benchmarks of a
parallel program (see also K2.1-I Performance Frontiers)
Ability to differentiate between strong and weak scaling
Ability to assess the performance characteristics of parallel programs with regard to CPU usage,
memory accesses (e.g. latencies for random access, cache sizes, strided access patterns, and
bandwidth), I/O operations (e.g. record length, IOPs, latency, bandwidth, throughput, and
multi-stream processing), and communication (message sizes, network bandwidth and latency)

PE3-I: Benchmarking

K2.1-I: Performance Frontiers

PE3-B: Benchmarking

Relevant for: Tester, Builder,
Developer

PE2-I: Measuring System Performance
Relevant for: Developer
Description: Ability to get the base data for tuning the performance of parallel programs by profiling
Ability to detect performance issues and bottlenecks caused, for example, by inefficient
programming, memory accesses, I/O operations, cache-misses, page-faults, and parallelization
overheads (see also K3.3-I Parallelization Overheads)
Ability to assess how different views of the profiling data (e.g. timeline graphs and communication
matrices to illustrate the traffic between processes) can give insights in the runtime behavior of the
program
Ability to use performance analysis tools like ScoreP, Scalasca

PE2.2-I: Profiling

K3.3-I: Parallelization Overheads

PE2.2-B: Profiling

Relevant for: Tester, Builder, Developer
Short Background: Tools used in Linux-based environemnts like htop, iostat, and perf are sketched.

PE2.1-I: Using Standard Tools to Measure System Performance
PE2.1-B: Using Standard Tools to Measure System Performance

Relevant for: Tester, Builder, Developer
Description: Ability to assess the costs related to the runtimes of parallel programs against the
background of cost models (see also K5-I Modeling Costs)

PE1-I: Cost Awareness

K5-I: Modeling Costs

PE1-B: Cost Awareness

Relevant for: Tester, Builder, Developer
Description: Ability to use systematic approaches (e.g. benchmarking and tuning, cost models) to
meet performance requirements in a cost-effective way, i.e. by reducing the runtimes of parallel
programs and using the resources of the HPC system appropriately for that purpose (according to
the respective level)

PE-B: Performance Engineering

Relevant for: Tester, Builder, Developer
Short Background: The workflow is represented by an optimization cycle with the steps
benchmarking, gathering system performance data (e.g. via profiling), analyzing, and tuning.
Description: Ability to apply the full workflow for tuning a parallel program (according to the
respective level)

PE5-B: Optimization Cycle

Relevant for: Tester, Builder, Developer
Description: Ability to tune a parallel program in order to achieve better runtimes and to optimize the
usage of the HPC resources (according to the respective level)

PE4-B: Tuning

Relevant for: Builder, Developer
Description: Ability to speed up program execution by using optimized libraries and setting
appropriate compiler/linker options
Ability to speed up program execution by setting package specific options (e.g. selected by
environment variables and command line arguments)

PE4.2-B: Tuning without Modifying the Source Code

Relevant for: Tester, Builder, Developer
Description: Ability to select appropriate tasks sizes (big vs. small) that may have positive
performance impacts on the workflow, and to run several (smaller) tasks by the help of job chaining
(see also USE1.2-B Using Shell Scripts)

PE4.1-B: Tuning without Building a Parallel Program

USE1.2-B: Using Shell Scripts

Relevant for: Tester, Builder, Developer
Description: Ability to assess speedups and efficiencies as the key measures for benchmarks of a
parallel program (see also K2.1-B Performance Frontiers)
Ability to benchmark the runtime behavior of parallel programs, performing controlled experiments by
providing varying HPC resources (e.g. 1, 2, 4, 8, ... cores on shared memory systems or 1, 2, 4, 8,
... nodes on distributed systems for the benchmarks)

PE3-B: Benchmarking

K2.1-B: Performance Frontiers

Relevant for: Tester, Builder, Developer
Description: Ability to measure the system performance by the help of standard tools and by
profiling in order to assess the runtime behavior of parallel programs (according to the respective
level)

PE2-B: Measuring System PerformanceRelevant for: Developer
Short Background: Profiling is explained for the CPU level, where it can be supported by hardware
performance counters and by sampling techniques.
Sampling is used to see, by examining the program counter, what routines and source code lines of
a program are responsible for which portions of the total runtime.
Automatically adding trace code to a parallel program by so-called instrumentation to record its
execution in a strict chronology is explained and the difference to profiling is emphasized.
Similar techniques are explained for profiling the network level (e.g. based on InfiniBand counters
and I/O server states).
Description: Ability to detect performance issues and bottlenecks caused, for example, by inefficient
programming, memory accesses, I/O operations, cache-misses, page-faults, and parallelization
overheads (see also K3.3-B Parallelization Overheads)
Ability to use environment variables like $I_MPI_STATS to control the built-in performance analysis
functionality in MPI

PE2.2-B: Profiling

K3.3-B: Parallelization Overheads

Relevant for: Tester, Builder, Developer
Short Background: This includes information about utilization of resources like CPU as well as
elapsed runtimes of a program, its unshared and shared memory usage, input and output statistics
for devices and file systems, and page faults, with tools like /usr/bin/time, ps, top, and vmstat in
Linux-based environments.
Description: Ability to use standard tools of the operating system to get information about the
behavior of parallel programs in terms of their resource utilization

PE2.1-B: Using Standard Tools to Measure System Performance

Relevant for: Tester, Builder, Developer
Description: Ability to assess the costs related to the runtimes of parallel programs against the
background of cost models (see also K5-B Modeling Costs)

PE1-B: Cost Awareness

K5-B: Modeling Costs

Relevant for: Tester, Builder,
Developer

USE-E: Use of the HPC Environment

Relevant for: Developer
Description: Ability to build parallel programs (see also USE3-E Building of Parallel Programs)
Ability to develop parallel software (see also SE-E Software Engineering for HPC)

USE4-E: Developing Parallel Programs

SE-E: Software Engineering for HPC

USE3-E: Building of Parallel Programs

USE4-I: Developing Parallel Programs

Relevant for: Builder, Developer
Description: Ability to run parallel programs in an HPC environment (see also USE2-E Running of
Parallel Programs)
Ability to use a linker and to assess the effects of advanced linker specific options and environment
variables (e.g. LIBRARY_PATH)
Ability to configure the relevant settings (e.g. by setting compiler and linker options), which
determine how the application ought to be build with regard to advanced parallelization technique(s)
used (e.g. CUDA)
Ability to use the profile guided optimization (PGO) technique (see also PE4.2-I Tuning without
Modifying the Source Code)
Ability to use software building environments like Scons, Waf, make, Autotools, CMake (see also
SE3.5-E Deployment Management)

USE3-E: Building of Parallel Programs

SE3.5-E: Deployment Management

PE4.2-I: Tuning without Modifying the Source Code

USE2-E: Running of Parallel Programs

USE3-I: Building of Parallel Programs

Relevant for: Tester, Builder, Developer
Description: Ability to use the command line interface (see also USE1.1-I Use of the Command Line
Interface)
Ability to write robust job scripts, e.g. to simplify job submissions by the help of automated job
chaining (see also USE1.2-E Using Shell Scripts)
Ability to select the appropriate software environment (see also USE1.3-B Selecting the Software
Environment)
Ability to consider cost aspects (see also PE1-E Cost Awareness)
Ability to measure system performance as a basis for benchmarking a parallel program (see also
PE2-E Measuring System Performance)
Ability to benchmark a parallel program (see also PE3-I Benchmarking)
Ability to tune a parallel program from the outside via runtime options (see also PE4.1-E Tuning
without Building a Parallel Program)
Ability to apply the workflow for tuning (see also PE5-B Optimization Cycle)

USE2-E: Running of Parallel Programs

PE5-B: Optimization Cycle

PE4.1-E: Tuning without Building a Parallel Program

PE3-I: Benchmarking

PE2-E: Measuring System Performance

PE1-E: Cost Awareness

USE1.3-B: Selecting the Software Environment

USE1.2-E: Using Shell Scripts

USE1.1-I: Use of the Command Line Interface

USE2-I: Running of Parallel Programs

Relevant for: Tester, Builder,
Developer

USE1-E: Use of the Cluster Operating System

USE1.3-B: Selecting the Software Environment

Relevant for: Tester, Builder, Developer
Description: Ability to read keyboard input to add interactivity to scripts

USE1.2-E: Using Shell Scripts
USE1.2-I: Using Shell Scripts

USE1.1-I: Use of the Command Line Interface

USE1-I: Use of the Cluster Operating System

Relevant for: Tester, Builder,
Developer

USE-I: Use of the HPC Environment

Relevant for: Developer
Description: Ability to build parallel programs (see also USE3-I Building of Parallel Programs)
Ability to develop parallel software (see also SE-I Software Engineering for HPC)

USE4-I: Developing Parallel Programs

SE-I: Software Engineering for HPC

USE3-I: Building of Parallel Programs

USE4-B: Developing Parallel Programs

Relevant for: Builder, Developer
Description: Ability to run parallel programs in an HPC environment (see also USE2-I Running of
Parallel Programs)
Ability to use a compiler and to asses the effects of optimization switches available for compilers
commercially available (e.g. PGI, NAG)
Ability to use efficient open source libraries (e.g. OpenBLAS, FFTW) or highly optimized vendor
libraries (e.g. Intel-MKL, IBM-ESSL)
Ability to configure the relevant settings (e.g. by setting compiler and linker options), which
determine how the application ought to be build with regard to the parallelization technique(s) used
(e.g. OpenACC, C++ AMP)
Ability to use the profile guided optimization (PGO) technique (see also PE4.2-I Tuning without
Modifying the Source Code)
Ability to use software building environments like Scons, Waf, make, Autotools, CMake (see also
SE3.5-I Deployment Management)

USE3-I: Building of Parallel Programs

SE3.5-I: Deployment Management

PE4.2-I: Tuning without Modifying the Source Code

USE2-I: Running of Parallel Programs

USE3-B: Building of Parallel Programs

Relevant for: Tester, Builder, Developer
Description: Ability to use the command line interface (see also USE1.1-I Use of the Command Line
Interface)
Ability to write robust job scripts, e.g. to simplify job submissions by the help of automated job
chaining (see also USE1.2-I Using Shell Scripts)
Ability to select the appropriate software environment (see also USE1.3-B Selecting the Software
Environment)
Ability to use a workload manager to allocate HPC resources for running a parallel program
interactively
Ability to consider cost aspects (see also PE1-I Cost Awareness)
Ability to measure system performance as a basis for benchmarking a parallel program (see also
PE2-I Measuring System Performance)
Ability to benchmark a parallel program (see also PE3-I Benchmarking)
Ability to tune a parallel program from the outside via runtime options (see also PE4.1-I Tuning
without Building a Parallel Program)
Ability to apply the workflow for tuning (see also PE5-B Optimization Cycle)

USE2-I: Running of Parallel Programs

PE5-B: Optimization Cycle

PE4.1-I: Tuning without Building a Parallel Program

PE3-I: Benchmarking

PE2-I: Measuring System Performance

PE1-I: Cost Awareness

USE1.3-B: Selecting the Software Environment

USE1.2-I: Using Shell Scripts

USE1.1-I: Use of the Command Line Interface

USE2-B: Running of Parallel Programs

Relevant for: Tester, Builder, Developer
Description: Ability to use and write shell scripts e.g. to automatically execute several commands in
a row in order to automate more complex tasks

USE1-I: Use of the Cluster Operating System

USE1.3-B: Selecting the Software Environment

Relevant for: Tester, Builder, Developer
Description: Ability to use flow control, e.g. for conditional and/or repeated execution of statements
in scripts
Ability to use shell functions to break large, complex tasks into a series of small, simple tasks
Ability to write robust job scripts, e.g. to simplify job submissions by the help of automated job
chaining

USE1.2-I: Using Shell Scripts

USE1.2-B: Using Shell Scripts

Relevant for: Tester, Builder, Developer
Description: Ability to use regular expressions to select or filter several items at once (e.g. file content)
Ability to access local and remote files using enhanced features (e.g. via SSHFS) in remote sessions

USE1.1-I: Use of the Command Line Interface

USE1.1-B: Use of the Command Line Interface

USE1-B: Use of the Cluster Operating System

Relevant for: Tester, Builder, Developer
Description: Ability to use a cluster operating system as well as to run, build, and develop parallel
programs (according to the respective level)

USE-B: Use of the HPC Environment

Relevant for: Developer
Description: Ability to build parallel programs (see also USE3-B Building of Parallel Programs)
Ability to develop parallel software (see also SE-B Software Engineering for HPC)

USE4-B: Developing Parallel Programs

SE-B: Software Engineering for HPC

USE3-B: Building of Parallel Programs

Relevant for: Builder, Developer
Description: Ability to build parallel programs, e.g. via open sources packages
Ability to run parallel programs in an HPC environment (see also USE2-B Running of Parallel
Programs)
Ability to use a compiler and to asses the effects of optimization switches available for the relevant
compilers (e.g. GNU, Intel)
Ability to use a linker and to assess the effects of linker specific options and environment variables
(e.g. -L and LIBRARY_PATH, -rpath and LD_RUN_PATH)
Ability to configure the relevant settings (e.g. by setting compiler and linker options), which
determine how the application ought to be build with regard to the parallelization technique(s) used
(e.g. OpenMP, MPI)
Ability to use software building environments like make, Autotools, CMake (see also SE3.5-B
Deployment Management)

USE3-B: Building of Parallel Programs

SE3.5-B: Deployment Management

USE2-B: Running of Parallel Programs

Relevant for: Tester, Builder, Developer
Description: Ability to run parallel programs in an HPC environment
Ability to use the command line interface (see also USE1.1-B Use of the Command Line Interface)
Ability to write robust job scripts, e.g. to simplify job submissions by the help of automated job
chaining (see also USE1.2-B Using Shell Scripts)
Ability to select the appropriate software environment (see also USE1.3-B Selecting the Software
Environment)
Ability to use a workload manager like SLURM or TORQUE to allocate HPC resources (e.g. CPUs)
and to submit a batch job
Ability to consider cost aspects (see also PE1-B Cost Awareness)
Ability to measure system performance as a basis for benchmarking a parallel program (see also
PE2-B Measuring System Performance)
Ability to benchmark a parallel program (see also PE3-B Benchmarking)
Ability to tune a parallel program from the outside via runtime options (see also PE4.1-B Tuning
without Building a Parallel Program)
Ability to apply the workflow for tuning (see also PE5-B Optimization Cycle)

USE2-B: Running of Parallel Programs

PE5-B: Optimization Cycle

PE4.1-B: Tuning without Building a Parallel Program

PE3-B: Benchmarking

PE2-B: Measuring System Performance

PE1-B: Cost Awareness

USE1.3-B: Selecting the Software Environment

USE1.2-B: Using Shell Scripts

USE1.1-B: Use of the Command Line Interface

Relevant for: Tester, Builder, Developer
Short Background: HPC systems are usually accessed via a command line interface (CLI). The user
acquires skills to use a – generally Linux based – CLI to interact with the HPC system.
Description: Ability to use and write shell scripts e.g. to automatically execute several commands in
a row that otherwise would have to be entered manually one by one and to automate simple tasks
Ability to select the right environment setting to build programs with the proper compiler, linker, and
libraries versions or to run programs

USE1-B: Use of the Cluster Operating System

Relevant for: Tester, Builder, Developer
Short Background: HPC systems have generally installed multiple versions of a number of key
software tools and software environments.
Package managers like Spack are sketched.
Description: Ability to select the appropriate versions for deployment to the session environment,
e.g. via the so-called environment modules system

USE1.3-B: Selecting the Software Environment

Relevant for: Tester, Builder, Developer
Description: Ability to use and write shell scripts (according to the respective level)
Ability to use troubleshooting, e.g. to handle syntactic and logical errors in scripts (according to the
respective level)

USE1.2-B: Using Shell Scripts

Relevant for: Tester, Builder, Developer
Description: Ability to execute frequently used commands, e.g. to navigate the file system, copy,
rename, and delete files, view the contents of files, and to get detailed help for the usage of a
command with all its options
Ability to use wildcards to select or filter e.g. files
Ability to login remotely to cluster nodes using e.g. SSH with password or SSH key authentication
Ability to access local and remote files in remote sessions
Ability to check disk quotas commonly used to limit the amount of disk space available for the user

USE1.1-B: Use of the Command Line Interface

Relevant for: Tester, Builder,
Developer

K-E: HPC Knowledge

Relevant for: Tester, Builder, Developer
Description: Knowledge of how to assess the costs for the infrastructure of data and computing
centers as well as their personnel costs
Knowledge of economic and business aspects, e.g. break-even considerations, when personnel
costs for tuning a parallel program and savings through speedups achieved are compared

K5-E: Modeling Costs

K5-I: Modeling Costs

Relevant for: Tester, Builder, Developer
Description: Knowledge of sophisticated scheduling principles (e.g. fair share) to achieve objectives
like treating the users fair, and maximizing the utilization of the available HPC resources

K4-E: Job Scheduling

K4-I: Job Scheduling

Relevant for: Tester, Builder,
Developer

K3-E: Program Parallelization

Relevant for: Tester, Builder, Developer
Description: Knowledge of how to map domains to machines

K3.4-E: Domain Decomposition
K3.4-B: Domain Decomposition

K3.3-I: Parallelization Overheads

Relevant for: Developer
Description: Knowledge of hybrid parallelization approaches, combining for instance OpenMP and
GPU-Computing
Knowledge of multi-level approaches (e.g. combining OpenMP and MPI)

K3.2-E: Level of Parallelization

K3.2-I: Level of Parallelization

K3-I: Program Parallelization

K3.1-B: Parallelization Without Modifying the Source Code

Relevant for: Tester, Builder,
Developer

K2-E: Performance Modeling

Relevant for: Tester, Builder, Developer
Description: Knowledge of how performance bounds of the various components of the HPC system
(e.g. CPU, caches, memory) can limit the overall performance of a parallel program

K2.2-E: Bounds for a Parallel Program

K2.2-I: Bounds for a Parallel Program

K2.1-I: Performance Frontiers

K2-I: Performance Modeling

Relevant for: Tester, Builder,
Developer

K1-E: Supercomputers

Relevant for: Tester, Builder, Developer
Description: Knowledge of the differentiation between Supercomputing and Big Data (background
topic)

K1.5-E: Supercomputing and Big Data

K1.5-B: Supercomputing and Big Data

K1.4-B: Operation of an HPC System

K1.3-I: I/O Architectures

Relevant for: Tester, Builder, Developer
Description: Knowledge of parallelization techniques at the instruction level of a processing element
(e.g. pipelining, SIMD processing)
Knowledge of hybrid approaches, e.g. combining CPUs with GPUs or FPGAs
Knowledge of typical network topologies and architectures used for HPC systems, like fat trees
based on switched fabrics using e.g. fast Ethernet (1 or 10 Gbit) or InfiniBand

K1.2-E: Hardware Architectures

K1.2-I: Hardware Architectures

Relevant for: Tester, Builder, Developer
Description: Knowledge of storage and compute deployments for cluster systems

K1.1-E: System Architectures
K1.1-B: System Architectures

K1-I: Supercomputers

Relevant for: Tester, Builder,
Developer

K-I: HPC Knowledge

Relevant for: Tester, Builder, Developer
Description: Knowledge of how to assess runtime costs for jobs

K5-I: Modeling Costs
K5-B: Modeling Costs

Relevant for: Tester, Builder, Developer
Description: Knowledge of advanced scheduling principles (e.g. backfilling) to achieve objectives like
minimizing the averaged elapsed program runtimes, and maximizing the utilization of the available
HPC resources

K4-I: Job Scheduling

K4-B: Job Scheduling

Relevant for: Tester, Builder,
Developer

K3-I: Program Parallelization

K3.4-B: Domain Decomposition

Relevant for: Tester, Builder, Developer
Description: Knowledge of the overheads caused by redundant computations
Knowledge of the problems of execution speed noise (OS jitter, cache contention, thermal throttling,
etc.), and typical trade-offs (e.g. reducing the synchronization overhead by increasing the
communication overhead)

K3.3-I: Parallelization Overheads

K3.3-B: Parallelization Overheads

Relevant for: Developer
Description: Knowledge of parallelization techniques at the intra-node level (e.g. based on advanced
OpenMP features and GPU-computing)

K3.2-I: Level of Parallelization

K3.2-B: Level of Parallelization

K3-B: Program Parallelization

K3.1-B: Parallelization Without Modifying the Source Code

Relevant for: Tester, Builder,
Developer

K2-I: Performance Modeling

Relevant for: Tester, Builder, Developer
Description: Knowledge of how performance bounds of the various components of the HPC system
(e.g. network, I/O) can limit the overall performance of a parallel program

K2.2-I: Bounds for a Parallel Program

Relevant for: Tester, Builder, Developer
Description: Knowledge of the roofline model, used to provide performance estimates for parallel
programs based on multi-core or accelerator processor architectures, by showing inherent hardware
limitations

K2.1-I: Performance Frontiers

K2.1-B: Performance Frontiers

K2-B: Performance Modeling

Relevant for: Tester, Builder,
Developer

K1-I: Supercomputers

K1.5-B: Supercomputing and Big Data

K1.4-B: Operation of an HPC System

Relevant for: Tester, Builder, Developer
Description: Knowledge of standard file systems like Ext3, Ext4, XFS, and Btrfs and distributed file
systems like Lustre, and BeeGFS
Knowledge of when to use data compression

K1.3-I: I/O Architectures

K1.3-B: I/O Architectures

Relevant for: Tester, Builder, Developer
Description: Knowledge of special or application-specific hardware (e.g.
TPUs)

K1.2-I: Hardware Architectures

K1.2-B: Hardware Architectures

K1.1-B: System Architectures

K1-B: Supercomputers

Relevant for: Tester, Builder, Developer
Description: Knowledge of the field of High Performance Computing (according to the respective
level)

K-B: HPC Knowledge

Relevant for: Tester, Builder, Developer
Short Background: The user's awareness of the costs related to the operation of an HPC system is
raised.
For the resources of an HPC system, a distinction is made between costs for the computing
elements of the supercomputer and costs for the storage system.
Description: Knowledge of the impact of a cluster nodes type (e.g. CPU type, main memory
expansion, or GPU extensions) and of the storage media type (SSD, disk, or e.g. tape for long term
archiving (LTA) purposes) on its costs

K5-B: Modeling Costs

Relevant for: Tester, Builder, Developer
Description: Knowledge of how workload managers control the unattended background execution of
programs or jobs respectively by the help of job queues
Knowledge of typical scheduling principles (e.g. first come first served, shortest job first) to achieve
objectives like minimizing the averaged elapsed program runtimes, and maximizing the utilization of
the available HPC resources

K4-B: Job Scheduling

Relevant for: Tester, Builder, Developer
Description: Knowledge of the typical parallelization techniques used at the intra- and inter-node
level of cluster systems
Knowledge of the causes of parallelization overheads, which eventually prevent efficient use of an
increasing number of processing elements
Knowledge of domain decomposition strategies (i.e. splitting a problem into pieces that allow for
parallel computation)

K3-B: Program Parallelization

Relevant for: Tester, Builder, Developer
Description: Knowledge of typical decomposition strategies to split a domain into subdomains to
make it suited for parallel processing
Knowledge of measures like surface to volume ratio

K3.4-B: Domain Decomposition

Relevant for: Tester, Builder, Developer
Description: Knowledge of the various overheads, i.e. overheads for communication,
synchronization
Knowledge of the problems of load imbalances

K3.3-B: Parallelization Overheads

Relevant for: Developer
Description: Knowledge of parallelization techniques at the intra-node level (e.g. based on basic
OpenMP features)
Knowledge of the message passing paradigm based on environments like MPI, which is the de-facto
standard at the inter-node level for parallelizing programs using more than a single node

K3.2-B: Level of Parallelization

Relevant for: Builder, Developer
Description: Knowledge of the auto parallelization capabilities of current compilers (e.g. to
automatically parallelize suitable loops), which are applicable at the intra-node level

K3.1-B: Parallelization Without Modifying the Source Code

Relevant for: Tester, Builder, Developer
Short Background: HPC systems are massively parallel and therefore sophisticated parallel
programs are required to exploit their performance potential as much as possible.
Description: Knowledge of how the performance of parallel programs may be assessed (according to
the respective level)

K2-B: Performance Modeling Relevant for: Tester, Builder, Developer
Description: Knowledge of the definitions for key terms like speedup, efficiency, and scalability
Knowledge of the key measure floating point operations per second (FLOPS) for the performance of
HPC systems and its pitfalls
Knowledge of Moore’s law and its significance for performance frontiers in modern HPC (background
topic)
Knowledge of Amdahl’s law and its significance for performance frontiers in modern HPC

K2.1-B: Performance Frontiers

Relevant for: Tester, Builder, Developer
Description: Knowledge of various system-, hardware-, and I/O-architectures used for
supercomputers, i.e. computers that led the world in terms of processing capacity, and particularly
in speed of calculations, at the time of their introduction, or share key architectural aspects with
these computers (according to the respective level)
Knowledge of typical operation of data and computing centers
Knowledge of the differentiation between Supercomputing and Big Data

K1-B: Supercomputers

Relevant for: Tester, Builder, Developer
Short Background: In the recent past, Supercomputing as well as the analysis of Big Data are
increasingly growing in importance for scientific research.
Description: Knowledge of Supercomputing and Big Data (background topic)

K1.5-B: Supercomputing and Big Data

Relevant for: Tester, Builder, Developer
Description: Knowledge of the typical infrastructure of data and computing centers
Knowledge of the typical infrastructure of data and computing centers, also against the background
of economic and business aspects (background topic)
Knowledge of administration aspects of an HPC system
Knowledge of user support aspects (typically on different levels)

K1.4-B: Operation of an HPC System

Relevant for: Tester, Builder, Developer
Description: Knowledge of typical I/O systems used in HPC environments
Knowledge of different types of media (e.g. tape, disk, and SSD)
Knowledge of the differentiation between standard file systems and distributed file systems
Knowledge of when to use local and global storage

K1.3-B: I/O Architectures

Relevant for: Tester, Builder, Developer
Description: Knowledge of elementary processing elements like CPUs, GPUs, many core
architectures
Knowledge of vector systems, and FPGAs (background topic)
Knowledge of the NUMA architecture used for symmetric multiprocessing systems where the
memory access time depends on the memory location relative to the processor
Knowledge of network demands for HPC systems (e.g. high bandwidth and low latency)
Knowledge of typical network architectures used for HPC systems, like fast Ethernet (1 or 10 Gbit)
or InfiniBand

K1.2-B: Hardware Architectures

Relevant for: Tester, Builder, Developer
Description: Knowledge of various system-, hardware-, and I/O-architectures used for
supercomputers, i.e. shared memory systems, distributed systems, and cluster systems
Knowledge of the typical architecture of cluster systems consisting of nodes with different roles
(e.g. so-called head, login, compute, interactive, visualization nodes, etc.)

K1.1-B: System Architectures

HPC Skill Tree

35

	Relation to the Project
	Introduction
	Motivation

	Classification of HPC competences (Task 4.1)
	Development of the Certification Program (Task 4.2)
	Summary and Conclusions
	Appendix

