
Draft Version 0.9 – February 1, 2018

An HPC Certification Program Proposal
Meeting HPC Users’ Varied Backgrounds

Kai Himstedt1, Nathanael Hübbe1, Julian Kunkel2, and Hinnerk Stüben1

1 Universität Hamburg
2 Deutsches Klimarechenzentrum
3 Technische Universität Hamburg

Acknowledgements

The authors acknowledge the discussion with Hendryk Bockelmann2, Michael Kuhn1,
Thomas Ludwig1,2, Stephan Olbrich1, Matthias Riebisch1, Sandra Schröder1, and
Markus Stammberger3

This work was supported by the German Research Foundation (DFG) under grants LU
1353/12-1, OL 241/2-1, and RI 1068/7-1.

1 Introduction

Computing power and complexity of HPC systems are steadily increasing. This leads to an
increasing demand for a good education of their users so that they can use such systems
adequately. A special challenge is to provide users with skills according to their scientific
backgrounds and specific demands in terms of the usage of the system. Users in the role of
testers, who want to simply run a parallel program for benchmark purposes, must e.g. have
a solid knowledge of operating system basics and should be able to use a workload manager
like SLURM [SLUR 17] or TORQUE [TORQ 17], but in general they do not need a deeper
understanding of the technical refinements of the parallelization of the program. A user who
wants to develop a parallel program will usually already be able to use the operating system
and the workload manager but will need further skills to apply parallelization techniques
like OpenMP [OpMP 17] or GPU-computing based on CUDA [NVID 17] at the intra-node
level, MPI [MPI 17] at the inter-node level or even combinations of such techniques in the
sense of a hybrid or multi-level approach.

In recent years, the growing demands to improve the HPC education are in the research
focus of many projects. Rüde, for example, in the final report on exascale education in the
context of the ”European Exascale Software Initiative 2” [Cordi 18], describes strengthening
of HPC education as an important subfield of computational science and engineering (CSE)
[Rüde 15]. The urgent demand for an appropriate HPC education is also indicated by the
efforts of the HPC advisory council [HPCA 17] to push it, e.g. by offering workshops and
releasing best practice as well as case studies. Therefore, it comes as no surprise that recently
initial results of a Scientific Computing World HPC readership survey have shown that “...
training and support for HPC resources are the number one concern for both those that
operate and manage HPC facilities and researchers using HPC resources.” [SCW 17].

1

Establishing an HPC Certification Program is a central part1 of the joint Performance
Conscious HPC (PeCoH) project. In April 2017, the three Hamburg compute centers in-
volved in PeCoH, German Climate Computing Center (DKRZ), Regional Computing Cen-
ter at the Universität Hamburg (RRZ), and Computer Center at the Technische Universität
Hamburg (TUHH RZ) started the Hamburg HPC Competence Center (HHCC) as a virtual
institution and central contact point for their users [HHCC 17a]. HHCC will also serve as
an open-for-all education platform for HPC knowledge and competences. Our HPC Cer-
tification Program approach takes the users’ varied backgrounds (e.g. research area and
prior knowledge) into account and focuses on performance engineering to enable them to
achieve further speedups for parallel applications with efficient utilization of the HPC re-
sources. The performance engineering aspect is of particular importance because, according
to our experience at DKRZ, RRZ, and TUHH RZ, support requests are currently dominated
by problems at the level of getting things to work, i.e. getting a parallel job to run. Users in
this situation are far from being aware of using the expensive HPC resources appropriately.

The paper is organized as follows: In Section 2 the classical approaches for HPC edu-
cation are sketched. In Section 3 our innovative approach of an HPC Certification Program
will be presented, which is based on defining HPC skills a user must have to perform cer-
tain tasks like testing, building or developing parallel programs in an HPC environment.
The project’s progression as well as the data structures and technical modeling to define the
hierarchical dependencies of the skills are also handled in this section. Finally, the major
insights are concluded in Section 4, and some future work is pointed out in Section 5. The
Appendix contains a detailed list of all skills we have identified for the HPC Certification
Program so far.

2 Classical HPC Education

A good user education has traditionally been important, because it leads to cost reductions
in the operation at compute centers by reducing efforts for user support and by more effi-
ciently used HPC resources by well-trained users. From our observations at DKRZ, RRZ,
and TUHH RZ, new users without a proper HPC education often use only the defaults of
the respective workload manager for selecting HPC resources such as main memory or CPU
time and often do not explicitly select an appropriate batch queue to submit their jobs, while
a user with an adequate HPC education will take meaningful estimates into consideration to
avoid reserving unnecessary amounts of HPC resources, long waiting times for the job start,
or reaching the runtime limit of his job. At the same time the productivity of the users will
be increased, because they feel comfortable in using an HPC system. This leads to a typical
win-win situation.

Institutions which operate HPC systems usually offer regularly recurring teaching events
about general aspects of Supercomputer hard- and software architectures and parallel pro-
gramming at beginners’ level as well as higher levels. For some time now, there have also
been joint efforts to support the HPC education in Europe. The education and training stra-
tegy at the Barcelona Supercomputing Centre (BSC) as outlined in [Sanc 15] may serve as
an example: as part of the Partnership for Advanced Computing in Europe (PRACE), BSC
is working on the development of an appropriate European HPC professional training cur-
ricula. Classical HPC education is based on lectures, tutorials, and workshops addressing

1 Further goals of PeCoH are e.g. to develop models to estimate the costs of batch jobs in order to give HPC
users feedback indicating the impacts of running non-optimized workloads, and to develop analysis tools to
(automatically) identify performance issues caused by well-known configuration mistakes in job scripts.

2

the various HPC topics. An HPC lecture usually involves a teacher presenting topics and
concepts related to a course addressing HPC topics to users enrolled in that course and has a
rather static character. An HPC tutorial is typically run in smaller groups and allows discus-
sion of the content and interaction with other users. However, the general procedure stays
rather static, which also applies to HPC workshops where users typically acquire HPC skills
by involving more hands-on learning activities.

Nowadays, it is very simple to publish a live or recorded lecture on an online platform,
which gives users the possibility to watch the video where and when they like. Tutorials
commonly make the content (additionally) available online via the internet (see [LLNL 17]
for an example). The interactive aspect of a classical tutorial may suffer, but that can be
more than compensated by the improved accessibility of the hyperlinked content. In addi-
tion there are hybrid approaches. Zarestky and Bangerth [ZaBa 14], for example, performed
an experiment to teach HPC with a so-called flipped classroom format that requires students
to watch content videos before coming to class, thus freeing time in class. Based on quali-
tative data Zarestky and Bangerth report positive results in terms of being able to use the
time in class efficiently, and instructors and students enjoyed the new format. Reflecting the
workshop idea, there exists online content with a focus on practical HPC examples showing
how to get things to work (e.g. [CAC 17]). The Extreme Science and Engineering Discovery
Environment (XSEDE), a virtual organization to support open research, helps their users
among other things by an online system to train the usage of an HPC system, structuring
the corresponding information on their website by the help of major topics like “Getting
Started”, “Working with the System”, “Visualization Resources”, and “HPC System Resour-
ces”. The user can select additional information about each topic to navigate within the
content [XSED 17]. There are also Websites offering (online) HPC learning material (e.g.
[FuLe 18], [PRACE 18]). However, sophisticated Web-based E-learning systems which cover
the users’ varied backgrounds and their individual learning progresses do not exist – to the
best of our knowledge – for teaching HPC competences.

In addition to the benefits of using a modern Web-based approach to present the HPC
content in a more dynamic and, if needed, multimedia based way, there are ideas to use
computing resources more generally for additional HPC education purposes. Holmes and
Kureshi [HoKu 15], for example, reported – against the background of a shortage of HPC
skills and available HPC training in the UK – experiences using recycled laboratory PCs to
build cluster systems for educational purposes. Not only can the students use the clusters
for experiments, but the challenge to build these laboratory clusters had a positive impact
in that it encourages them to search for information from a variety of sources in order to
complete the building tasks, and that developed their skills and confidence in the process.
Czarnel [Czar 14] presents a successful middleware approach including a Web-based inter-
face to support easy access to HPC systems for HPC novices by hiding the queuing systems.
Suh et al. [Suh+ 16] adopt an approach which rather focuses on encapsulating simulation
systems behind a user-friendly graphical user interface (GUI) supporting scientific work-
flows. This system is also made to support the education of students, but rather in the field
of computational science and engineering (CSE) than in the field of HPC competences.

Summing up, online platforms for HPC education are successfully used in practice and
provide great potential. However, in contrast to other areas of information technology (IT),
where certificates are often used to prove IT skills2 of the users, in the field of HPC neither

2 There is a certification program for various levels of Linux system administration skills from the Linux
Professional Institute [LPI 17] and a certification program for general (personal) computer skills from the Eu-
ropean Computer Driving Licence [ECDL 17a] organization, which could serve as representative examples
here.

3

commonly accepted standards exist, nor a certification program for the education. If a scien-
tific institution provides learning material it will be determined by the special demands of
the respective institution and its specific HPC environment. Therefore, this content will only
cover a very small part even of basic HPC skills and a user with a lack of basic skills will pre-
sumably have difficulties to readily use other HPC systems. These are the issues addressed
by our proposal for an HPC Certification Program.

3 New Approach

Living in the age of so-called digital natives, one might suppose that computer skills are
picked up intuitively. The ECDL organization notes, however, that this is not the case for
basic computer skills and the idea of digital natives is a dangerous fallacy that risks leaving
young people without the competences they need for the workplace, and risks leaving bu-
sinesses without the skilled employees they need [ECDL 17b]. It can be assumed that this is
all the more true for the complex field of HPC.

The ambitious EuroLab-4-HPC project, funded in the context of the Horizon 2020 rese-
arch and innovation programme, focuses on developing a structured HPC systems curricu-
lum and training practices based on (online) courses [EURO 18a]. As a project result it is
shown how the courses can also be mapped to other degree programs (e.g. physics, mat-
hematics) at the master’s level or how they can be used for a single year’s program that is
Bologna-aligned ([EURO 18b] p. 12). Certificates are clearly of less significance compared for
example to a master’s or Phd degree, but on the other hand university degrees, with their
rather great scope and possibly more national character, do not attest knowledge or skills
of specific and topical technologies. This training gap can be filled ideally by the help of
certification programs.

We named our HPC Certification Program “HPC-Führerschein” (HPC driving licence in
English) to point out that users should have a set of validated skills before they use an HPC
environment for their research. Another analogy is the transferability of skills: Anyone who
is able to drive a certain type of passenger car is able to drive any other passenger car, and
an HPC user who has gained the skill to use a workload manager like TORQUE will be able
to use SLURM after short period of additional training, and vice versa.

Before the new approach of the HPC Certification Program is presented in more detail,
we will introduce a set of terms:

Skill: The abilities and the knowledge specified in the skill description

Certified Skill: Skill of a user validated by an exam

Content: Learning material enabling the user to gain certified skills

Content provider: Institution that provides content

Exam: Process to validate a user’s skill based on multiple-choice tests

Certificate definition: Set of skills as specified in the description of the certificate

Certification provider: Institution that suggests certificate definitions and corresponding ex-
ams

Certification board: Institution that establishes accepted certificate definitions and correspon-
ding exams

4

Certificate: Document based on certified skills according to the corresponding certificate
definition

In our approach the certificate definition is separated from content providing. While the
certification board has the role of a (virtual) central authority, the learning material can be
provided by different content providers, e.g. by different scientific institutions. This is com-
parable to the concept of a central high school graduation exam (Zentralabitur in German),
where the examination is created by a central organization while the pupils are prepared
for the exam by their schools. Since the start of the PeCoH project, when we had the role
as certification provider as well as the role as content provider for basic HPC skills3, we
welcomed the collaboration with other scientific institutions to establish generally recogni-
zed certificate definitions. Essentially, it is at the discretion of a content provider to decide
which learning material is most appropriate to teach a skill. That offers freedom and flexibi-
lity in creating the learning content. We assume that collaborating scientific institutions will
complement each other in producing content.

3.1 Previous Work

We started our development of the HPC Certification Program with the classification of
HPC topics which were relevant to the three compute centers (DKRZ, RRZ, and TUHH RZ)
involved. We initially identified four top level competences: “HPC Knowledge”, “Use of the
HPC Environment”, “Performance Engineering”, and “Software Development” as shown in
Figure 1.

Fig. 1: Top Level Competences

We presented a poster of the current state and goals in the PeCoH project at the ISC 2017
[Kunk+ 17] and distributed a handout containing the initial classification of HPC compe-
tences and the work in progress of our HPC Certification Program [HHCC 17b], which was
one of the major topics of the poster. We also presented the idea of the HPC Certification
Program at the Flexible Framework for Energy and Performance Analysis in HPC Centers
(FEPA) workshop [FEPA 17]. At both events we received positive feedback in several meet-
ings and discussions, which underlines again the urgent demand for an appropriate HPC
education at other compute and data centers. Additionally, we are hosting a mailing list for
the HPC Certification Program [HHCC 17d].

3 Within the PeCoH project we will establish all significant certification definitions. To produce content for
all HPC skills listed in the Appendix we depend on the collaboration of others.

5

3.2 HPC Skill Tree

It is in the nature of the subject that HPC skills are generally built upon one another, which
results in a tree structure for representing skills depending on sub-skills. The tree of HPC
skills is a key component of our approach and has a role of a database for the HPC Cer-
tification Program. First of all, skills have unique names and contain a description of the
HPC competences and knowledge that are associated to them. Furthermore, each skill is
assigned to one of the four top level competences as described in the previous section and
has additional attributes to describe its properties in more detail, like its special significance
to a scientific domain (e.g. social sciences, natural sciences, earth sciences), the suitability
for a user’s role (e.g. tester, developer), or its educational level (e.g. basic, intermediate, or
expert). This information allows to easily create different views of the skill tree in order to
consider the users’ varied backgrounds, e.g. for navigating within the skill tree by the help
of a Web-based GUI using the attributes to filter the relevant information for them.

The implementation of the skill tree is based on the Extensible Markup Language (XML)
[W3 17a] and a corresponding XML Schema Definition (XSD) [W3 17b]. XML is an open de-
facto standard to process and exchange information in heterogeneous environments. XML
data is human- as well as machine-readable, which supports the shared working on the skill
tree implementation: XML files can e.g. be opened and inspected by project participants
with their favoured (simple) text editor. With the machine-readable property of XML it is
possible to check the syntax of an XML file having been changed, with respect to the so-
called well-formedness, and validate it with the corresponding XML schema definition. A
further potential is the ability to process the data with sophisticated tools, e.g. parsers, in a
variety of ways. Another reason we decided to implement the skill tree on the basis of XML
is the variety of powerful tools and integrated development environments (IDEs) availa-
ble to support such development (e.g. MissionKit [Alto 17], Stylus Studio X16 [StSt 17], or
Eclipse XML Editors and Tools [Ecli 17]). Since the skill tree is of manageable size, there is
no need to use a more complex database design for its representation. JSON [JSON 17] is
another popular human- and machine-readable data-interchange format, which is rated a
little bit more lightweight than XML, and was also worth considering to be used to imple-
ment the skill tree. While JSON focuses on the temporary exchange of data, the XML world
provides a rich family of languages, which seems to offer more potential for the modelling
process. If necessary, however, XML data can easily be converted to other formats like JSON
(and vice versa), in particular by the help of XSLT [W3 17c].4

The essential data structure of the skill tree is presented in Figure 2 based on the relevant
part of its XML Schema Definition.

As is typical for popular naming conventions of XML data structures, the Skills defini-
tion in the Figure shows that the XML data of the skill tree contains, first of all, a list of Skill
items, i.e. the XML data contains all the nodes of the skill tree in a flat data structure. In
order to describe the tree, each Skill that depends on other sub-skills has – besides its unique
name, description, and further attributes – a list of references to these sub-skills. For exam-
ple, in our design, the skill to build a parallel program, e.g. via an open source package, will
at least require the skill to run a parallel program in an HPC environment and that in turn
will require skills to use the command line interface of the operating system and a workload
manager like SLURM or TORQUE. Unique skill names are used for this referencing to other
skills in the Skills list.

4 At the implementation level, we plan to use JavaScript [JaSc 17], which has a native support for JSON, to
make the skill tree browsable in a Web-based GUI.

6

Fig. 2: XML Schema Definition for Showing the Essential Skill Tree Structure

Obviously, this data structure allows the definition of different skills depending on the
same sub-skill, so, strictly speaking, the skill tree becomes a directed acyclic graph (DAG).5

This is similar to using a Makefile for the well-known make build automation tool [Feld
79] to define the dependencies of compilation units: in C, for example, header files often
contain declarations that are used (i.e. included) in different source files and other header
files. The Makefile allows to rebuild libraries and the target program in the correct order
after source code changes by the help of a depth-first search to resolve all transitive depen-
dencies between the compilation units. Similarly, a user could aqcuire relevant skills at the
leaf level of the skill tree first and than proceed to acquire skills nearer to the root. To be able
to show all skills in a tree format, e.g. in a Web-based GUI, multiple references to the same
skill could be resolved by presenting the more than once referenced skill several times, so,
for the sake of simplicity, the DAG property shall be neglected here.

In contrast to a Makefile defining a single type of relationship between dependencies6,
two types of relationships are supported by the skill tree structure to define dependencies
for skills: In the standard case, all skills in the list of referenced sub-skills are combined
implicitly by a logical and operation, i.e. a skill can only be gained if all of its sub-skills have
been gained. The second relationship is based on logical or operations, and allows users
to gain a skill when at least one of the referenced sub-skills has been gained. For example,
the skill to use a workload manager can be awarded to users who are able to use one of
the workload managers SLURM or TORQUE. In practice, it will follow from context when
which list type should be used in the skill definition to reference sub-skills. Within the same
skill, however, it is not possible to use both types of reference lists at the same time. It
would be possible to support this directly by using the composite pattern [Gamm+ 95]: The
basic list of implicitly and-combined referenced sub-skills could additionally contain lists of
or-combined referenced sub-skills. This could be expressed in the XML Schema Definition
without greater effort. But since it is easily possible to create an additional skill containing

5 In the Appendix containing the detailed list of all skills, for the sake of simplicity as plain text format,
such cross references to other skills begin with ”see also ...”.

6 The time stamp of a file can be out of date in relation to the time stamps of the files it depends on. This
way make can for example rebuild an object file if it is out of date in relation to more recently changed source
files it depends on.

7

the list of or-combined referenced sub-skills and referencing to this additionally created skill
in the list of and-combined referenced sub-skills, we preferred to keep the data structures as
simple as possible.

The attributes of the skills allow to present the skill tree in a highly dynamic manner.
This way users can first of all get an overview of those custom-tailored skills which they
need for the HPC environment they would like to use or the parallel program they would
like to speed up. However, the skill tree itself is content-free and solely describes which HPC
competences have to be taught and learned. This reflects the separation of the certificate
definition, which is based in our approach on skills, from the learning material that allows
the user to gain the associated skills. In the sense of an E-learning environment it is possible
to present a specific content in a Web-based system, which in turn maps it to the skill tree.
In further stages of the project, the skill tree can be extended to support links to learning
material. In this way, a single Web-based system can be used for browsing the skill tree as
well as the content.

A special challenge is to determine a reasonable granularity of skills as defined by their
descriptions. One can easily imagine that an increasingly finer granularity results if one
attempts to dissolve the leaves of the skill tree more and more, with a skill at the leaf level fi-
nally predefining its content. At the beginning, we actually dissolved basic skills how to use
the Linux command line interface to verify the practicability of our XML implementation
of the skill tree. This was indeed possible without any problems, but from the fine granu-
larity almost a one-to-one relationship results between the skill description and the related
content, so that simply put each skill would have been imparted to the extent of a single pre-
sentation slide. A representative skill definition from this ad hoc example can illustrate this:
the skill “Navigate the file system” was dependent on the sub-skills “Understand the file
system tree”, “Print name of current working directory”, “Change directory”, and “List di-
rectory contents”. For the entire ad hoc example the definition of 59 skills was required just
for describing some frequently used Linux commands (cd, ls, less, cat, cp, mv, mkdir,
rm, help, info, chmod, chown, and chgrp).

It is obvious that a very fine granularity not only restricts the freedom in providing the
content, but also makes it more difficult to define certificates because the number of skills
will strongly increase accordingly. A granularity that is too coarse, such as a limitation to
the top level competences shown in Figure 1, is also not useful as it would give the content
providers essentially no assistance in structuring the learning material. The Appendix con-
tains the list of all 46 skills we have identified for the HPC Certification Program so far, 35 of
which are at the leaf level. We think with this granularity we found a good compromise bet-
ween both extremes in order to separate skills and content. We will use up to three levels of
education (basic, intermediate, and expert) to further subdivide each skill and to define the
HPC competence level a user has acquired with regard to a skill. For the sake of simplicity
the educational levels are not shown in the Appendix. The process of subdividing requires
experience and expert knowledge. The information about skill attributes and educational
levels is contained in the XML description of the skill tree, which will soon be available on
our HHCC website [HHCC 17c].

3.3 Certification Modeling

The basic idea of defining certificates is to bundle a set of skills corresponding to the certifi-
cate description in order to certify – by successful exams – a user’s HPC qualification. Like
skills, certificate definitions have unique names and contain a description of the HPC com-

8

petences and knowledge that are associated to them. While a skill is a more self-contained
unit, a certificate definition describes on a conceptual level a further view on the skills. The
skill tree represents a middle-layer between the certificate definitions and the actual content.

Initially, we intended to implement the certificate definitions by a separate data struc-
ture, which was based, like the definition of the skill tree, on XML and a corresponding XML
Schema Definition. But since both XML structures were so similar that their distinction ser-
ved rather a conceptual purpose than a technical one, it was natural to extend the skill tree
– functioning as a central database – to be able to incorporate the properties additionally
required for the definition of certificates as well, instead of using a separate structure for
defining certificates. At first a skill can be easily tagged for its additional suitability as an
autonomous certificate definition. A user who has gained the skill to run parallel programs
in an HPC environment may thus be granted a corresponding certificate. For the skill tree
it was described that two types of relationships are supported (based on and and or opera-
tions) to define dependencies on sub-skills, so that a skill is gained if all of its sub-skills are
gained (and operation) or if one of its sub-skills is gained (or operation). For the definition
of certificates these two types of operations were supplemented by an n out of m relation-
ship, so a skill is considered to be gained if at least n, or a corresponding percentage value,
of its sub-skills have been gained. With this type of relationship, users can be certified, for
example, for their experienced ability to use version control systems, if they gain sub-skills
to use two systems from the set consisting of the Revision Control System (RCS) [Tich 85],
Subversion (SVN) [TASF 17], and Git [Git 17].

4 Conclusions

There is an urgent demand to improve the users’ HPC education to enable them to use the
HPC resources appropriately. This will increase their productivity and at the same time re-
duce the costs in the operation at compute centers. While certificates are widely applied
in the IT industry to testify that users have certain skills, e.g. to administer Linux systems,
this is not the case for the field of HPC. With the proposal of an HPC Certification Program
we try to establish a standard for the education of HPC users. In our approach we sepa-
rated the certificate definitions from the providing of the learning material. By its role as a
(virtual) central authority the certification board has the power to establish generally accep-
ted certificate definitions and corresponding exams without the burden of being responsible
for the content. The content can be provided in a variety of ways by various collaborating
providers.

Sophisticated Web-based E-learning systems which cover the users’ varied backgrounds
(concerning for example research area and prior knowledge) do not exist for the HPC edu-
cation. For our approach we implemented an HPC skill tree based on XML and a corre-
sponding XML Schema Definition (XSD), which plays the role of a central database (see also
Appendix). Beside its name and description, a skill in the tree has additional attributes to
describe e.g. its special significance to a scientific domain. Such information can be easily
used to create different views of the skill tree in order to consider the users’ varied back-
grounds and to give the user an overview of those custom-tailored skills which he has to
acquire to pass the exams. Not only can well-trained certified users with a good knowledge
of performance engineering concepts speed up their parallel programs to get their scientific
results faster, but also can compute centers reduce their costs because the HPC resources
will be used more efficiently.

9

One major challenge was to find a good compromise for the scope of the skill descripti-
ons, in particular at the leaf level, so that a too fine granularity will not predefine the content
of a skill or an all too coarse granularity will be of no help at all for the content providers for
structuring the learning material. The skill tree for our HPC Certification Program contains
46 skills (see also Appendix), which we consider to be a suitable granularity.

5 Status, Collaboration, and Future Work

The development of the HPC skill tree is nearly completed. At DKRZ, RRZ, and TUHH RZ
we already have some content to teach HPC topics, which can be used to fill the content-free
structure level formed by the HPC skill tree for our online education platform. We welcome
suggestions from interested readers on the tree structure and the actual classification of HPC
skills. Furthermore, we encourage readers to provide us with content for HPC skills and
will express our gratitude by a corresponding entry in the acknowledgement area on our
website. (See also Appendix for the list of skills.)

A user will have to participate in online examinations based on multiple-choice tests to
gain an HPC certificate. For each HPC skill a pool of questions is developed, of which a
subset is selected for each individual examination. Once the test is completed, the system
will automatically assess the results and create a PDF with the certificate. At the beginning,
we will manually approve the test results. Later on in the development, the individual
learning progress could be stored as a part of the user account, allowing users to interrupt
their exam preparation at any time and continue later to navigate seamlessly in the learning
content.

It will be particularly interesting to measure the success of the certificate-based approach
for the HPC education. One idea is to see if there will be less support requests of new users
with simple demands for running parallel programs on the clusters at DKRZ, RRZ, and
TUHH RZ. With additional surveys, the users’ satisfaction with the certification program
can be determined. It will also be possible to check if the performance awareness of certified
users is raised, i.e. if they use the HPC resources more appropriately.

10

6 References

[Alto 17] Altova. Altova MissionKit – Award-winning Suite of XML, SQL, & UML
Tools. https://www.altova.com/missionkit

[CAC 17] CAC. Cornell University Center for Advanced Computing – Cornell Virtual
Workshop. https://cvw.cac.cornell.edu/default

[CORDI 18] CORDIS. Community Research and Development Information Service: Euro-
pean Exascale Software Initiative 2 – Towards exascale roadmap implementa-
tion. http://cordis.europa.eu/project/rcn/105840 en.html

[Czar 14] Czarnul, Pawel. Teaching High Performance Computing Using Beesy-
Cluster and Relevant Usage Statistics. International Conference On Compu-
tational Science (ICCS 2014), Procedia Computer Science. Vol. 29 (2015):1458-
1467.

[Ecli 17] Eclipse. Eclipse XML Editors and Tools. https://marketplace.eclipse.org/
content/eclipse-xml-editors-and-tools-0

[ECDL 17a] ECDL. European Computer Driving License – Home Page. http://ecdl.org/

[ECDL 17b] ECDL. European Computer Driving License – The Fallacy of the Digital Native.
http://ecdl.org/policy-publications/digital-native-fallacy

[EURO 18a] EUROLAB-4-HPC. EuroLab-4-HPC – Home Page. https://www.
eurolab4hpc.eu/

[EURO 18b] EUROLAB-4-HPC. D3.2 Best Practices in HPC Training. https://www.
eurolab4hpc.eu/static/deliverables/D3-2–best-practices-HPC-
training.610d055cf370.pdf

[Feld 79] Feldman, Stuart I. Make – A Program for Maintaining Computer Pro-
grams. Software Practice & Experience. Vol. 9 (1979):255-265.

[FEPA 17] FEPA. Flexible Framework for Energy and Performance Analysis in HPC Cen-
ters – Workshop 2017. https://blogs.fau.de/prope/fepa-workshop-2017/

[FuLe 18] FutureLearn. Online Course Supercomputing. https://www.futurelearn.
com/courses/supercomputing#section-topics

[Gamm+ 95] Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley. Bos-
ton, San Francisco, New York 1995.

[Git 17] Git. git –fast-version-control. https://git-scm.com/

[HPCA 17] HPCA. HPC Advisory Council – Home Page. http://www.hpcadvisory
council.com/

[HHCC 17a] HHCC. Hamburg HPC Competence Center – Home Page. https://www.
hhcc.uni-hamburg.de

[HHCC 17b] HHCC. Hamburg HPC Competence Center – Handout to the work in
progress of the HPC Certification Program. https://www.hhcc.uni-
hamburg.de/en/files/isc2017-hpc-certification-program.pdf

11

[HHCC 17c] HHCC. Hamburg HPC Competence Center – Download Area. https://www.
hhcc.uni-hamburg.de/en/support/downloads.html

[HHCC 17d] HHCC. Hamburg HPC Competence Center – Mailing List of the HPC Certifi-
cation Program. certification.hhcc@lists.uni-hamburg.de

[HoKu 15] Holmes, Violeta, and Ibad Kureshi. Developing High Performance Com-
puting Resources for Teaching Cluster and Grid Computing courses. In-
ternational Conference On Computational Science (ICCS 2015), Procedia Com-
puter Science. Vol. 51 (2015):1714-1723.

[JaSc 17] JavaScript. JavaScript – Reference. https://developer.mozilla.org/
en-US/docs/Web/JavaScript

[JSON 17] JSON. JavaScript Object Notation – Introducing JSON. http://www.json.
org/

[Kunk+ 17] Kunkel, Julian, Michael Kuhn, Thomas Ludwig, Matthias Rie-
bisch, Stephan Olbrich, Hinnerk Stüben, Kai Himstedt, Hendryk
Bockelmann, and Markus Stammberger. Performance Conscious
HPC (PeCoH) – Project Poster. ISC High Performance 2017 (20
June 2017). Frankfurt, Germany. Download via http://isc-
hpc.com/isc17 ap/presentationdetails.htm?t=presentation&o=1196&a=
select&ra=personendetails

[LLNL 17] Lawrence Livermore National Laboratory. Livermore Computing Center –
High Performance Computing: Tutorials. https://hpc.llnl.gov/training/
tutorials

[LPI 17] LPI. Linux Professional Institute – Home Page. http://www.lpi.org/

[MPI 17] MPI. The Message Passing Interface (MPI) standard.www.mcs.anl.gov/
research/projects/mpi/

[NVID 17] NVIDIA. CUDA Zone. https://developer.nvidia.com/cuda-zone

[OpMP 17] OpenMP. The OpenMP API Specification for Parallel Programming. www.
openmp.org

[PRACE 18] Partnership for Advanced Computing in Europe. Training Portal – Trai-
ning Courses. http://www.training.prace-ri.eu/nc/training courses/
index.html

[Rüde 15] Rüde, Ulrich. European Exascale Software Initiative 2: Deliverable D2.3 WP2
Final Report on Exascale Education. www.eesi-project.eu/wp-content
/uploads/2015/05/EESI2 D2.3 Final-report-on-exascale-education.pdf

[Sanc 15] Sancho, Maria-Ribera. BSC Best Practices in Professional Training and
Teaching for the HPC Ecosystem. Journal of Computational Science. Vol. 14
(2015):74-77.

[SLUR 17] SLURM. SLURM Workload Manager Overview. https://slurm.schedmd.
com/overview.html

[SCW 17] Scientific Computing World. Training and Support Number
One Concern for the HPC Community. https://www.scientific-
computing.com/news/training-and-support-number-one-concern-
hpc-community

12

[Suh+ 16] Suh, Young-Kyoon, Hoon Ryu, Hangi Kim, and Kum Won Cho. EDI-
SON: A Web-based HPC Simulation Execution Framework for Large-
scale Scientific Computing Software. 16th IEEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing (CCGrid). IEEE Conference
Publications. (2016):608-612.

[StSt 17] Stylus Studio. X16 – Powerful XML Development. https://www.stylus
studio.com/index.html

[TASF 17] The Apache Software Foundation. Apache Subversion – Enterprise-class
centralized version control for the masses. https://subversion.apache.org/

[Tich 85] Tichy, Walter F. RCS – A System for Version Control. Software Practice &
Experience 15 (1985):637-654.

[TORQ 17] TORQUE. Torque Resource Manager. www.adaptivecomputing.com/
products/open-source/torque/

[W3 17a] W3. World Wide Web Consortium – Extensible Markup Language (XML).
https://www.w3.org/XML/

[W3 17b] W3. World Wide Web Consortium – XML Schema. https://www.w3.org/
2001/XMLSchema

[W3 17c] W3. World Wide Web Consortium – XSL Transformations (XSLT). https://
www.w3.org/TR/xslt/

[XSED 17] XSEDE. Extreme Science and Engineering Discovery Environment – Training.
https://portal.xsede.org/web/xup/training/overview

[ZaBa 14] Zarestky, Jill and Wolfgang Bangerth. Teaching High Performance Com-
puting: Lessons from a Flipped Classroom, Project-Based Course on Fi-
nite Element Methods. Workshop on Education for High Performance Com-
puting (EduHPC) held in conjunction with SC14: The International Confe-
rence for High Performance Computing, Networking, Storage and Analysis.
New Orleans, Louisiana, November 16-21. IEEE Conference Publicati-
ons (2014):34-41.

7 Appendix

At the end of the Appendix, the HPC skill tree is presented as a compact diagram.

In the following, all skills we have identified for the HPC Certification Program so far
are listed in a hierarchical manner to reflect their underlying tree structure as described in
Section 3. The hierarchy here is based on four top level competences: “HPC Knowledge”,
“Use of the HPC Environment”, “Performance Engineering”, and “Software Development”.
The Description section of a skill specifies the abilities and the knowledge a user will gain.
When appropriate, some additional information may be presented in the Short Background
section.

For the sake of simplicity, the attributes of the skills to indicate a special significance for
users in dependence of their varied backgrounds (e.g. social scientist, natural scientist, earth
scientist) or roles (e.g. tester, developer) are not included here. The same holds for the finer
differentiation of a skill description regarding its educational level (e.g. basic, intermediate,

13

or expert). This type of additional information is contained in the full XML description of
the skill tree, which will soon be available on our HHCC website [HHCC 17c].

K HPC Knowledge
Description:
Knowledge of the field of High Performance Computing

K1 Supercomputers
Description:
Knowledge of various system-, hardware-, and I/O-architectures used for super-
computers, i.e. computers that led the world in terms of processing capacity, and
particularly in speed of calculations, at the time of their introduction, or share key
architectural aspects with these computers
Knowledge of typical operation of data and computing centers
Knowledge of the differentiation between Supercomputing and Big Data

K1.1 System Architectures
Description:
Knowledge of various system-, hardware-, and I/O-architectures used for su-
percomputers, i.e. shared memory systems, distributed systems, and cluster
systems
Knowledge of the typical architecture of cluster systems consisting of nodes
with different roles (e.g. so-called head, login, compute, interactive, visuali-
zation nodes, etc.)
Knowledge of storage and compute deployments for cluster systems

K1.2 Hardware Architectures
Description:
Knowledge of elementary processing elements like CPUs, GPUs, many core
architectures, and other special or application-specific hardware (e.g. TPUs)
Knowledge of parallelization techniques at the instruction level of a proces-
sing element (e.g. pipelining, SIMD processing)
Knowledge of vector systems, and FPGAs
Knowledge of hybrid approaches, e.g. combining CPUs with GPUs or FPGAs
Knowledge of the NUMA architecture used for symmetric multiprocessing
systems where the memory access time depends on the memory location re-
lative to the processor
Knowledge of network demands for HPC systems (e.g. high bandwidth and
low latency)
Knowledge of typical network topologies and architectures used for HPC sy-
stems, like fat trees based on switched fabrics using e.g. fast Ethernet (1 or 10
Gbit) or InfiniBand

K1.3 I/O Architectures
Description:
Knowledge of typical I/O systems used in HPC environments
Knowledge of different types of storage media (e.g. tape, disk, and SSD)
Knowledge of the differentiation between standard file systems (e.g. Ext3,
Ext4, XFS, Btrfs) and distributed file systems (e.g. Lustre, BeeGFS)
Knowledge of when to use local and global storage
Knowledge of when to use data compression

K1.4 Operation of an HPC System
Description:

14

Knowledge of the typical infrastructure of data and computing centers, also
against the background of economic, business, and organizational aspects
Knowledge of administration aspects of an HPC system
Knowledge of user support aspects (typically on different levels)

K1.5 Supercomputing and Big Data
Short Background: In the recent past, Supercomputing as well as the analysis
of Big Data are increasingly growing in importance for scientific research.
Description:
Knowledge of the differentiation between Supercomputing and Big Data

K2 Performance Modeling
Short Background: HPC systems are massively parallel and therefore sophisticated
parallel programs are required to exploit their performance potential as much as
possible.
Description:
Knowledge of how the performance of parallel programs may be assessed

K2.1 Performance Frontiers
Description:
Knowledge of the definitions for key terms like speedup, efficiency, and sca-
lability
Knowledge of the key measure floating point operations per second (FLOPS)
for the performance of HPC systems and its pitfalls
Knowledge of Moore’s and Amdahl’s laws and their significance for perfor-
mance frontiers in modern HPC
Knowledge of the roofline model, used to provide performance estimates for
parallel programs based on multi-core or accelerator processor architectures,
by showing inherent hardware limitations

K2.2 Bounds for a Parallel Program
Description:
Knowledge of how performance bounds of the various components of the
HPC system (e.g. CPU, caches, memory, network, I/O) can limit the overall
performance of a parallel program

K3 Program Parallelization
Description:
Knowledge of the typical parallelization techniques used at the intra- and inter-
node level of cluster systems
Knowledge of the causes of parallelization overheads, which eventually prevent
efficient use of an increasing number of processing elements
Knowledge of domain decomposition strategies (i.e. splitting a problem into pie-
ces that allow for parallel computation)

K3.1 Levels of Parallelization
Description:
Knowledge of the auto parallelization capabilities of current compilers (e.g.
to automatically parallelize suitable loops), which are applicable at the intra-
node level
Knowledge of parallelization techniques at the intra-node level (e.g. based on
advanced OpenMP features and GPU-computing)
Knowledge of hybrid parallelization approaches, combining for instance OpenMP
and GPU-Computing

15

Knowledge of the message passing paradigm based on environments like
MPI, which is the de-facto standard at the inter-node level for parallelizing
programs using more than a single node
Knowledge of multi-level hybrid approaches (e.g. combining OpenMP and
MPI)

K3.2 Parallelization Overheads
Description:
Knowledge of the various overheads, i.e. overheads for communication, syn-
chronization, and redundant computations
Knowledge of the problems of load imbalances, execution speed noise (OS
jitter, cache contention, thermal throttling, etc.), and typical trade-offs (e.g. re-
ducing the synchronization overhead by increasing the communication over-
head)

K3.3 Domain Decomposition
Description:
Knowledge of typical decomposition strategies to split a domain into subdo-
mains to make it suited for parallel processing
Knowledge of measures like surface to volume ratio and how to map domains
to machines

K4 Job Scheduling
Description:
Knowledge of how workload managers control the unattended background exe-
cution of programs or jobs respectively by the help of job queues
Knowledge of typical scheduling principles (e.g. first come first served, shor-
test job first, fair share, and backfilling) to achieve objectives like minimizing the
averaged elapsed program runtimes, treating the users fair, and maximizing the
utilization of the available HPC resources

K5 Modeling Costs
Short Background: The user’s awareness of the costs related to the operation of an
HPC system is raised. For the resources of an HPC system, a distinction is made
between costs for the computing elements of the supercomputer and costs for the
storage system.
Description:
Knowledge of the impact of a cluster nodes type (e.g. CPU type, main memory
expansion, or GPU extensions) and of the storage media type (SSD, disk, or e.g.
tape for long term archiving (LTA) purposes) on its costs
Knowledge of how to assess runtime costs for jobs
Knowledge of how to assess the costs for the infrastructure of data and computing
centers as well as their personnel costs
Knowledge of economic and business aspects, e.g. break-even considerations,
when personnel costs for tuning a parallel program and savings through speedups
achieved are compared

USE Use of the HPC Environment
Description:
Ability to use a cluster operating system as well as to run, build, and develop parallel
programs

USE1 Use of the Cluster Operating System
Short Background: HPC systems are usually accessed via a command line interface

16

(CLI). The user acquires skills to use a – generally Linux based – CLI to interact
with the HPC system.
Description:
Ability to use and write shell scripts e.g. to automatically execute several com-
mands in a row that otherwise would have to be entered manually one by one
and to automate (possibly more complex) tasks
Ability to select the right environment setting to build programs with the proper
compiler, linker, and libraries versions or to run programs

USE1.1 Use of the Command Line Interface
Description:
Ability to execute frequently used commands, e.g. to navigate the file system,
copy, rename, and delete files, view the contents of files, and to get detailed
help for the usage of a command with all its options
Ability to use regular expressions and wildcards to select or filter several
items at once (e.g. files)
Ability to login remotely to cluster nodes using e.g. SSH with password or
SSH key authentication
Ability to access local and remote files (e.g. via SSHFS) in remote sessions
Ability to check disk quotas commonly used to limit the amount of disk space
available for the user

USE1.2 Using Shell Scripts
Description:
Ability to use and write shell scripts
Ability to use flow control, e.g. for conditional and/or repeated execution of
statements in scripts
Ability to use shell functions to break large, complex tasks into a series of
small, simple tasks
Ability to read keyboard input to add interactivity to scripts
Ability to write robust job scripts
Ability to use troubleshooting, e.g. to handle syntactic and logical errors in
scripts

USE1.3 Selecting the Software Environment
Short Background: HPC systems have generally installed multiple versions of a
number of key software tools and software environments. Package managers
like Spack are sketched.
Description:
Ability to select the appropriate software versions for deployment to the ses-
sion environment, e.g. via the so-called environment modules system

USE2 Running of Parallel Programs
Description:
Ability to run parallel programs in an HPC environment
Ability to use the command line interface is required (see also USE1.1 Use of the
Command Line Interface)
Ability to select the appropriate software environment is required (see also USE1.3
Selecting the Software Environment)
Ability to use a workload manager like SLURM or TORQUE to allocate HPC re-
sources (e.g. CPUs) and to submit a batch job
Ability to use a workload manager to allocate HPC resources for running a paral-
lel program interactively

17

Ability to write robust job scripts, e.g. to simplify job submissions by the help of
automated job chaining is required (see also USE1.2 Using Shell Scripts)
Ability to consider cost aspects is required (see also PE1 Cost Awareness)
Ability to measure system performance as a basis for benchmarking a parallel
program is required (see also PE2 Measuring System Performance)
Ability to benchmark a parallel program is required (see also PE3 Benchmarking)
Ability to tune a parallel program from the outside via runtime options is required
(see also PE4.1 Tuning Without Modifying the Source Code)
Ability to apply the workflow for tuning is required (see also PE5 Optimization
Cycle)

USE3 Building of Parallel Programs
Description:
Ability to build parallel programs, e.g. from open source packages
Ability to run parallel programs in an HPC environment is required (see also
USE2 Running of Parallel Programs)
Ability to use a compiler and to assess the effects of optimization switches availa-
ble for the relevant compilers (e.g. GNU, Intel, PGI, NAG)
Ability to use a linker and to assess the effects of linker specific options and envi-
ronment variables (e.g. -L and LIBRARY PATH, LD LIBRARY PATH, -rpath and
LD RUN PATH)
Ability to to use efficient open source libraries (e.g. OpenBLAS, FFTW) and highly
optimized vendor libraries (e.g. Intel-MKL, IBM-ESSL)
Ability to configure the relevant settings (e.g. by setting compiler and linker op-
tions), which determine how the application ought to be build with regard to the
parallelization technique(s) used (e.g. OpenMP, CUDA, OpenACC, C++ AMP,
MPI)
Ability to use the profile guided optimization (PGO) technique (see also PE4.1
Tuning Without Modifying the Source Code)
Ability to use software building environments like Autotools, CMake, Scons, and
Waf

USE4 Developing Parallel Programs
Description:
Ability to develop parallel programs
Ability to build parallel programs is required (see also USE3 Building of Parallel
Programs)
Ability to develop software is required (see also SD Software Development)

PE Performance Engineering
Description:
Ability to use systematic approaches (e.g. benchmarking and tuning, cost models) to
meet performance requirements in a cost-effective way, i.e. by reducing the runtimes
of parallel programs and using the resources of the HPC system appropriately for that
purpose

PE1 Cost Awareness
Description:
Ability to assess the costs related to the runtimes of parallel programs (see also
K5 Modeling Costs)

18

Ability to assess the ratio of personnel costs to resource costs against the back-
ground of break-even considerations and time-to-solution constraints

PE2 Measuring System Performance
Description:
Ability to measure the system performance by the help of standard tools and by
profiling in order to assess the runtime behavior of parallel programs

PE2.1 Using Standard Tools to Measure System Performance
Short Background: This includes information about utilization of resources like
CPU as well as elapsed runtimes of a program, its unshared and shared me-
mory usage, input and output statistics for devices and file systems, and page
faults, with tools like /usr/bin/time, ps, top, htop, vmstat, iostat, and perf in
Linux-based environments.
Description:
Ability to use standard tools of the operating system to get information about
the behavior of parallel programs in terms of their resource utilization

PE2.2 Profiling
Short Background: Profiling is explained for the CPU level, where it can be
supported by hardware performance counters and by sampling techniques.
Sampling is used to see, by examining the program counter, what routines
and source code lines of a program are responsible for which portions of the
total runtime. Automatically adding trace code to a parallel program by so-
called instrumentation to record its execution in a strict chronology is explai-
ned and the difference to profiling is emphasized. Similar techniques are ex-
plained for profiling the network level (e.g. based on InfiniBand counters and
I/O server states).
Description:
Ability to get the base data for tuning the performance of parallel programs
by profiling
Ability to detect performance issues and bottlenecks caused, for example,
by inefficient programming, memory accesses, I/O operations, cache-misses,
page-faults, and parallelization overheads (see also K3.2 Parallelization Over-
heads)
Ability to assess how different views of the profiling data (e.g. timeline graphs
and communication matrices to illustrate the traffic between processes) can
give insights in the runtime behavior of the program
Ability to use performance analysis tools like ScoreP, Scalasca, Vampir
Ability to use the standard MPI profiling interface (PMPI) and environment
variables like $I MPI STATS to control the built-in performance analysis functi-
onality in MPI

PE3 Benchmarking
Description:
Ability to assess speedups and efficiencies as the key measures for benchmarks of
a parallel program (see also K2.1 Performance Frontiers)
Ability to benchmark the runtime behavior of parallel programs, performing con-
trolled experiments by providing varying HPC resources (e.g. 1, 2, 4, 8, ... cores
on shared memory systems or 1, 2, 4, 8, ... nodes on distributed systems for the
benchmarks)
Ability to differentiate between strong and weak scaling
Ability to assess the performance characteristics of parallel programs with regard
to CPU usage, memory accesses (e.g. latencies for random access, cache sizes,

19

strided access patterns, and bandwidth), I/O operations (e.g. record length, IOPs,
latency, bandwidth, throughput, and multi-stream processing), and communica-
tion (message sizes, network bandwidth and latency)

PE4 Tuning
Description:
Ability to tune a parallel program in order to achieve better runtimes and to opti-
mize the usage of the HPC resources

PE4.1 Tuning Without Modifying the Source Code
Description:
Ability to select appropriate tasks sizes (big vs. small) that may have positive
performance impacts on the workflow, and to run several (smaller) tasks by
the help of job chaining (see also USE2 Running of Parallel Programs)
Ability to use mapping of processes to nodes, pinning of processes/threads
to CPUs or cores, and setting memory affinities to NUMA nodes in order to
speed up a parallel program
Ability to speed up program execution by using optimized libraries and set-
ting appropriate compiler/linker options (including PGO workflow)
Ability to speed up program execution by setting appropriate runtime opti-
ons (e.g. for MPI and OpenMP)
Ability to speed up program execution by setting package specific options
(e.g. selected by environment variables and command line arguments)

PE4.2 Tuning via Reprogramming
Short Background: The potential for tuning via reprogramming exists on the
hardware as well as on the software level. At the software level, performance
improvements are achievable by using more efficient algorithms. This is ex-
plained by the help of popular practice-relevant examples.
Description:
Ability to to reprogram appropriate parallel code for improved performance
on the processing element level e.g. by using functional units (for executing
fused multiply-add instructions and variants thereof), by using vectorization
techniques with SIMD instructions, etc.
Ability to assess how appropriate computationally intensive functions (which
have been identified earlier by profiling the parallel program) can be ported
to many core archictures like GPUs to achieve further speedups

PE5 Optimization Cycle
Short Background: The workflow is represented by an optimization cycle with the
steps benchmarking, gathering system performance data (e.g. via profiling), ana-
lyzing, and tuning.
Description:
Ability to apply the full workflow for tuning a parallel program

SD Software Development
Description:
Ability to develop parallel programs

SD1 Efficient Algorithms and Data Structures
Description:
Ability to assess the efficiency of algorithms and data structures, especially with
respect to their suitability for typical (scientific) parallel programs, e.g. by the
help of popular practice-relevant examples

20

SD2 Programming
Short Background: The user learns how to complete programming tasks and gets a
short overview of machine- and assembly-languages toward so-called high-level
programming languages. The focus lies on the programming languages that are
in widespread use within the HPC community.
Description:
Ability to program in languages typically used in HPC environments, such as C,
C++, FORTRAN, HPX
Ability to use interoperability between languages, for example by calling C or
C++ from FORTRAN and vice versa
Ability to use integrated development environments (IDEs) like Eclipse, e.g. to
seamlessly perform the typical development cycle with the steps edit, build (com-
pile and link), and test
Ability to debug a program using simple techniques such as inserting debugging
output statements into the source code e.g. using printf – also against the back-
ground of potential problems with the ordering of the (stdout) output that may
exist in parallel environments like MPI
Ability to use sophisticated debuggers such as GDB, DDT, and TotalView

SD3 Parallel Programming
Short Background: Parallel programming of shared memory systems and message
passing systems as well as load balancing is addressed.
Description:
Ability to assess the parallel nature of algorithms

SD3.1 Parallel Algorithms
Description:
Ability to understand that some algorithms are embarrassingly (i.e. trivi-
ally) parallelizable while their parallelization will vary from easy to hard in
practice
Ability to assess that there are algorithms having a so-called sequential na-
ture that have been notoriously difficult to parallelize, for example alpha-beta
game-tree search
Ability to determine the computational complexity of algorithms

SD3.2 Programming Shared Memory Systems
Short Background: The parallel concepts of threads and processes are introdu-
ced and their impacts on performance are outlined.
Description:
Ability to understand race conditions and to use synchronization mecha-
nisms to avoid them
Ability to understand the problems that may result from erroneous use of
synchronization mechanisms (e.g. deadlocks)
Ability to assess parallel concepts typically used for shared memory systems,
e.g. to exploit temporal locality by data reuse with an efficient utilization of
the memory hierarchy
Ability to assess concepts like software pipelining, e.g. to optimize loops by
out-of-order execution, and vectorization principles
Ability to assess data dependency situations, i.e. an instruction reading the
data written by a preceding instruction in the source code, and anti-dependencies,
i.e. an instruction having to read data before a succeeding instruction over-
writes it, and output dependencies, i.e. instructions writing to the same me-
mory location

21

Ability to assess the influence of control dependencies by jumps, branches,
and function calls, e.g. on pipeline filling
Ability to use data parallelism, e.g. applying parallel streams of identical in-
structions to different elements of appropriate data structures such as arrays
Ability to understand the concept of functional parallelism, i.e. executing a
set of distinct functions possibly using the same data
Ability to assess the applicability of parallel language extensions like OpenMP,
CUDA, OpenACC, and C++ AMP, as well as their interoperability (e.g. com-
bining OpenACC and CUDA)

SD3.3 Programming Message Passing Systems
Short Background: Communication plays a central role in message passing sy-
stems. When parallel processes cannot or should not exchange information
via shared memory, they typically send messages to each other to communi-
cate.
Description:
Ability to understand the various communication modes (e.g. blocking vs.
non-blocking, point-to-point vs. collective) and the concept of overlay net-
works
Ability to develop programs using MPI as the de-facto standard for paralleli-
zing programs in distributed environments like HPC cluster systems
Ability to understand how race conditions and deadlocks may occur in MPI
parallelized programs and how they can be avoided, namely by reordering
send and receive operations or using non-blocking communication combined
with waiting for completion of the communication operations concerned
Ability to assess the impact of communication and synchronization on the
performance of a parallel program (see also K3.2 Parallelization Overheads)

SD3.4 Load Balancing
Description:
Ability to apply domain decomposition strategies (see also K3.3 Domain De-
composition)
Ability to apply simple scheduling algorithms like task farming to achieve
an appropriate distribution of the workloads across the multiple computing
resources of the HPC system
Ability to apply more sophisticated approaches e.g. based on tree structures
like divide-and-conquer or work-stealing to achieve an appropriate distribu-
tion of the workloads across the multiple computing resources of the HPC
system

SD3.5 I/O Programming
Description:
Ability to assess general concepts of HPC I/O systems (e.g. parallel file sy-
stems, see also K1.3 I/O Architectures) and how to map the data model to
the storage system, e.g. by using appropriate I/O libraries and middleware
architectures

SD4 Object Oriented Approach
Description:
Ability to apply object oriented methods, i.e. object oriented analysis (OOA), de-
sign (OOD), and programming (OOP) (particularly to scientific and parallel pro-
gramming)
Ability to apply design patterns to HPC, e.g. patterns for coding of parallel algo-
rithms and their mapping to various architectures

22

SD5 Agile Methods
Short Background: The advantages of a test-driven development and of applying
automated testing (e.g. using unit and integration tests) as well as coding gui-
delines and code refactoring are addressed. The idea of continuous integration
and tools like jenkins and buildbot are presented. Portability aspects are taken
into account e.g. for the source code of programs and job scripts to avoid typical
compiler-, linker-, and MPI-issues.
Description:
Ability to apply agile methods for scientific computing

SD6 Version and Configuration Management
Short Background: Systems like Revision Control System (RCS), Subversion (SVN),
and GIT are presented as well as tools to support the building and testing of the
software like Autotools, CMake, and ctest.
Description:
Ability to apply version and configuration management to the development of
(parallel) programs in order to track and control changes in the sources, establish
and maintain consistency of the program or software system throughout its life,
and facilitate cooperative development

23

Skill Tree

SD: Software Development

SD6: Version and Configuration Management

Testing (e.g. ctest)

System Building (e.g. Autotools, CMAKE)

GIT

Subversion (SVN)

Revision Control System (RCS)

SD5: Agile Methods

Portability

MPI Issues

Linker Issues

Compiler Issues

Job Scripts

Source Code

Continous Integration (CI)
buildbot

jenkins

Coding Guidelines, Refactoring

Automated Testing (e.g. Unit Tests)

Test-driven Development

SD4: Object Oriented Approach

Design Patterns (in Particular for HPC)

Object Oriented Programming (OOP)

Object Oriented Design (OOD)

Object Oriented Analysis (OOA)

SD3: Parallel Programming

I/O Programming

Middleware Architectures

I/O Libraries

Mapping of Data Model to Storage System

K1.3: I/O Architectures

SD3.4: Load Balancing
Task Scheduling

Work Stealing

Divide-and-Conquer

Task Farming

K3.3: Domain Decomposition

SD3.3: Programming Message Passing Systems

K3.2: Parallelization Overheads

Synchronization
Avoiding Deadlocks

Combining Non-Blocking I/O
 with Waiting for Completion

Reordering Send and
Receive Operations

Race Conditions

Using MPI (Defacto Standard)

Communication

Overlay Networks

Collective

Point-to-Point

Non-Blocking

Blocking

SD3.2: Shared Memory Systems

Language Extensions

Interoperability (e.g. Combining OpenACC and CUDA)

C++ AMP

OpenACC

CUDA

OpenMP

Parallelism
Functional Parallelism (i.e. concurrently
Executing a Set of Distinct Functions)

Data Parallelism (e.g. applying
Streams of Instructions to Arrays)

Dependency Pattern

Control Dependencies
(e.g. influence on pipeline filling)

Function Call

Branch

Jump

Data Dependencies

Output

Anti

True

Vectorization

Software Pipelining
(e.g. Out-of-Order Execution of Loops)

Memory Hierarchy and Data Reuse

Synchronization
Deadlocks

Race Conditions

Processes

Threads

SD3.1: Parallel Algorithms

Computational Complexity

Parallel Nature of Algorithms

Sequential (e.g. Alpha-Beta Game-Tree Search)

From Easy to Hard in Practive

Trivial/Embarassing

SD2: Programming

Debugging

TotalView

DDT

GDB

"printf(..."
(Potential Problem with MPI: stdout Ordering)

Development Cycle (Edit, Compile, Link, Test)

Integrated Development Environments (IDEs) (e.g. Eclipse)

Programming Languages

Interoperability (e.g. Calling C/C++ from
FORTRAN and vice versa)

HPX

FORTRAN

C/C++

Machine-, Assembly-, High-level Languages (Introduction)

SD1: Efficient Algorithms and Data Structures
Practice-Relevant Examples

Suitability for Parallel Programs

PE: Performance Engineering

PE5: Optimization Cycle
(Benchmarking, Gathering System Performance Data, Tuning)

PE4: Tuning

PE4.2 Tuning via Reprogramming

Use of Many Core Architectures (GPUs, ...)

Vectorization, SIMD

Functional Units (Fused-Multiply-Add)

More Efficient Algorithms

PE4.1 Tuning without Modyifying the Source Code

Package Specific Options
Command Line Arguments

Environment Variables

Runtime Options for MPI and OpenMP

Profile Guided Optimization Workflow (PGO)

Compiler Options / Optimization Switches

Optimized Libraries

Memory Affinity (NUMA)

CPU and Thread Pinning

Process Mapping to Nodes

Job Chaining
in USE2: Running of Parallel Programs

Small vs. Big Tasks

PE3: Benchmarking

Performance Characteristics

Communication
Network

Latency

Bandwidth

Message Sizes

I/O

Multi-Stream Processing

Throughput

Latency

IOPs

Record Length

Memory

Bandwidth

Strided Access Pattern

Cache Sizes

Latencies (Random Access)

CPU Usage

Strong vs. Weak Scaling

Controlled experiments
Distributed Systems
 (using 1, 2, 4, 8, 16, ... nodes)

Shared Memory Systems
 (using 1, 2, 4, 8, 16, ... cores)

K2.1: Performance Frontiers

PE2: Measuring System Performance

PE2.2 Profiling

Tools

MPI
Intel: $I_MPI_STATS

MPI Standard Profiling Interface (PMPI)

Vampir

Scalasca

ScoreP

Views

Traffic between Processes

Communication Matrices

Timeline Graphs

Detecting Bottlenecks

K3.2 Parallelization Overheads

Page Faults

Cache-Misses

I/O Operations

Memory Accesses

Inefficient Programming

Network Level
I/O Server States

InfiniBand Counter

CPU Level

Profiling vs. Tracing

Instrumentation

Sampling

Hardware Performance Counters

PE2.1 Using Standard Tools

perf

vmstat, iostat

ps, top, htop

/usr/bin/time

Resource Utilization

Page Faults

I/O Statistics (Devices and File Systems)

Shared and Unshared Memory

CPU vs. Elapsed Times

PE1: Cost Awareness

Time To Solution Constraints

Break-even Considerations
in K5: Modeling Costs

Runtime Costs
in K5: Modeling Costs

USE: Use of the HPC Environment

USE4: Developing Parallel Programs
SD: Software Development

USE3: Building of Parallel Programs

USE3: Building of Parallel Programs
(e.g. via Open Source Packages)

Usage of Third-Party Code Packages
CMAKE

Autotools

Profile Guided Optimization (PGO)
in PE4.1: Tuning without Modifying the Source Code

Compiler and Linker Options with Regard
to the Parallelization Technique(s) Used

MPI

C++ AMP

OpenACC

CUDA

OpenMP

Linking

Using Efficient Libraries

Highly Optimized from Vendor
IBM-ESSL

Intel-MKL

FFTW

OpenBLAS

Paths/Switches

-rpath and $LD_RUN_PATH

$LD_LIBRARY_PATH

-L and $LIBRARY_PATH

Use of Linkers

Compiling

Optimization Switches

Use of Compilers

NAG

PGI

Intel

GNU

USE2: Running of Parallel Programs

USE2: Running of Parallel Programs

PE5: Optimization Cycle

PE4.1: Tuning without Modifying the Source Code

PE3: Benchmarking

PE2: Measuring System Performance

PE1: Cost Awareness

Robust Job Scripts
Job Chaining

USE1.2: Shell Scripts

Use of a Workload Manager

Interactive Mode to Run a Parallel Program

or
TORQUE

SLURM

USE1.3: Selecting the Software Environment

USE1.1: Command Line Interface

USE1: Cluster Operating System

USE1.3: Selecting the Software Environment
Environment Modules

Package Managers (e.g. Spack)

USE1.2: Shell Scripts
Writing Shell Scripts

Using Shell Scripts

USE1.1: Command Line Interface

File Access

Disk Quotas

Remote SSHFS

Local

Remote Login
SSH Connections

SSH Key Pairs

Regular Expressions Select/Filter Several Items at Once
(e.g. File Names)

Wildcards

Frequently Used Commands

Getting Help for Commands

View Content of Files

Copy, Rename, and Delete Files

Navigate the File System

K: HPC Knowledge

K5: Modeling Costs

Personnel Costs for Tuning
Break-even Considerations

Savings through Speedups

Economic and Business Aspects

Data/Computing Centers
Costs for Personnel

Costs for Infrastructure

Costs of Resources

Storage System Media Type

Tape (LTA)

Disk

SSD

Supercomputer

Runtime Costs

Cluster Node Type

GPU extensions

Main Memory Expansion

Type of CPU

K4: Job Scheduling

Objectives

Maximizing HPC Resource Utilization

Fair Treatment of Users

Minimizing Averaged Elapsed Runtimes

Backfilling

Fair Share

Shortest Job First

First Come First Served

Job Queues

K3: Program Parallelization

K3.3: Domain Decomposition
Mapping of Domains to Machines

Surface to Volume Ratio

K3.2: Parallelization Overheads

Tradeoffs (e.g Synchorization Overhead vs.
Communication Overhead)

Load Imbalance

Redundant Computations

Synchronization

Communication

K3.1: Level of Parallelization

Multi Level Approaches (e.g. MPI + OpenMP)

Inter-Node
MPI (defacto Standard)

Message Passing Paradigm

Intra-Node

Hybrid Approaches (e.g. OpenMP + GPU)

OpenMP (advanced Features)

Auto Parallelization of Compiler (e.g. Loops)

K2: Performance Modeling

K2.2: Bounds for a Parallel Program

I/O

Network

Memory

Caches

CPU

K2.1: Performance Frontiers

Roofline (Multi-Core Architectures)

Amdahl's Law

Moore's Law

Key Measure FLOPS

Speedup, Effeciency, and Scalability

K1: Supercomputers

K1.5: Supercomputing vs. Big Data

K1.4: Operation of an HPC System

Support Levels

Administration

Economic and Business Aspects

Infrastructure of Data/Computing Centers

K1.3: I/O Architectures

Data Compression

Local and Global Storage

File and Storage Systems
Distributed (Lustre, BeeGFS)

Standard (Ext3, Ext4, XFS, Btrfs, ...)

Media Types

SSD

Disk

Tape

I/O Systems

K1.2: Hardware Architectures

Network

Interconnects
InfiniBand

normal 1, 10 GBit Ethernet

Topologies
Fat Trees, ...

Switched Fabrics

Demands
Low Latency

High Bandwidth

Processing Elements

SMP, NUMA

Hybrid Approaches (CPU + GPU, CPU + FPGA, ...)

FPGA

Vector System

Instruction Level Parallelism (Pipeline, SIMD)

CPU, GPU, Many Core

K1.1: System Architectures

Cluster Systems

Deployments
Compute

Storage

Visualization Nodes

Compute Nodes

Head/Login Nodes

Distributed Systems

Shared Memory Systems

HPC Skill Tree

24

	Introduction
	Classical HPC Education
	New Approach
	Previous Work
	HPC Skill Tree
	Certification Modeling

	Conclusions
	Status, Collaboration, and Future Work
	References
	Appendix

