
Benchmarking Application I/O in the Community

Julian M. Kunkel
Deutsches

Klimarechenzentrum GmbH
20146 Hamburg

kunkel@dkrz.de

Olga Mordvinova
Ruprecht-Karls-Universität

69120 Heidelberg, Germany
mordvinova@informatik.uni-

heidelberg.de

Dennis Runz
Ruprecht-Karls-Universität

69120 Heidelberg, Germany
dennis.runz@gmx.de

Michael Kuhn
Department of Informatics,

University of Hamburg
22527 Hamburg, Germany

Thomas Ludwig
Department of Informatics,

University of Hamburg
22527 Hamburg, Germany

Keywords
Benchmarking, I/O, Application Benchmark, Tracing

ABSTRACT
Benchmarking I/O performance of a high performance com-
puter is a tough task. Many sequential and parallel bench-
marks exist, however they differ in access patterns, tested
interfaces and internal behavior. Interpretation of results
on one hand depends on the benchmark, on the other, pro-
jection of obtained results to particular applications is not
easy or even impossible. Porting scientific applications to
an architecture is complicated, library and architecture de-
pendencies are a burden to developers. Therefore, a few
application benchmarks exist, which try to mimic applica-
tion behavior in a small core. However, writing an individual
application kernel as a new benchmark for each application
leads to a wide diversity in benchmarks. We propose the
benchmarking tool Parabench, which allows to mimic a rich
variety of application programs. Parabench interprets an
easy programming language during runtime to avoid porta-
bility or licensing problems. In addition, a future Trace-
Replay mechanism will allow to replay application traces
directly on other systems by interpretation of the traces.
Standardized tests of the results ease evaluation and futher
result comparison. We will start an open community and
collaborations to exchange patterns and measured results
on the website. Vendors can take the access patterns and
provide results, obtained on new architectures and systems.

1. BENCHMARKING APPLICATIONS
In this poster we present the programmable I/O benchmark
Parabench [9]. Parabench allows to mimic I/O behavior
of a wide range of applications. Additionally, the concept
of Trace-Replay is introduced. Trace-Replay allows to exe-
cute traces of applications on different systems. Typically,

application traces are used for performance optimizations,
however an interpreter could reproduce the traced behav-
ior. Trace-Replay will allow to record communication, I/O
and quantitative CPU activity i.e. CPU counters and replay
the behavior. While there is no implementation so far, we
will prepare an implementation. Compared to run an appli-
cation directly on a system this technique allows to record
runs of real applications. These traces can be shared and
run without dependency on particular libraries or systems,
or without dealing with licensing issues. Without the need to
port the scientific application to the new system, this tech-
nique offers to record inefficient application runs or store
runs as a gold standard. Developers of middleware can use
these traces to optimize their software-stack. Depending on
the implemented tracing, calls to third party libraries such
as HDF5 could be traced and optimized to the same extent.
Both Parabench and Trace-Replay check return values of
calls to ensure proper benchmarking – by providing a core
of functions with correct error handling derived benchmarks
will avoid common mistakes in benchmarking. Finally, the
exchange of patterns and traces in an open community will
allow third parties to check the performance of their systems
under realistic conditions. With such an open platform we
hope the community will share patterns of common appli-
cations to provide a rich and diverse repository for evalu-
ating current and future systems. Versioning of trace files
will allow to compare old program version with new version
without providing the outdated and even incompatible en-
vironment. We are looking for further partners to drive the
ideas forward for the sake of the community.

2. RELATED WORK
Benchmarking systems provides metrics to estimate system
usability regarding the stressed characteristic of the system.
By using benchmarks multiple systems can be compared and
rated.

Typically, applications are complex and assessing obtained
performance is no easy task. New architectures and environ-
ments force application users to port their application. This
requires to deal with library dependencies on the new system
and to optimize the application towards the new system.
Applications might reveal inefficiencies in the middleware.
Developers can be supported by providing code triggering



the suboptimal behavior. Therefore, benchmarks with re-
duced complexity help to reveal the bottlenecks.

Microbenchmarks try to reveal performance of the small-
est possible component like floating point capability of the
system. Measured values might be projected to application
performance, however, applications have complex usage pat-
terns of CPU, network and I/O subsystem. Therefore, pro-
jecting microbenchmark results to application behavior is
non-trivial and often inaccurate.

In contrast, derived from an application or a group of ap-
plications, application driven I/O benchmarks allow studies
of the architectural system performance under realistic us-
age patterns i.e. I/O and communication requirements. An
example for such a tool is MADbench [4], which emulates
a Cosmic Microwave Background data analysis. Emulating
the particular I/O behavior, application driven tools can
only be used for testing applications with similar I/O re-
quirements.

Synthetic I/O benchmarks measure I/O using system per-
formance standard or customized I/O access patterns. IO-
Zone [7] is a popular I/O benchmark for local and network
file systems. It is not used for evaluating HPC applications,
since it does not provide a parallel implementation and pat-
terns common in this area. The synthetic tool LLNL IOR [1]
supports not only POSIX but also MPI-IO. IOR exercises
concurrent read/write on one file or on separate files (one-
file-per-processor). The benchmark is highly parameterized
and offers a wide variety of access patterns. However, it is
difficult to relate the data collected from it back to the origi-
nal application requirements [4]. Similar to IOR, b eff io [2]
allows a very precise test configuration by using different
parameter groups [10]. Its main purpose is to give a limited
statement about I/O performance after a defined time pe-
riod in which production system is used for testing. Even if
b eff io is a powerful benchmark, it is challenging to add new
access patterns to its framework. Synthetic benchmarks can
be used more generally than application driven ones. But
there are some disadvantages in this approach. First, it is
not easy to relate measured performance back to the real ap-
plications. Second, every benchmark provides its own pat-
tern set, such that comparison of obtained results between
them is not easy.

No existing benchmark allows to define complex workloads
for a specific parallel application. For this reasons there
are efforts to develop portable benchmarking tools with ad-
justable input. The BWT [6] and FileBench [5] are bench-
marks where test cases can be modified to resemble work-
loads. While both programs support threads, FileBench is
designed to stress only local file systems. BWT supports
parallel I/O commands to a limited extent (process coordi-
nation via barrier, implemented using IP multicast), its pa-
rameters for executing tests have to be specified in input files
and cover the majority of file system access patterns. Even
in an early stage of implementation, it provides an approach
close to the one we implemented with Parabench. As far as
we know there is no implementation which allows to trace
MPI applications and replay the operation according to the
traces. To a limited extent a few researchers implemented
workload replays privatly according to their demands, but

nobody implemented a full featured MPI trace/replay envi-
ronment.

Efforts have been made to provide standardized benchmarks,
the Standard Performance Evaluation Group (SPEC) pro-
vides benchmarks for a wide range of systems. However,
mostly the benchmarks assess performance of a single non-
parallel system. BenchIT [3, 8] is a project which aims to
provide microbenchmarks and kernels from HPC applica-
tions, and it allows to compare performance of different sys-
tems with the help of a GUI. In contrast to existing solutions
we aim for an open community which allows to exchange ap-
plication patterns. Therefore, we will provide tools to either
program, or to record and replay application traces. An
easy generation of benchmarks, web-supported analysis and
comparison of results will enable the community to evaluate
new systems quickly. Furthermore, patterns can be shared
with developers of middleware like MPI in order to optimize
system and middleware.

3. REFERENCES
[1] ASCI I/O Stress.

http://www.llnl.gov/asci/purple/benchmarks/

limited/ior/.

[2] b eff io Benchmark.
https://fs.hlrs.de/projects/par/mpi//b_eff_io/.

[3] BenchIT. http://www.benchit.org.

[4] J. Borrill, L. Oliker, J. Shalf, and H. Shan.
Investigation of leading HPC I/O performance using a
scientific-application derived benchmark. In Proc. of
SC ’07, pages 1–12. ACM, 2007.

[5] FileBench.
http://www.solarisinternals.com/wiki/index.php/

FileBench.

[6] Filesystem IO Test Program BWT.
http://people.web.psi.ch/stadler_h/.

[7] IOzone Filesystem Benchmark.
http://www.iozone.org/.

[8] G. Juckeland, M. Kluge, W. E. Nagel, and S. Pfluger.
Performance Analysis with BenchIT: Portable,
Flexible, Easy to Use. In Proc. of the 1th International
Conference of Quantitative Evaluation of Systems
(QEST ’04), pages 320–321, Washington, DC, USA,
2004. IEEE Computer Society.

[9] O. Mordvinova, D. Runz, J. M. Kunkel, and
T. Ludwig. I/O Performance Evaluation with
Parabench – Programmable I/O Benchmark. In Proc.
of the 10th International Conference on
Computational Science 2010 (ICCS ’10), Amsterdam,
NL, 2010. to appear.

[10] R. Rabenseifner and A. E. Koniges. Effective file-I/O
bandwidth benchmark. In Proc. of Euro-Par ’00,
pages 1273–1283. Springer-Verlag, 2000.


	Benchmarking Applications
	Related Work
	References

