
Noname manuscript No.
(will be inserted by the editor)

HDTrace – A Tracing and Simulation Environment of
Application and System Interaction

Julian Kunkel

23/01/2011

Abstract HDTrace is an environment which allows to

trace and simulate the behavior of MPI programs on a

cluster. It explicitly includes support to trace internals

of MPICH2 and the parallel file system PVFS. With

this support it enables to localize inefficiencies, to con-

duct research on new algorithms and to evaluate future

systems. Simulation provides upper bounds of expected

performance and helps to assess observed performance

as potential performance gains of optimizations can be

approximated.

In this paper the environment is introduced and

several examples depict how it assists to reveal inter-

nal behavior and spot bottlenecks. In an example with

PVFS the inefficient write-out of a matrix diagonal

could be either identified by inspecting the PVFS server

behavior or by simulation. Additionally the simulation
showed that in theory the operation should finish 20

times faster on our cluster – by applying correct MPI

hints this potential could be exploited.

Keywords Simulation · Tracing · MPI-IO · PVFS2

1 Introduction

In order to get insight about system and application

behavior either all activity can be recorded and ana-

lyzed, or modeled and simulated. HDTrace is an en-

vironment which allows both kind of activity: MPI-IO

applications can be traced to analyze the behavior and

to spot regions which need most of the execution time.

Also traced applications can be simulated in arbitrary

cluster environments to increase understanding in the

system and software behavior.

Julian Kunkel
University of Hamburg
E-mail: kunkel@informatik.uni-hamburg.de

This paper is organized as follows: In section 2 the

software environment is introduced, which allows to

trace internals of MPI and the parallel file system PVFS

together with client activity. More details about the

simulator are given in section 3. Sections 4, 5 and 6

provide several examples about visualization from client

and server activities. A simple I/O simulation is com-

pared with the observation in section 7. At last, state

of the art is provided in section 8 and some future work

is mentioned.

2 HDTrace Environment

The HDTrace environment is a tracing environment de-

veloped to gather information necessary for simulation.

To assess simulation results and to increase insight it

consists of extensions for tracing MPI internals and ac-

tivity of the Parallel Virtual File System (PVFS). Com-

pared to existing tracing environment HDTrace concen-

trates on evaluation of new ideas. It is developed under

the GPL license and consists of the components shown

in figure 1.

2.1 Components

The TraceWritingCLibrary is responsible to store events

in XML trace files and statistics in a binary format

with an XML description header. A project file links

together all trace and statistic files of multiple sources.

The format is designed to avoid post-mortem adjust-

ment of trace files, instead, only the project file or trace

file header must be adjusted. Statistics hold a group

of arbitrary counters together with a timestamp. Re-

lations between activities of different programs can be

recorded explicitly. The library uses the local clock for



2 Julian Kunkel

TraceWritingCLibraryTraceWritingCLibrary

MPI-WrapperMPI-Wrapper SunshotSunshot

PIOsimHDPIOsimHD

TraceFormatTraceFormatPVFS2HDPVFS2HD

PIOsimHD-ModelPIOsimHD-Model

HDPowerEstimationHDPowerEstimationMPICH2HDMPICH2HD

PowerTracerPowerTracer

Resource Utilization 
Tracing Library

Resource Utilization 
Tracing Library

HDReplayHDReplay

Fig. 1 HDTrace components and dependencies between different components.

timestamps, therefore, nodes must have synchronized

clocks (e.g. by using NTP). Additionally offsets between

timestamps of the trace files can be fixed post-mortem

by adjusting the files’ headers.

The MPI-Wrapper uses PMPI 1 to intercept MPI

calls and the trace library to store the events. Addi-

tional information about file accesses, communicators

and the mapping from application to hardware are main-

tained and recorded. It interfaces with the Resource

Utilization Tracing Library and the PowerTracer.

The Resource Utilization Tracing Library (RUT) pe-

riodically gathers system information and utilization

from the operating system, network, I/O and CPU which

are stored in statistic files.

PVFS2HD contains modifications to enable tracing

of PVFS activities within client and server. MPI activi-

ties from PVFS clients can be related with PVFS server

activities and statistics about utilization of PVFS-internal

layers are computed and stored. Therefore, server and

client activity can be visualized together to understand

causal relations. Note that it can use RUT to gather OS

information on PVFS nodes as well. The current instru-

mented version of PVFS is orangefs-2.8.3-20101113.

In MPICH2HD the MPI implementation MPICH2

is modified slightly to allow tracing of MPI internals for

collective calls and for PVFS-internal calls. It is based

on MPICH2-1.3.1.

PowerTracer is an extension to the trace environ-

ment, which periodically traces information about power

usage from an external power meter in statistic files.

This enables to visualize energy metrics of nodes to-

gether with their MPI activity.

HDReplay is a program which allows to replay recorded

MPI-IO behavior on arbitrary environments to evaluate

potential bottlenecks before the application is ported.

It is currently under development.

So far all mentioned software is coded in C, the fol-

lowing components are written in Java and designed to

support simulation.

The TraceFormat library provides interfaces to read

and write trace files.

1 The MPI Profiling Interface

In PIOsimHD-Model an abstraction layer for ap-

plication traces and the cluster model is provided for

the simulator. MPI commands which are read from the

trace files are converted to a sequence of commands

which can be executed by the simulator. Depending on

the cluster model the required trace files are loaded ei-

ther on demand (to deal with large trace files) or kept

in memory.

PIOsimHD is the event based simulator which sim-

ulates hardware and software behavior. The simulation

generates trace files of the run and internal components

for further inspection.

Trace files of application, PVFS or simulation runs

are visualized by Sunshot, a Java-Swing application,

based on Jumpshot [11]. The original Jumpshot viewer

is part of the MPI implementation MPICH2, which al-

lows to visualize the SLOG2 trace format of the MPI

Parallel Environment (MPE).

With the HDPowerEstimation statistics recorded

by RUT can be used to estimate the energy consump-

tion of a node (see [8] for more information).

3 PIOsimHD

PIOsimHD is a sequential discrete event simulator writ-

ten in Java. Its goal is to assist MPI(-IO) research and

to support understanding performance factors in clus-

ters. Arbitrary network topologies can be created and

relevant characteristics of the components can be ad-

justed freely. The specification of the model can be ei-

ther explicitly programmed or read from an XML file.

Internally, a discrete event simulator processes the

events in the future and increments a global clock ac-

cordingly [10]. An event itself can create new (future)

events. Output from the simulation can be stored in

trace files and compared with the original run.

Due to limited space underlying model concepts are

explained only in brief.

The hardware model reflects the common sense of

a cluster computer. Several compute resources (CPUs)

are hosted on a node which is connected to one or sev-

eral networks via a network interface (NI). On each



HDTrace – A Tracing and Simulation Environment of Application and System Interaction 3

node one I/O server can be placed, each holds a cache

layer and an I/O subsystem. A network topology de-

fines how network edges are connected to intermediate

nodes. Any network graph can be created.

Each component implementation uses characteris-

tics to simulate hardware behavior. To cope with sev-

eral levels of abstraction a component can have sev-

eral implementations. During the model specification

the characteristics and concrete model can be selected

for each component individually. Usually, characteris-

tics are provided in vendor specifications or obtained

by benchmarking the existing system.

3.1 Software Model

PIOsimHD allows to run programs conforming to the

MPI standard. Asynchronous communication and col-

lectives of MPI-3 are supported2. To simulate execution

of a particular MPI function at least one implementa-

tion must be provided within the simulator. Multiple

implementations for a given MPI function can be pro-

grammed and selected in the model specification.

A particular MPI function has the global view of

the simulation i.e. it is possible to see the state of other

clients. For instance, this global world view allows to

implement MPI Barrier() without network communi-

cation at all – once all clients invoked the barrier the

collective call finishes.

An abstract parallel file system defines how client

and server interaction takes place. File data is parti-

tioned among all servers as defined by a selectable dis-

tribution function. Metadata operations are not consid-

ered. Clients and servers interact in a similar fashion

to the PVFS model. In the write path a client requests

write operation from the server and then starts to trans-

fer all data. In the simulator file sizes are updated once

a write operation finishes. Non-contiguous I/O requests

are supported.

3.2 Simulation Workflow

The workflow to increase insight in the interplay be-

tween system and applications is shown in figure fig-

ure 2. Components of HDTrace involved in the different

steps of the process are included.

In general there are two ways to simulate application

activities in PIOsimHD : either a running application is

instrumented to generate trace files, or the communi-

cation and I/O behavior can be coded explicitly in the

form of Java programs.

2 Note that asynchronous collective break in case of multi-
ple operations of the same type are processed on one client.

The figure depicts the case in which an MPI pro-

gram is instrumented. In this case the MPI-wrapper is

linked with the library, all MPI(-IO) activities are inter-

cepted by the PMPI wrapper and events recorded by

using the TraceWritingCLibrary. In case PVFS is used

as underlying file system, then additional traces for the

client and server activities can be included by enabling

HDTrace.

Traces of the application and optionally PVFS can

then be visualized by Sunshot. To perform simulation

the model of the cluster must be created by the user and

then applications to simulate must be mapped to avail-

able nodes. Note that the user can simulate concurrent

processing of multiple applications at the same time

to stress network and I/O infrastructure. PIOsimHD-

Model reads this model and the application trace files

required for simulation and feeds them to the simula-

tor. PIOsimHD performs the discrete event simulation

and if requested outputs simulation processing by using

the Java trace library. Results of simulation can then be

visualized by Sunshot. Comparison of the recorded ap-

plication (and PVFS) activities and simulation results

can be done by the user.

Instead of instrumenting a real application, helper

classes in PIOsimHD-Model allow to explicitly program

the cluster model and application behavior. This can

be used to perform small tests of I/O systems or MPI-

internal communication.

4 Tracing Energy Metrics

Next, a few excerpts of trace analysis are given to demon-

strate the strength of the environment.

First Sunshot is explained on an excerpt of a run

of the HPC Challenge (HPCC)3, which includes en-

ergy metrics and client activity (figure 3). On the top

row icons for user interaction are provided, below in-

formation is given about the current selected time in-

terval and the event/statistic which is below the mouse

pointer. In the left a tree view visualizes the mapping

of the metrics and traces to nodes – in this case hpcc

was run on node06 to node09, process 0 and process 4

are run on node06 and the energy metrics (I, P, U) be-

long to node06. Right of the tree view the activity and

statistics for each timestamp are drawn – white areas in

the process activity correspond to computation on the

client processes, the colors encode calls to MPI (com-

munication) functions. The statistic metrics compute

the maximum independently for each timeline. Unin-

teresting timelines or statistics can be removed from

the view to dig into the issues.

3 http://icl.cs.utk.edu/hpcc/



4 Julian Kunkel

TraceWriting-C LibraryTraceWriting-C Library

MPI-WrapperMPI-Wrapper

SunshotSunshot

PIOsimPIOsim

Trace files & Project files Analysis / Comparision

<Uses>

<Write>

TraceFormat-Java LibraryTraceFormat-Java Library

<Read>

ApplicationApplication

<Linked with>

Simulation results

TraceFormat-Java LibraryTraceFormat-Java Library

<Write>

<Called by>

PVFS2HDPVFS2HD

<Uses>

<xml>
<Nodes>

<Processs/><Servers/>
<Topology></xml>

<Uses>

Model specification

PIOsimHD-ModelPIOsimHD-Model
<Read>

<Use
d by>

Fig. 2 System analysis workflow of PIOsimHD. In the example an application run serves as input for the simulation.

From this view a slight fluctuation of the power con-

sumption can be observed between different nodes. Dur-

ing the broadcast operation (purple operation on the

right) the power consumption is lower.

5 Tracing MPI Internals

Visualization from tracing an MPI Bcast() with 100 MiB

to 8 processes is provided in figure 4. Each process is

located on a separate node equipped with Gigabit Eth-

ernet and two Intel Westmere processors. More details

about observed network characteristics are given in sec-

tion 7. The screenshot from Sunshot is modified to visu-

alize communication size and partners for process with

rank 0.

At the beginning rank 0 sends 50 MiB to rank 4,

then 26 MiB to rank 2, 13 MiB to rank 1, then 7 times

13 MiB are sent to rank 1 and received from rank 7.

From observing the pattern the sub-optimality of

the pattern becomes clear. Internally, with the default

configuration on our cluster MPICH2 performs a bi-

nomial tree scatter followed by an allgather operation,

which explains the observed pattern.

6 Tracing MPI and PVFS Interplay

Tracing parallel file system activities together with MPI

activities allows to spot bottlenecks which are hidden

otherwise.

In this experiment our parallel PDE solver for a 2-

dimensional problem (partdiff-par) is instrumented

with HDTrace. The PDE solver allows to periodically

Fig. 4 MPI Bcast() of 100 MiB of data to 8 processes.

store diagonals of the matrix in a file by using MPI-IO.

This progress information then can be read-out during

the processing to look at the convergence of the algo-

rithm. Full matrices are written after a configurable

number of iterations to allow checkpoint/restart and to

look at the values of the matrix at fixed numbers of

iterations.

In this (artificial) problem the matrix has a dimen-

sion of about 8000x8000 double values, which corre-

sponds to a resident set of about 450 MiB for a single

matrix. The application is run on only one processor.

Every 5 iterations a checkpoint of the full matrix was

made and the progress information data (diagonal is

64 KiB) are written in every iteration. The PDE uses

MPI File write at() to store data (without setting a

file view), therefore access on disk is always contiguous.

Access to the matrix diagonal in memory is performed

by application of an derived datatype.

MPI and PVFS activities are provided in figure 5

and figure 6. In the first screenshot an overview of 20

iterations of the solver is provided. On top the client

MPI activity including the long duration of the check-



HDTrace – A Tracing and Simulation Environment of Application and System Interaction 5

Fig. 3 Sunshot: Timelines of two nodes performing the first phase of the HPCC-run – including energy metrics.

pointing can be seen, computation is not shown explic-

itly. Below, the PVFS activity of one server is visual-

ized. Each layer has events and/or statistics associated

with the activities. Statistics encapsulate the number of

concurrent operations of the particular layer, this infor-

mation is not sampled. Therefore, at each point in time

the value accurately represents the number of pending

operations. BMI is the network activity, FLOW reg-

ular I/O operations (very small operations are not in-

cluded), REQ are the number of outstanding requests.

SERVER shows the pending statemachines and cur-

rent step within each statemachine (here we can see

performed activity by write sm). TROVE is the per-

sistency layer of PVFS. In TROVE not only concur-

rent operations are traceable, also each individual I/O

operation which is given to the operating system can

be traced with offset and size. Overlapping concurrent

operations will be expanded automatically to multiple

timelines by Sunshot. In the example up to 8 concur-

rent operations are observed, note this is the maximum

number of outstanding operations FLOW enforces per

request. Additionally several OS-related utilization val-

ues are given (the folder is called “Utilization” on the

left), the CPU utilization, write bandwidth of the stor-

age and network activity.

During the several checkpoints of the application

one can follow the server operation in detail. Interest-

ingly I/O operations are mostly performed sequentially.

In fact it turns out the network configuration of the

machines and switch degrades network bandwidth to

77 MiB/s while the disk has a performance of about

100 MiB/s, therefore the bottleneck is the network in

this configuration. This can be observed also by looking

at the BMI statistics, mostly network data is requested

(BMI > 0) but at the short phases of stalled I/O the

operations queue up on the TROVE layer. Effectively

Fig. 5 Traced 2D-PDE solver and PVFS – first 10 iterations.

the FLOW layer waits for completion of outstanding

operations before additional data can be transferred.

If we look at the process of writing the progress in-

formation of 64 KiB in figure 6 then we can see that

many requests are observed on the SERVER, these are

all small I/O operations. In fact writing the PDE progress

generates 125 small I/O operations with a size of 512

Bytes and one with 72 byte.

This is due to the non-contiguous datatype in mem-

ory, MPI-IO does not use an additional buffer to store

the data, internally PVFS allows to encapsulate a list

of up to 64 non-contiguous operations with one request.

PVFS is also aware of memory and file datatypes, how-

ever this feature must be explicitly enabled by hints like

romio pvfs2 listio write, when this hint is enabled the

time to write out the matrix diagonal is reduced from

an average of 69 ms to 3.4 ms.

Activities from the PVFS client library are not in-

cluded in these screenshots, but resemble the startup of

multiple small I/O operations on the client side as well.



6 Julian Kunkel

Fig. 6 Traced 2D-PDE solver and PVFS – zoomed write of
the progress information.

7 Simulating MPI-IO

In this experiment the trace from section 6 is fed into

the simulator and the results of the simulation are com-

pared to the observed behavior.

In the cluster model the characteristics and topology

of the cluster are used. Two nodes are interconnected

with a switch. One hosts the client process while the

other one hosts the I/O server.

In detail the following characteristics were used: The

node is equipped with 12000 MiB of memory and 1

processor (processor count is irrelevant in this test).

The server disk uses an average seek time of 10 ms

and a track-to-track seek time of 1 ms, RPM is set

to 7200. Within 5 MiB of the last offset the track-to-

track seek time is used to approximate the access time.

A transfer rate of 100 MiB/s is selected4. The network

card throughput is limited to the memory bandwidth of

7629 MiB/s5. A network link has a latency of 0.2875 ms

and a bandwidth of 67 MiB/s6. The switch uses a store-

and-forward architecture and has a total bandwidth of

48 GiB/s, because it has full-bisection bandwidth.

Now we can compare simulation and observation.

Visualization of the whole program run is provided in

figure 7. Activities of client, incoming network packets

and disk are given. As the server model starts to write

data out once a single packet arrives, all three compo-

nents look synchronized in this screenshot. The startup

of writing a checkpoint is displayed in figure 8. Here, at

the beginning an average-seek operation is performed

on disk, because the server wrote out progress informa-

tion before (which is a different file).

During this startup the network is faster, the server

caches I/O operations and then writes large chunks

out in I/O operations. After a few writes the sequen-

tial write performance allows the disk to catch up with

the network performance. Ultimately the disk reveals

idle periods while the network is saturated. In our case

4 The transfer rate was measured by using dd of 2 GiB and
512 MiB of free memory.
5 The value was obtained with our memory benchmark

which measures the time for large memset() operations.
6 Latency is measured with our MPI latency benchmark

(mpi-latency-bench) and bandwidth with iperf.

Fig. 7 Simulated processing of the traced 2D-PDE solver,
the simulator used the trace from figure 5. The client activity
is on the first timeline, the next one shows disk activity the
last timeline the incoming network packets.

the network limitation is clear by the model definition

and can be identified by the screenshot. However, the

identified behavior during the startup phase might be

surprising.

In figure 9 write-out of a single process information

is zoomed in. Here 4 bytes of data are written first to

store the current iteration number, then the matrix di-

agonal (64 KiB) is written to disk. In the screenshot

the deferred write of the disk and latencies between the

data transfer of client, network and disk can be ob-

served.

A few statistics about simulation results and ob-

served behavior: the simulation takes 37.1 s while the

original run is 46.8 s. An I/O checkpoint takes between

8.17 s and 10.6 s in the original program and always

7.3 s in the simulation (due to the fact that the server

is utilized by only one client). On the client simulation

shows that writing out progress information could re-

quire 3.01 ms for the 64 KiB and 1.02 ms for the first

4 bytes. Measured times were between 63 ms and 78 ms

with an average of 69 ms, showing that this large dis-

crepancy could be identified by simulation as well. In

the measured run in which the hint for non-contiguous

I/O was set, the observed time was between 3 ms and

3.5 ms – close to simulation results.

One question which might come to mind when an

experiment is designed, is how much an I/O scheduler

can improve performance. Simulation shows no benefit

in this case due to the network bottleneck. However,

during the startup of a checkpoint phase 22 network

packets (each 100 KiB) could be aggregated to reduce

the number of I/Os. In total the disk which aggregates

I/Os performs 20482 I/O operations.

Of course the situation changes if multiple clients

access one server concurrently, which then causes more

seeks (depending on the I/O scheduler).

8 State of the art

Popular performance analysis tools/environments are

Tau [9], Vampir [4] and Scalasca [2]. Yet, none of them

trace MPI and parallel file system together. However,

a recent funded project aims to extend TAU towards



HDTrace – A Tracing and Simulation Environment of Application and System Interaction 7

Fig. 8 Simulated processing of the traced 2D-PDE solver –
zoom into the beginning of writing a checkpoint.

Fig. 9 Simulated processing of the traced 2D-PDE solver –
zoom into the writing of file progress information.

this goal [1]. The Open Trace Format (OTF) is widely

used in performance analysis tools, however when we

designed our trace format it lacked the ability to add in-

formation about data types and the arguments of MPI

functions. Support to add arbitrary data was added re-

cently [3].

Our previous tracing environment (PIOviz [7]) was

already used to trace MPI internals and localize bottle-

necks in MPI and PVFS (see [6]). However, the new en-

vironment HDTrace extends capabilities to a new level.

Our work of HDTrace is different because as far as

we know no other tracing environment allows to trace

and visualize MPI internals, parallel file system activity

and MPI activity together. PIOsimHD honors parallel

I/O and allows to replay recorded MPI traces on a high

level of abstraction. With its help an analysis of several

I/O schedulers and collective I/O variants has been per-

formed in [5]. The event-driven nature of PIOsimHD

allows to localize network congestion and evaluate I/O

optimization on client, server or disk side.

9 Summary and Future Work

HDTrace is an environment which allows to trace and

simulate the behavior of MPI programs on a cluster

and parallel file system. This allows to identify ineffi-

ciencies, to conduct research on new algorithms and to

evaluate future systems. Several examples depict how

the environment assists in revealing internal behavior

and spotting bottlenecks. With HDTrace observations

can be compared with simulation results which allows

to assess the observations. In the MPI-IO example the

simulation showed that in theory writing out the ma-

trix diagonal could finish in 3 ms, which reveals a 20

fold speedup on our cluster – by applying correct MPI

hints this potential could be exploited.

The following near future activity is planned: A re-

lease of the GPL-licensed software to the public. Ac-

curate implementation of current collective algorithms

and comparison with cluster-aware algorithms. Then

the simulation model will be revalidated by compar-

ing observations with simulation results. Further exper-

iments of I/O and client interaction will be conducted.

References

1. Jason Cope Kamil Iskra Sam Lang Kwan-Liu Ma Chris
Muelder Robert Ross Carmen Sigovan, P.B.: System Soft-
ware Instrumentation to Support the Visual Characteri-
zation of I/O System Behavior for High-End Computing.
Poster (2010)

2. Geimer, M., Wolf, F., Wylie, B.J.N., Becker, D., Böhme,
D., gs, W.F., Hermanns, M.A., Mohr, B., Szebenyi, Z.:
Recent Developments in the Scalasca Toolset. In: Tools
for High Performance Computing, Proceedings of the
3rd International Workshop on Parallel Tools. Springer
(2009)

3. Knüpfer, A., Geimer, M., Spazier, J., Schuchart, J., Wag-
ner, M., Eschweiler, D., Müller, M.S.: A generic attribute
extension to OTF and its use for MPI replay. Proce-
dia Computer Science 1(1), 2109–2118 (2010). Proc. of
the International Conference on Computational Science
(ICCS)

4. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M.,
Lieber, M., Mickler, H., Müller, M.S., Nagel, W.E.: The
Vampir Performance Analysis Tool-Set. In: Tools for
High Performance Computing, Proceedings of the 2nd
International Workshop on Parallel Tools, pp. 139–155.
Springer (2008)

5. Kuhn, M., Kunkel, J., Ludwig, T.: Optimizations for
Two-Phase Collective I/O Submitted to ISC 2011

6. Kunkel, J., Tsujita, Y., Mordvinova, O., Ludwig, T.:
Tracing Internal Communication in MPI and MPI-I/O.
In: International Conference on Parallel and Distributed
Computing, Applications and Technologies, PDCAT, pp.
280–286. Hiroshima University, IEEE Computer Society,
Washington, DC, USA (2009)

7. Ludwig, T., Krempel, S., Kunkel, J., Panse, F., With-
anage, D.: Tracing the MPI-IO Calls’ Disk Accesses. In:
Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, no. 4192 in Lecture Notes in Com-
puter Science, pp. 322–330. C&C Research Labs, NEC
Europe Ltd., and the Research Centre Jülich, Springer,
Berlin / Heidelberg, Germany (2006)

8. Minartz, T., Kunkel, J., Ludwig, T.: Simulation of power
consumption of energy efficient cluster hardware. Com-
puter Science - Research and Development pp. 165–175
(2010)

9. Shende, S.S., Malony, A.D.: The Tau Parallel Perfor-
mance System. Int. J. High Perform. Comput. Appl.
20(2), 287–311 (2006)

10. Wolfgang Kreutzer, B.P.: The Java Simulation Hand-
book: Simulating Discrete Event Systems with UML and
Java. Shaker Verlag (2005)

11. Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward Scal-
able Performance Visualization with Jumpshot. High
Performance Computing Applications 13(2), 277–288
(1999)


	Introduction
	HDTrace Environment
	PIOsimHD
	Tracing Energy Metrics
	Tracing MPI Internals
	Tracing MPI and PVFS Interplay
	Simulating MPI-IO
	State of the art
	Summary and Future Work

