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Abstract. File systems of supercomputers are complex systems of hard-
ware and software. They utilize many optimization techniques such as the
cache hierarchy to speed up data access. Unfortunately, this complexity
makes assessing I/O difficult. It is impossible to predict the performance
of a single I/O operation without knowing the exact system state, as opti-
mizations such as client-side caching of the parallel file system may speed
up performance significantly. I/O tracing and characterization tools help
capturing the application workload and quantitatively assessing the per-
formance. However, a user has to decide himself if obtained performance
is acceptable.
In this paper, a density-based method from statistics is investigated to
build a model which assists administrators to identify relevant causes
(a performance factor). Additionally, the model can be applied to purge
unexpectedly slow operations that are caused by significant congestion
on a shared resource. It will be sketched, how this could be used in the
long term to automatically assess performance and identify the likely
cause. The main contribution of the paper is the presentation of a novel
methodology to identify relevant performance factors by inspecting the
observed execution time on the client side.
Starting from a black box model, the methodology is applicable with-
out fully understanding all hardware and software components of the
complex system. It then guides the analysis from observations and fos-
ters identification of the most significant performance factors in the I/O
path. To evaluate the approach, a model is trained on DKRZ’s super-
computer Mistral and validated on synthetic benchmarks. It is demon-
strated that the methodology is currently able to distinguish between
several client-side storage cases such as sequential and random memory
layout, and cached or uncached data, but this will be extended in the
future to include server-side I/O factors as well.
Revision: This paper contains a slightly extended related work section
based on feedback I received.

1 Introduction

Data-driven science became the fourth scientific paradigm besides theory, ex-
perimentation and computation. Dealing with the analysis of the vast output
of scientific applications and experimental and observational data, pushes the



hunger for performance of HPC storage systems. Often when running applica-
tions, performance stays behind the capabilities of the parallel file system; it is
not untypical to achieve only 10% of the performance expectations. Due to the
complexity of the hardware and software stack and the shared nature of the file
system resources, there are many possible explanations for such an observation.
On the lower POSIX level, an I/O access pattern is characterized by the se-
quence of the operations, each operation can be characterized by the attributes:
type (read or write), offset to the last operation (is the pattern more random-
like or sequential), time after the last operation and access granularity (size).
Observable performance of an I/O operation depends on the access pattern but
performance for repeating operations with the identical attributes can vary sig-
nificantly due to optimizations deployed along the I/O path. For example, for
write operations, data may fit into the client-side cache or it may trigger flushing
cached data to the server. Similarly, for reads, data may reside in the client-side
cache, data may need to be fetched from backend storage from the server, may
reside in the RAID controller’s cache. Finally, accesses causing disk I/O may
involve a short or long seek of the disk’s actuator. Additionally, on each involved
layer, concurrent operations compete for the available processing time and lead
to further queuing time.

Tools such as IOPro [15], Darshan [7], and SIOX [19] help characterizing ac-
cess patterns on the application or the system side. These tools allow to capture
the client-side I/O behavior, manage them in either timelines or profiles and aid
in visualization of the results. File system tools such as the LMT [29], MELT [4]
and vendor-specific tools such as mmpmon, ClusterStor Manager or BeeGFSs Ad-
mon allow to understand the utilization of the servers. None of these tools help in
assessing the quality of the I/O, i.e., whether or not I/O performance is adequate
has to be decided by the users. However, the assessment is the difficult part, for
example, is an access time of 10ms adequate when reading 16 MiB of data? What
is the (likely) cause for the long duration? Sometimes I/O is significantly slower
due to an extreme congestion on a resource. While this is important from the
application perspective as it slows down observed I/O performance significantly,
these events are usually rare and distort analysis of expected I/O behavior. From
the application perspective, an assessment of the cause for the observed perfor-
mance of individual I/O operations would not only increase transparency for
the user and application developers but also highlight the potential of any sub-
sequent I/O optimization. For example, knowing the fraction of I/O operations
that suffer from unexpected slowdown helps understand system congestion.

In this paper, a methodology is developed that allows assessment of the I/O
only by analyzing the response times for the I/O operations on the client side.
This approach could easily be implemented in a tool such as SIOX or Darshan to
provide a report after application termination which contains the likely causes
and elaborates the optimization potential.

The contribution of this paper is the development of a model to classify
relevant performance factors. It is based on density-based clustering and linear
modeling for the influence of data size for relevant performance factors. Perfor-



mance factors lead to classes of measurements with similar behavior/cause. By
itself, the methodology cannot identify the cause behind the individual classes
i.e., we would observe performance class 1, 2 ... However, with additional sys-
tem knowledge, an administrator can customize the class labels, e.g., it is due
to caching on the client/server side, to help users understand the behavior bet-
ter. Overall, the methodology fosters the understanding of relevant performance
factors within the I/O path and fosters I/O characterization.

The paper is structured as follows: Related work is given in Section 2. The
method for density-based outlier detection is illustrated in Section 3. In Sec-
tion 4, an algorithmic description of the approach is given. This includes outlier
detection and an approach for predicting (previously identified) causes of I/O
data using linear models. The evaluation in Section 5 validates the method on
DKRZ’s Mistral supercomputing system and shows that it is effective for assess-
ing whether an I/O operation is performed on the cache. Finally, the paper is
concluded in Section 7.

2 Related Work

Related studies can be classified into performance analysis & modeling and meth-
ods from statistics for outlier detection and identification of unknown factors.

Performance characterization of parallel file systems To understand and opti-
mize the I/O stack, the analysis of application I/O and the resulting server
behavior are subject to many investigations, e.g., [2, 3, 20, 28]. However, as the
I/O stack is complex, most evaluations are not conducting a root cause analy-
sis. In an attempt to identify the cause, at best, operating system statistics are
looked at.

Tools for monitoring I/O operations For understanding behavior of parallel sys-
tems usually profiling and tracing tools can help. Tools such as TAU [27], Vam-
pir [16], and Scalasca [9] record time for individual operations and potentially
CPU performance events. In so called traces, the timestamps are preserved –
thus each individual start and end time can be analyzed. In profiles, times-
tamps are irrelevant and the overall behavior is recorded showing how runtime
is distributed across the program. These tools can monitor the runtime of MPI
and POSIX I/O calls and shed light on the distribution of compute vs. I/O
time. However, they cannot analyze the access pattern. Therefore, tools such as
IOPro [15], Darshan [7], and SIOX [19] help characterizing the observed access
pattern. There are also many tools to capture, generalize and replay workloads.
For example, Hidden Markov Models [34] or statistics can be used to mimic the
access patterns of clients better. All these tools require the user to decide the
quality of the observed operation’s performance. Is a particular I/O operation
with a runtime of 0.2 ms fast or slow? If it is slow, we would be interested in
the likely reason behind this to prevent this case. Unfortunately, no existing tool
helps to assess the quality of the I/O and to identify the reason.



Tools aiding to understand the I/O path It is possible to trace the I/O path
of individual operations, e.g., using for local storage blktrace [5] and for dis-
tributed storage tools such as ScalaIOTrace [32], PIOviz [22], and HDTrace [18].
For distributed systems, this requires additional instrumentation on the server
side. Needless to say that analyzing these traces is complicated and a fine grained
level of tracing comes with relevant overhead. Therefore, tools that simplify the
analysis are valuable assets.

There are tools that aim to identify the implemented optimization strategy
such as cache policy or RAID level. In [6], the tool Dust is introduced which
uncovers the cache replacement policies, e.g., LFU and FIFO, of the operating
system by applying a well defined access pattern. For each replacement strategy,
a fingerprint can be created to allow identification of it. The authors use a
threshold to distinguish between cached and uncached I/O. They do not analyze
the distribution of access times further and classify behavior only for one access
granularity. Following a similar approach, the tool Shear applies access patterns
to reveal the configuration of a RAID storage [8].

Performance modeling of storage The modeling of application and system be-
havior fosters understanding of these complex systems and enables predictions
(what-if analysis). Simple performance models, for example, based on latency
and throughput [20], can be applied to identify the room for optimization. Addi-
tionally, there is a long history in modeling the data processing of these systems
on the component level, usually by using queuing networks [10]. Example simula-
tors are DiskSim [33] focusing on a single storage device, CODES [21], SST [25],
and PIOSimHD [18] that allow simulations of larger systems.

Outlier detection Performance counters such as Bytes (read/written) that can
be obtained from the operating system of storage servers can be used to identify
issues. Kasick et al. [13] use this strategy to identify faulty resources. A system
that exhibit a substantial different behavior than the pack of servers is suspected
to misbehave. However, the investigation of client side performance and the
causes for performance degradation is substantial different.

There exist many methods for outlier detection such as statistical approaches,
Bayesian networks, and machine learning. These may also be used for identifying
abnormal behavior that is of special interest [24]. Statistics offers a wide range of
tests based on a given distribution, deviation, distance or density. The assump-
tion that individual measurements follow one Gaussian probability distribution is
not correct. Firstly, the queuing in any shared resource such as node-local mem-
ory or the shared file system servers are expected to lead to Gamma distributed
data. Secondly, even with well-defined experimental conditions, a sequence of
identical operations can trigger different I/O paths; for example, with write-
behind caching, a write in the Linux kernel may trigger a flush to the storage or
it may just require a copy to the page cache. When executing a call, the executed
I/O path cannot be selected and is subject to the current system state. In this
paper, experimental evidence is provided that substantiates this claim.



Density-based approaches such as INFLO [12] can help in this case as they
can account for any distribution. However, as far as known to the author, these
important techniques have not found adoption in the storage community. A
light-weight approach of density-based analysis is chosen by Uselton et al. in
[31]. Their ensemble analysis investigates the runtime of individual processes and
investigates the resulting histograms. This allows to identify clusters of processes
with similar runtime, speculate on causes and identify the optimization potential
if all processes were started at the same time.

Factor analysis An easy definition is given in Wikipedia 1, Factor analysis “is a
statistical method used to describe variability among observed, correlated vari-
ables in terms of a potentially lower number of unobserved variables called fac-
tors. For example, it is possible that variations in say six observed variables
mainly reflect the variations in two unobserved (underlying) variables. Factor
analysis searches for such joint variations in response to unobserved latent vari-
ables”. The method constructs a linear model for explaining unobservable (la-
tent) variables based on the observable random variables. Therewith, at a first
glance, exploratory factor analysis is a potent approach for analyzing I/O per-
formance.

However, the I/O path of any given operation may trigger certain behavior in
the middleware and file system based on the unobservable system state. Assume,
for example, starting a sequence of identical write operations, if the client-side
cache is full, the write triggers write-back to the server that in turn may trigger
additional processes. The underlying behavior is highly non-linear as it depends
on the hidden system state. Initial analysis during the authors past work[17] has
revealed these kind of patterns and lead to the research in this paper. Nonlin-
ear factor analysis [11] is a potential solution but assumes normally distributed
variables. Due to the shared nature of the compute and storage resources, the
queuing of operations leads to a Gamma distributed performance. Additionally,
the methods are quite difficult to understand and apply. So far the author does
not know any application of this method in the storage domain. In contrast, the
method developed within this paper is easier to understand and aids better in
identifying latent factors.

3 Illustration of the Density-Based Clustering

Assume you have measured the duration of an I/O operation with certain param-
eters repeatedly. In any real system we see alternative processes but also additive
components, e.g., when a cache miss triggers network operations and I/O that
may follow other distributions. Since a client executes multiple processes and
a file system is a shared system, the Gamma distribution is suitable to model
waiting times until the operation is processed in any of these layers. Assume we
have two processes that are based on Gamma distributions, one with shape=10

1 See https://en.wikipedia.org/wiki/Factor_analysis; for a detailed description
refer to [14].

https://en.wikipedia.org/wiki/Factor_analysis


(a) Timeline (b) Density reveals two classes

Fig. 1. Example demonstrating the methodology. Each of the two Gamma dis-
tributed processes is drawn with its own color.

and one with shape=1 (both with scale=1). When doing an operation based on
some system settings such as cache hit or miss, the representative operation is
performed where the one with shape=1 is usually 10 times as fast as the other.
These two processes are overlayed with a Gaussian distribution: An additional
Gaussian noise with mean 5 and standard deviation of 1 is added that is always
in the path. Normally, optimization techniques such as caching are used that
optimize performance significantly and those relevant processes can actually be
identified in a density graphs as demonstrated.

If both processes are equally likely to happen and we repeat this process
1000 times, we obtain a figure such as Figure 1a. The observed durations can
then be converted to a density that describes the duration for the particular
call: The continuous density function is constructed by estimating the relative
number of occurrences of each value, e.g., how often do we observe the duration
0.4s, 0.5s and so on. The result is visualized in Figure 1b; in essence, such
a density plot can be thought as a smoothened histogram. By normalization,
these relative frequencies are converted to obtain the probability density function
(PDF), which defines the likelihood to observe individual values. The area under
the curve between two values x and y is the probability that the value falls
between x and y. The density function can be estimated using e.g., the statistics
tool R’s density function with Gaussian kernel and nrd0 bandwidth estimator2.

2 For the computation of the density, each x coordinate is considered to be the center
of a Gaussian and observations covered under the Gaussian are taken into account
for computing the actual value. The relevance of each point depends on the value of
the Gaussian. The width of the Gaussian is chosen by a bandwidth factor that can



We can see that the distribution reveals two regions with clusters where most
measurements happen (one up to Duration 11). While we don’t know their causes
yet, we can conclude that the system behavior results in two clusters and thus,
for simplicity, we assume there are two different processes that we call relevant
performance factors behind them. In the figure, those are marked as Class A
and Class B. If we know the cause behind them, we can give them meaningful
labels such as “cached on client-side” and “uncached”.

We can also use the density diagram to identify outliers i.e., unexpectedly
slow operations that are untypical for the I/O. For example, it may happen that
a few operations take up to 2 seconds while 99.99% of the operations are served
faster than 20 ms. Algorithmically, this can be done by inspecting the slope of
the slowest cluster and define a cutoff point, in the figure this is marked with
X. This approach is much more robust than using the standard deviation as our
example does not follow the Gaussian probability distribution.

4 Methodology

The methodology consists of two parts. Firstly, we identify the relevant perfor-
mance factors for individual access granularities and strip outliers. Secondly, the
results are approximated with a linear model that allows to predict performance
for any size. By constructing a linear model for a well known experimental setup,
they describe the expected duration for the experimental setup and, thus, the
cause. Multiple models are created, and trained. Later, the model (and its in-
herent experimental setup) that explains our observation best, is assumed to be
the cause.

4.1 Identification and classification into relevant factors

We propose the following black box approach:

1. Repeatedly measure execution time of an I/O operation.
2. Construct the density graph. This effectively smoothes the histogram.
3. Identify clusters in the density graph and their extrema.
4. Define separation points, usually minima, but a split can also be the mean

between two maxima.
5. Partition observations into classes based on the separation points. We assume

each class is caused by (at least) one significant performance factor.
6. Optional: Identify the root causes behind classes and assign appropriate

names such as “client-side cached” or “average seek time”.

The approach does not aim to classify all observations correctly, but instead
aims to help us understand the performance factors. Additional system knowl-
edge can be applied on the initial black box model to label the clusters according

be automatically determined, thus, the observed smoothness depends on the selected
bandwidth estimator.



to known factors such as client-side cached vs. uncached. Applying the approach
to our toy example, we would see two classes, and one split point (see Figure 1b).
Classification would result in several black points belonging to the second clus-
ter and vice versa, but the majority of data points of the two Gamma processes
would be classified correctly.

This approach also effective to purge outliers – i.e., abnormally slow accesses
that are likely due to extreme conditions, by removing all trailing data points
after the last cluster – in the figure, the point marked with X, data points with
unexpected long duration that are apparently insignificant are removed. The
data point X can be determined by walking downhill from the last extrema until
the density falls below a threshold based on the last maximum (for example,
below threshold = 0.05 · last maximum).

4.2 Prediction of Causal Issues

A limitation of the introduced method is that it can only be applied to investigate
a particular operation. Since the duration of the I/O operation is expected to
be strongly correlated with the size, a predictor for any fixed size is of limited
use. In this paper, we construct predictors for several conditions bottom up:

1. Run a large set of experiments with varying sizes and access patterns that
lead to well-known behavior i.e., involves expected performance factors.

2. Apply the density classification to identify clusters for each size and config-
uration and purge outliers.

3. Create linear models to predict duration, i.e., d(size) = I + c · size. Where
c and I are the fixed model parameters. Each performance factor is identi-
fied with its own model. Since read and write path are different, we create
individual models.

4. Due to the non-linearity of the I/O behavior for sub-page sizes, we train two
linear models, i.e., between 1 and 4096 bytes (page size) and one for larger
accesses. This can be easily justified for Lustre, as operations are performed
only in multiples of page size.

To apply the model in a real system and determine the likely cause, the du-
ration of an observation is predicted with the ensemble of linear models each
created for different performance factors. The model which yields the best ap-
proximation of the duration is assumed to explain the behavior seen. To be
more accurate, the approach chosen in this paper sorts the models based on
their predicted time for the outliers, then for any observation it picks the first
model for which the duration dobserved ≤ dmodel(size). For example, assume we
have the following models for predicting I/O performance: discard (i.e., no I/O
at all), cached by OS, hdd-cached, hdd-uncached. Each of these models predict
the expected maximum time under the respective condition for each I/O size.
Clearly, for a fixed size, the time needed for discarding I/O will be shorter than
for cached I/O and so on. If we observe a time that is between the prediction
of the model discard and cached, then we conclude that this is likely to be a
cached I/O.



5 Evaluation

This section is organized as follows: First, the test system is introduced. Then,
the I/O benchmark is described together with the varied parameter space. Next,
the results obtained on the parallel file system Lustre are explored showing the
difficulties to investigate the causes for observed behavior. Finally, results from
local I/O on a single server are briefly described – this demonstrates that similar
results are obtained from local I/O and, thus, the methodology can be applied
across file systems.

5.1 Test system

The evaluation is conducted on DKRZ’s recently installed supercomputer Mis-
tral, which delivers more than a PFLOP of computation performance with its
1500 nodes. Each node is equipped with two Intel E5-2680v3 @ 2.50GHz each
providing 30 MiB L3 cache and 64 GByte of main memory. The Lustre 2.5 stor-
age offers 30 Petabyte of capacity and consists of 29 ClusterStor 9000 server
pairs providing 58 OSS and 116 OSTs and delivers more than 300 GiB/s. The
system is in production, all tests are made on our single Lustre file system.

5.2 Conducted Experiments

A new benchmark for POSIX I/O has been written called io-model3. It measures
a variety of memory and file layouts, times each individual operation with high-
precision and outputs these values together with offsets for convenient post-
processing as CSV-file. In contrast to existing benchmarks for analyzing local or
parallel I/O such as IOzone [23], fio [1], and IOR [26], the goal of this benchmark
is to actually provide all the necessary input to automatically build the discussed
models. Existing benchmarks lack the flexibility to vary memory access patterns
and precise timing of individual I/Os – sub microsecond accuracy is needed, that
is needed for this task. To allow labeling of interesting cases, a parameter space
is explored; each run is parameterized with the settings:

– Mem layout: Defines how a memory buffer is accessed. In the introduced
experiments, the buffer is always preallocated and initialized and used as
a circular buffer (if needed) with 1 GiB of size. Settings are: off0 (we al-
ways read/write to/from the buffer at position 0), seq (sequential buffer
access), stride8MiB (after accessing data, skip 8 MiB on the buffer), reverse
(access the buffer from back to front), rnd (randomly access any position),
rnd8,8MiB (seek 8 MiB +- uniform random up to 8 MiB)

– Disk layout: Defines the spatial access pattern used when accessing the file.
Settings are identical to mem layout.

3 See https://github.com/JulianKunkel/io-modelling, the documentation of au-
tomatic model creation is an ongoing effort.

https://github.com/JulianKunkel/io-modelling


– Access size: Defines the access granularity for read() and write() in Bytes.
Settings are: 1, 4, 16, 64, 256, 1K, 2K, 4K, 8K, 16K, ..., 2MiB, 4MiB, 8MiB,
16MiB4.

– File size: 10 GiB (and in a few cases 1 TB).
– Repeats: Number of I/O operations per run. 10K or 1M.

Additionally, system states are varied:5

– Caching: Defines the status of the page cache. Discard means we read from
/dev/zero or write to /dev/null. Cached means the full file is pre-read ad-
ditionally at the beginning of the batch run using dd. Uncached means the
page cache is cleaned using sysctl vm.drop caches=3 and it is checked for
having been freed6.
Note that the goal from measuring the time for an I/O would be to identify
the actual caching state, e.g., was data cached in main memory, already
loaded on CPU cache or not cached at all. Therefore, reading from /dev/zero
serves the purpose as upper bound for in-memory data transfer (memory
copy) between page-cache and user-space buffer.

– Thread count: 1 or 20. Defines how many independent processes of the bench-
mark have been run. If multiple threads are used, each accesses its own file
but the aggregated file size is identical to the 1 thread case.

Files are reused between runs and only one stripe is used for each file, thus,
a single stripe remains on the identical OST7 for all experiments. When using
20 threads, each file is (usually) placed on a different OST by the default Lustre
policy. For each setting, the benchmark run is repeated three times. This is done
in an outer loop running all configurations, thus, noise that affects one run can
be identified when comparing them.

5.3 Analyzing the Lustre Behavior

When running the experiment three times with 10000 operations, a timeline is
obtained that can then be used to compute the density. An example is given
in Figure 2, the upper figure shows the individual measurements in logarithmic
scale and the lower figure the resulting density graph. The graph clearly shows
that there are two performance factors with mean 0.115 ms and 0.465 ms corre-
sponding to a throughput of 2170 MiB/s and 537 MiB/s, respectively. The long
tail in the density corresponds to individual operations that are significantly
slower than the typical operations. With the proposed method, the clusters are

4 A preliminary experiment with non-block multiples of access sizes led to comparable
results, therefore, they were not analyzed further.

5 Additionally re-write vs. truncated files was tested but did not show relevant differ-
ences. Therefore, these results are omitted.

6 Since Lustre does not guarantee to free the dirty pages but the call returns, this
procedure is repeated until the page cache memory drops below a threshold.

7 In Lustre, data of a file is partitioned into stripes that are distributed across Object
Storage Targets (OSTs).



identified and so is the tail for unexpectedly slow operations – up to two orders
of magnitudes slower. Including outliers an average throughput of 1.1 GiB/s is
achieved and without 1090 MiB/s. These outliers are purged for subsequent anal-
ysis. By analyzing statistics from /proc (see Table 2), it can be observed that
about 2500 RPC reads are performed to the Lustre servers and each operation
took about 1 MiB. Also it can be seen that 640k cache hits occur, thus Lustre
correctly pre-fetches the sequentially accessed data and almost no cache misses
(3 pages). Based on this analysis, it seems likely that the first performance fac-
tor represent data completely cached in the client cache achieving more than
2 GiB/s throughput. The question remains why many calls result in the aver-
age performance of 537 MiB/s. To understand this, a detailed inspection of the
Lustre I/O path would be necessary. Presumably, additional pre-fetching is per-
formed as part of the regular read, although it appears as cache hit. Thanks to
the black box methodology, two relevant conditions could be identified and can
be inspected further.

(a) Timeline for individual reads

(b) Density plot of the observations

Fig. 2. Duration for sequential reads with 256 KiB accesses (off0 mem layout).



Results when purging outliers Incl. outliers
Typ/ AccessSize AccessSize
File layout 1 1K 4K 64K 256K 1M 16M 4K 256K

R-off0 146K 139M 478M 4.2G 5.9G 7.2G 4.8G 408M 5.5G
R-seq 146K 108M 403M 1.1G 1.1G 1.2G 1.1G 204M 1090M
R-rnd 1.2K 608K 557K 14M 33M 117M 586M 5.1M 80.9M
R-rnd8MiB 17K 653K 970K 425M 2.4G 6.4G 4.4G 7.5M 1.2G
R-stride8,8M 3.5K 164K 491K 14M 40M 133M 797M 4.4M 79M
R-reverse 144K 962K 2.0M 28M 56M 337M 851M 15.1M 95.5M

W-off0 120K 115M 419M 2.2G 2.6G 2.9G 263M 236M 2.3G
W-seq 121K 103M 287M 1G 1G 1G 948M 171M 925M
W-rnd 4.1K 3.5M 9.3M 135M 341M 582M 809M 4M 128M
W-rnd8MiB 4.7K 4.2M 12M 243M 837M 63M 332M 5.8M 61M
W-stride8,8M 4.2K 3.7M 11M 150M 381M 589M 835M 4.4M 185M
W-reverse 115K 19M 291M 990M 963M 1005M 976M 133M 883M

(a) With cached data

Results when purging outliers Incl. outliers
Typ/ AccessSize AccessSize
File layout 1 1K 4K 64K 256K 1M 16M 4K 256K

R-off0 178K 172M 654M 4.6G 6.2G 7.1G 5.2G 612M 6.1G
R-seq 169K 164M 550M 1.1G 1.2G 1.2G 1.1G 353M 1.1G
R-rnd 275 240K 502K 5.6M 19M 134M 635M 515K 20M
R-rnd8MiB 5.6K 366K 1.7M 34M 2.6G 6.7G 4.5G 2.3M 1020M
R-stride8,8M 274 103K 393K 6.2M 20M 119M 736M 395K 20.6M
R-reverse 172K 620K 746K 10M 27M 115M 780M 723K 26.2M

(b) With clean cache

Table 1. Mean throughput in Byte/s for selected access granularities (off0 mem-
ory layout). The mean when purging the outliers is given for reference. Green is
good, purple is higher than network throughput and yellow/white are slow.



Typ Lay- Page cache read write osc read osc write Perf. in
out hits misses b avg b avg avg calls avg calls B/s

Runs with accessSize of 256 KiB
W D off0 0 0 201 40K 0 0 32K 0-6 1.1T

W C off0 0 0 201 262K 0 0 256K 1.1 2.6G
W C seq 0 0 201 262K 0 0 4M 625 1G
W C rnd 0 0 201 262K 4096 19K 3.9M 673.6 341M
W C rev 0 0 201 262K 0 0 4M 626 963M

R D off0 0 0 201 40K 0 0 42K 0.4 14G

R C off0 63 1 256K 40K 256K 1 0 0 5.9G
R C seq 640K 3 256K 57K 1M 2543 80K 0.4 1.1G
R C rnd 615K 16K 256K 58K 241K 20K 180K 4 33M
R C rev 629K 10K 256K 58K 256K 9976 104K 0-3 56M
R C rnd8,8 630K 17K 256K 5 252K 20 K 180K 4

R U off0 63 5 256K 40K 64K 5 0 0 6.2G
R U seq 640K 6 256K 57K 1M 2546 0 0 1.2G

Runs with accessSize of 1 MiB and a 1 TB file, caching on the client is not possible
For seq. 1M repeats are performed, for random 10k.
W seq 0 1.3 201 1M 0-8K 0-4 4M 250K 1007
W rnd 0 0-3 201 1M 4097 20K 3.2M 3309 104
R seq 255M 2 1M 2.5M 1M 1000K 3M 10 1109
R rnd 2M 9753 1M 60K 836K 24K 100K 3 55

Accessing 1 TB file with 20 threads, aggregated, performance is reported per thread
W seq 0-1 0-3 201 1M 2-17K 1-3 4.1M 254K 250
W rnd 0 0 201 1M 4096 1.8M 3.1M 320K 138
R seq 250M 480K 1M 21-24K 1.6M 630K 717K 41 168
R rnd 240M 900K 1M 20-23K 832K 2.3M 523K 36 47

Table 2. Deltas of the statistics from /proc for runs with access granularity of
256 KiB and 1 MiB (mem-layout is always off0). In the type column, D stands
for discard, C for cached and U for uncached. 1TB files do not fit into the cache.



An overview of the achieved performance for selected access granularities
is given in Table 1. Note that the mean arithmetic performance is computed
after outliers are purged. For 4 and 256 KiB the original throughput is kept
for reference. In the mean, about 2.1% of the observations are classified to be
an outlier when removing the tail of observations (see Figure 2 for a complete
example, the method would purge the tail after the blue triangle). In a few cases
– especially for very small access granularities, up to 15% of the measurements
behave very slow due to congestion and background activities of daemons. While
in sequential access patterns, the unexpected slow operations do not influence the
throughput much, for random patterns they degrade performance significantly,
e.g., 557 KiB/s throughput for random reads with 4 KiB accesses can be observed
with outliers and 5.1 MiB/s without. The reason is simple, a few operations are
several orders of magnitude slower than the typical accesses. This is not crucial
for the subsequent analysis as we are interested in the typical behavior and not
in extreme cases.

In Table 1, colors encode the performance relative to the node’s maximum
Lustre performance observed so far (5 GiB/s out of the 6 GiB/s delivered by
the FDR-IB network performance). When reading data from the pseudo device
/dev/zero (not shown in the table), a best performance of 15 GiB/s is achieved
when using off0 memory layout and all data fits into the CPU cache. This is
expected to be similar to cases in which data fits into the client cache; in both
cases, the Linux kernel performs a memory copy between kernel-space and user-
space buffer. Sequential memory access halves performance as data needs to be
written back to main memory. Even though read is a mere memcpy, there is
a slight performance difference when changing the file layout for small access
sizes (not shown). This is caused by the benchmark that also measures time
for lseek() and computing the next offset, but its effect is very small to affect
the conclusions of this paper. Write to /dev/null actually throws away the data
and does not require a memcpy, therefore, they all behave similarly and achieve
unrealistic speeds.

The results for experiment with cached data shows that Lustre does perform
significantly worse than reading from /dev/zero. This is surprising as the setup
(and when checking free memory), a copy of data appears to reside in the page
cache. Looking at detailed Lustre statistics from /proc, it turns out that with the
exception to rnd8,8M and off0, all other access patterns trigger server activity
although no other process accesses the data. Other experiments have shown that
the single stream performance on our system is about 1.1 GiB/s. Comparing
cached and clean cached system state, those perform similarly as the client-side
cache is not used as expected. The experiment with rnd8,8M and large access
granularities may access previously accessed data immediately, therefore, the
cache might be fresh enough.

To understand the behavior better, during the execution OS and Lustre’s
llite and read-ahead statistics are fetched from /proc before and after each
configuration is run. The deltas for the counters are shown Table 2; values are
rounded and if they vary significantly between the repeats of each experiment,



the span of the observed values is given in the table. Hits and misses are Lustre
statistics (in 4k pages), the next columns contain the operating system statistics
for the system I/O, and the next two columns the Lustre client statistics about
the number of RPCs transmitted and their average size. From the table, several
assumptions about the experiments and Lustre behavior can be investigated,
e.g., it can be verified that cached and uncached reads trigger similar activities,
random writes cause to request the partially overwritten blocks. Each random
read triggers about 12 interrupts and this case shows the highest number of
memory accesses (not shown in the table).

The statistics also include data for 1 TB files and for 20 threads; the single
thread performance for sequential access is similar to the one achieved with
10 GByte files. However, for random access, performance degrades substantially
(to 104 MiB/s). With increase of file size, a degradation is expected as the
ClusterStor 9000 back-end storage relies on a declustered RAID on HDDs and
larger offsets increase the seek time of the HDDs to around 10 ms.

When using 20 threads8, the achievable performance increases due to known
bottlenecks within the Lustre client [30], finally 5000 MiB/s are achieved for se-
quential write with 20 threads. Compared to a single thread, the random per-
formance stays on a comparable level, as each file is placed on another OST and
they are accessed concurrently.

5.4 Validating the approach for local I/O

Similar timelines and density plots can be seen on other file systems as well.
In this section, we will briefly look at node-local I/O. In this experiment, the
benchmark is run on a server equipped with two Intel Xeon X5650 Westmere
processors, 12 GB of main memory and a local HDD and formatted with an Ext4
file system. Figure 3 shows the timeline and density for sequential writes with
256 KiB of data. This figure shows only one run of the benchmark, i.e., writing
10,000 a 256 KiB block. It can be seen that there are again several clusters. In
this case three, one at 0.2 ms (about 1250 MiB/s is achieved), one at 0.3 ms and
one at 7.3 ms.

This time, due to the reduced complexity, the reason for the different clusters
in the graph can be explained better. One potential explanation is as follows:
At beginning, the write-behind cache of Linux works well and all operations end
quickly (lower cluster, blue operations). After a while Linux pdflush deamons
start to write out the dirty pages which only slightly defers the I/O (slightly
slower cluster, caused by locking inside the kernel). Unfortunately, the bench-
mark is too fast and the kernel stops the write call to flush pages as well. Clearly,
this is much slower and the latency of the disk with about 7 ms becomes visi-
ble. There could be other explanations clusters but most importantly with the

8 Note that with 20 threads, over three repeats the runtime of independently started
benchmarks varies between 275-325 and 196-215 seconds for sequential read and
write, respectively, so synchronization between processes is not a relevant issue. For
random access, write varies substantially between 300 and 710 and read between 920
and 2200s. But as we will see, this has no impact on the results.



(a) Timeline for the individual writes (b) Density plot of the observations

Fig. 3. Results for one write run with sequential 256 KiB accesses (off0 mem
layout).

methodology we can identify the relevant performance factors and then analyze
them further to find their cause.

This demonstrates that the proposed strategy is not only applicable to Lustre
but other systems as well.

6 Building Models to Predict Causes

Each model is built following the general algorithmic approach described in
Section 4. This requires to treat measurements for a fixed configuration by 1)
determine density of the measurements, 2) locate extrema in the density, 3)
locate the limit for outliers. Then, for the expected system state, i.e., discard,
cached or uncached, linear models are build individually to predict performance
for these system states.

In this paper, linear models for four different performance factors based on
the system state are investigated: discard and cached behavior, and, orthogonal
to the caching, if the memory layout is random (rnd) or cached (off0). Since
it turns out that the analysis of the Lustre file system is much more complex
than for a local file system, only the benchmark runs with fixed position (off-0)
are investigated. In fact, on our system the Lustre client side cache seems to
use a write-through policy allowing this experiment already to reveal interesting
aspects.

The model for discard is built by using the measurements obtained when
reading from /dev/zero and writing to /dev/null. For the cached model, regular
I/O is used and the file completely fits into page cache, for reads, the complete file
is pre-read into main memory to make sure it is available in page cache. Further
details about the configuration and benchmark are provided in Section 5.2. The
two variants of the memory access pattern are that the benchmark reads/writes
data to a 1 GiB random buffer (rnd) or overwriting data in a fixed buffer (off0)
that may be cachable in CPU cache. If none of these models apply, i.e., the
observed time is higher than predicted from random memory access to a random
file position, data is classified as uncached. Those operations involve additional
server communication and disk I/O.



Technically, each model is built using the statistics tool R applying its density()
function on logarithmic durations9. The identification of the extrema is en-
coded in an algorithm that identifies them in the density graph. Addition-
ally, the cutoff point for outliers is selected when the density is below 0.05 ·
last cluster maximum.

Normally, it would be necessary to treat each individual cluster as another
I/O-path. However, analysis of the density in these cases showed that the dis-
tance between the clusters is small. For example, see again Figure 2; with se-
quential I/O there are two clusters one at 0.12 ms and one at 0.47 ms, but with
random I/O the spread is much larger. Since, in this paper, we are interested in
major factors, we do not separate these minor cases further. The linear models
are built using the lm() function and fitting the determined outlier limit for
each size, adding 10% to this value as they vary between the sizes 10. The y
intercept for the model for large access sizes is fixed to the predicted value of
the small model for 4096 bytes11. Therefore, we assume that data points below
the estimate are explained by the model.

6.1 Understanding the Models

The parameters for the linear models and their accuracy on their training data
are given in Table 3. The table includes the average, absolute and relative predic-
tion error (in %), and the percentage of outliers that are purged when using the

9 It applies the Gaussian kernel; the nrd0 bandwidth estimator and adjustment factor
2 is used to avoid creation of too many clusters.

10 Again, to distinguish minor factors, one would have to build a linear model for each
cluster.

11 As said before, using just a single model across all access sizes is suboptimal for
predicting the full range of access granularities since Lustre performs I/O in the
granularity of the page size.

Case Model parameters Abs. err. Rel.err Outlier%
+ mem location Intercept I Factor c in s in % Exp. Model

discard R≤ 4Koff0 2.94e-07 4.41e-11 2.99e-08 10.4 0.7 0.1
discard R> 4Koff0 4.75e-07 7.67e-11 2.21e-05 27.4 2.1 0.2
discard W≤ 4Krnd 3.28e-07 2.25e-12 3e-08 10.1 0.8 0.1
discard W> 4Krnd 3.37e-07 2.94e-14 1.47e-07 53.5 2.8 0.0
cached R≤ 4K off0 8e-06 4.18e-10 7.57e-07 10.0 3.1 1.0
cached R> 4K off0 9.71e-06 1.44e-10 2.46e-05 14.0 1.8 10.2
cached R≤ 4K rnd 8.39e-06 4.91e-10 7.97e-07 10.1 2.8 0.9
cached R> 4K rnd 1.04e-05 2.99e-10 9.7e-05 15.5 2.2 0.1
cached W≤ 4K off0 1e-05 3.26e-10 9.36e-07 10.1 1.6 0.7
cached W> 4K off0 1.14e-05 3.93e-10 2.28e-05 18.3 1.2 30.0
cached W≤ 4K rnd 1.11e-05 7.16e-10 1.97e-06 18.4 1.5 5.0
cached W> 4K rnd 1.4e-05 5.87e-10 3.28e-05 23.6 0.6 26.0

Table 3. Parameters for the linear model p(s) = I + c · s and error metrics. The
file locality is always off0.



density-based outlier removal. These are not explained by the model (because
their duration is higher than the model prediction). For cached write, the linear
model showed a substantial number of outliers which are accesses with 4, 8 and
16 MiB size. It turned out that in this cases performance varies significantly by
two orders of magnitude (their mean performance is also substantially lower than
for 1 MiB, see Table 1) – this is a performance bug in Lustre. For this reason,
the linear model for write has been built based on the results up to 2 MiB access
size. The resulting model correctly detects these unexpectedly slow data points
as outliers and, thus, increases the percentage of outliers in the table.

For illustrative purpose, the measurements and model predictions for the read
model with cached data (off0 memory and file layout) are shown in Figure 4.
Note that this model is expected to behave like a memcpy as data is available in
the page cache and must only be copied to the user buffer that is stored in CPU
cache as long as it fits there. Figures for the other three models look similar.
Adding 10% to the value for the fitting has caused the shift in the left figure
(and adds naturally 10% to the relative error reported in the table).

How the four models for reads split the observed durations into their likely
causes is shown in Figure 5. The figure includes models for Lustre’s cached
behavior and for the node-local data transfer between kernel-space and user-
space buffer (discard models). The relevant performance factor is given by the
model that predicts the smallest duration still larger than the observation. By
comparing the models for cached-off0 with cache-rnd, it can be observed that
for the Lustre data and for small access sizes, both lines are similar. Therefore,
the memory location of the user space buffer does not matter and, thus, cannot
be predicted. For larger accesses, the discard-rnd case behaves similar to the
cached-off0 case that is measured with Lustre, thus cached I/O with Lustre to
a fixed (theoretically in CPU cache fitting buffer) behaves like a memcpy from
kernel space to a random memory buffer. Since Lustre’s data is fully cached

Fig. 4. Model accuracy for reading cached data (off0 locality in memory and
file). Other figures look similar.



Fig. 5. Read models predicting caching and memory location.

in the page cache, required duration should go down to the discard-off0 case.
This leads to the conclusion that there is still room for improvement in Lustre’s
I/O path even for large accesses. For smaller access granularities the situation is
much worse as cached data in Lustre is more than an order of magnitude slower
than reading from the pseudo device.

6.2 Applying the Model

Fig. 6. Timelines for reverse reading files with various access sizes into a seq.
buffer and identified classes. 10k repeats are performed per size and all three
repeats are shown – the figure is sorted by access size.



Experiment discard cached
state-mem-file uncached off0 rnd off0 rnd

D-reverse-off0 R 0.004 46 54 0.3 0.03
C-off0-off0 R 0.29 0 34 60 6.1
C-seq-off0 R 0.31 0 0 52 47
C-seq-reverse R 54 0 0 42 4.3
C-seq-rnd8 R 26 0 0 30 44
C-seq-rnd R 68 0 0 26 5.6
C-seq-seq R 42 0 0 48 9.5
C-seq-stride8,8 R 63 0 0 28 8.8
C-off0-rnd R 80 0 2e-04 18 1.9
U-off0-rnd R 100 0 0 0.01 0.15
U-seq-seq R 37 0 0 57 6.1

C-off0-rnd W 100 0 0 0 0.003
C-off0-seq W W 42 0 0 40 17
C-seq-seq W 48 0 0 40 12
C-off0-reverse W 15 0 0 71 14

Table 4. Model predictions classes in % of data points for selected memory &
file locations – access size is varied.

Now we apply the previously trained models on data that uses different access
patterns. This allows us to automatically determine the relevant performance
factors for each measurement. Moreover, unexpectedly slow operations – in terms
of the models – are also identified; we classify them as uncached for the moment.
Technically, the time for each measurement is compared with the prediction of all
models and the model that predicts a higher runtime is choosen. The illustration
in Figure 5 helps to understand this process. Assume we do an 32 KiB read
operation, if its runtime is below the discard-off0 line it behaves like a page-
cache copy, to a re-used buffer, i.e., in CPU cache. If it is above this line but
below the cached-off0 line, it is classified as discard to a random memory buffer.
Next, it behaves like cached I/O on Lustre or becomes uncached.

Table 4 gives an excerpt of the classification results of several access pat-
terns where we know the system state. For example, when applying the models
to all observations with sequential memory locality and reverse file access, the
individual operations are classified as shown in the timeline of Figure 6. It can
be seen that up to 16 KiB access granularity many data points are identified as
cached and then not any more. In fact, over the full data set, 42% are classified
to be cached (i.e., almost all small accesses) with data fitting in cache and 4.3%
as cached with random position in memory. The reason is simple: as read-ahead
only works with increasing offsets and we are reading from back to front, larger
access granularities are not likely to be cached anywhere in the system. However,
data is fetched in larger granularity and at page size boundaries, allowing small
accesses to benefit from previously fetched data.

Inspecting the results from Table 4 further, it can be seen that the method is
able to automatically classify the I/O operations in the experiments. Based on
our a-priory knowledge of the access patterns, it achieves a high accuracy and
still reveals interesting results. For example, for random file layout (U-off0-rnd



R and C-off0-rnd W) nearly all operations correctly are classified as uncached
and thus hit the server. When data is in the read cache (C-off0-rnd R), still
80% behave like they trigger reads from the server. Similarly, in the cases for
C-off0-off0 R and C-seq-off0 R, it is correctly identified that all data is served
from the cache and many operations can be correctly classified to stem from a
random memory location or like the direct memcpy. Therefore, the method is
effective to provide information if data is stemming from the page cache or the
Lustre server and even provides some hint about the memory locations.

(a) Read sequential, 1 thread (b) Read sequential, 20 threads

(c) Write sequential, 1 thread (d) Write sequential, 20 threads

(e) Read random, 1 thread (f) Read random, 20 threads

Fig. 7. Density plots when accessing 1 TB of data with 1 MiB access granularity.
The red triangle after the last cluster is the point after which all measurements
are classified to be extremely slow.

Validation with parallel programs To show that the assumptions made are rea-
sonable and also apply to concurrent processing as well; Figure 7 shows the
density plots when accessing 1 TB of data. Similarly, clusters of data emerge
and usually two major factors are visible. It can be seen that maxima and mean
of several clusters remain regardless of the number of threads; the clusters are a
bit shifted but still recognizable. Additionally, the case with 20 threads reveals



two additional minor performance factors – which are likely to be caused by
interference between threads.

7 Summary & Outlook

In this paper, a density-based analysis of ensembles is performed; firstly, this
allows to identify and remove extreme slow operations that distort the overall
performance analysis. Those slow operations can be caused by concurrent I/O to
the Lustre servers by other jobs or background daemons. Based on the cleaned
data, four linear models are created that predict different memory locations
in the user-space buffer but also decide if an I/O behaves like it is cached on
the client side or if it is uncached. With this model, it can be decided if a
measurement is likely to reside in memory and, thus, requiring only a memcpy.
If it behaves like cached data in Lustre or if it is uncached. With this approach,
for example, the interesting behavior of reverse reading a file became apparent
and could be explained.

In the future, these models will be extended to cover also server-sided cases
such as cached by the RAID system or fast, average and slow seeks of HDDs.
Since the probability distributions of these cases vary significantly, additional
techniques from statistics will be applied to classify them correctly.

The paper discussed the relevance of the method that helps to identify rel-
evant factors but does not yet automatically identify them for a given system.
However, using this approach, developers or administrators could focus to iden-
tify the cause behind the relevant performance factors. We will continue to imple-
ment a tool in SIOX or Darshan that uses these models to automatically assess
client-side performance. By extracting accessible knowledge from the operating
system, it will narrow down the likely cause for for the observed I/O perfor-
mance. Additionally, users could feed in system knowledge to provide further
insight about factors hidden from the operating system or client side. Once the
tool is completed, it will allow the application developer to identify the potential
for performance improvements, for example, if all I/O is supported by the client-
side page cache, I/O is optimal. Moreover, the potential time loss of suboptimal
I/O can be estimated by subtracting the estimated runtime for cached I/O from
the actual observed runtime.
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