
CoupledStorageSystem for E�icientManagement
of Self-DescribingData Formats (CoSEMoS)

Michael Kuhn, Kira Duwe
{michael.kuhn,kira.duwe}@informatik.uni-hamburg.de

https://cosemos.de/

ARCHITECTURE

FS Metadata File Metadata File Data SDDF File

Storage Tier Selector / Global Metadata Manager

Metadata 
Backend

Structured

...

Metadata 
Backend

Key‐value

Metadata 
Backend

Key‐value

Cold: HDD

Warm: SSD

Hot: NVRAM

...
Data
Backend

Object

Data
Backend

Object

Data
Backend

Object

Adaptable I/O Semantics

Client
Application Object Client

KV Client

Structured Client

Tool

DAI

Export
SDDF‐API

JULEA

• Green components exist already within JULEA

• Blue components exist but will be extended

• Red componentswill be created as part of CoSEMoS

WORK PACKAGES
• WP1: Application Interface
T1.1 SDDF Interface3

T1.2 Application Requirements and Semantics¥

T1.3 Data Analysis Interface¥

• WP2: Storage Tier Selector and Global Metadata Manager
T2.1 Structured Metadata BackendË

T2.2 Structured Metadata ClientË

T2.3 Metadata Backend Selection¥

T2.4 Data Storage Tiering3

• WP3: Evaluation and Dissemination
T3.1 Compatibility Tests¥

T3.2 Case Study¥

T3.3 Workshop Organization3

PARTNERS
• German Climate Computing Center (Prof. Dr. Thomas Ludwig)

• Intel (Johann Lombardi)

• Max Planck Institute for Meteorology (Uwe Schulzweida)

ACKNOWLEDGEMENTS AND LINKS
CoSEMoS is funded by the German Research Foundation (DFG) under
grant KU 3584/1-1. All results are being published on the project website
and integrated into JULEA:

• https://cosemos.de/

• https://github.com/wr-hamburg/julea

• https://github.com/wr-hamburg/julea-adios2

PROJECT DESCRIPTION
• CoSEMoS’s goal is to rethink the architecture of storage systems
– DFG project to improve performance and data management
– Built upon JULEA: Modern C11 code, available as open source
– Currently in its first year with a funding period of 2019–2022

• JULEA provides a flexible storage framework
– Contains necessary building blocks for storage systems
– Facilitates rapid prototyping and evaluation

• Runs in user space and has few dependencies
– Kernel code increases complexity and fragility significantly
– Possible to use on clusters without root access

PROBLEM STATEMENT
• Vast amounts of data written to parallel distributed file systems

• Self-describing data formats (SDDFs)widely used to exchange data

– Structural information is encoded in the files themselves
– Files can be accessed and interpreted without prior knowledge

1. Weak treatment of di�erent types of metadata
• Two di�erent types of metadata

– File systemmetadata is stored on the metadata servers
– File metadata (for example, attributes or additional annotations)
is stored within SDDF files on the data servers

• Strict separation of metadata leads to ine�icient file access

• Reading data requires file systemmetadata, file metadata, file data

2. Static I/O semantics

• Strict consistency and coherence semantics due to POSIX

• Di�erent semantics on di�erent layers not compatible

• Static approaches are unable to satisfy all requirements

3. Ine�icient data placement
• Hierarchical structuring of di�erent hardware is used

• Data movement across storage tiers is an expensive operation

• Hardware is available, new approaches need to be developed

OBJECTIVES
1. Global metadatamanagement

• Closely couple storage system and self-describing data formats
– All metadata handled by metadata servers
– Optimize metadata accesses using database technologies

• Storage system can handle di�erent kinds of metadata

• Novel data management approaches via a data analysis interface

– Query file metadata across multiple files in a unified way

2. Adaptable I/O semantics
• Possible to dynamically adapt semantics

• Application and library requirements vary widely

– Provide appropriate interfaces for applications and libraries
– Specify requirements regarding atomicity, consistency etc.

• Provide sensible defaults for SDDFs

3. Intelligent storage selection
• Use structural information for informed data placement decisions

– Improve performance by optimizing data placement
• Di�erent parts of self-describing files can be put on di�erent tiers


