
Introduction Design Optimizations Evaluation Visualization Conclusion

Directory-Based Metadata Optimizations for
Small Files in PVFS

Euro-Par 2008

Michael Kuhn Julian Kunkel Thomas Ludwig

Parallel and Distributed Systems
Institute for Computer Science

Ruprecht-Karls-Universität Heidelberg

2008-08-28

1 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

1 Introduction

2 Current Design of PVFS

3 Metadata Optimizations

4 Evaluation

5 Visualization

6 Conclusion and Future Work

2 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Motivation

There are cases when many small files must be stored in a
cluster file system

For each file additional metadata is stored

For example: ownership, permissions and timestamps

Metadata overhead is significant for small files

If these files are accessed frequently, metadata performance
plays an important role

Especially since every metadata operation has to go over the
network

3 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

MitoCheck Project

Genes in cells are knocked out

The cells’ behavior is then monitored

Pictures taken by microscopes

About 22 TB of pictures in 17 million files

Interpret pictures automatically

Generate videos from these pictures

Read 100 pictures, write 1 video

Even just listing all pictures is slow
Several minutes on traditional file systems

4 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Ideas

Several approaches can be taken to increase metadata
performance

Focus on individual file system operations or try to improve the
overall scalability

The changes presented here simply remove all metadata

For reasons presented later, this effectively makes striping of
file data impossible

These optimizations are only useful for small files

5 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

1 Introduction

2 Current Design of PVFS

3 Metadata Optimizations

4 Evaluation

5 Visualization

6 Conclusion and Future Work

6 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Parallel Virtual File System

PVFS is a parallel cluster file system

It supports multiple data and metadata servers

The whole file system is made up of several objects, each
identified by a unique handle

Each server is responsible for a so-called handle range

Each object is managed by exactly one server

File data is striped across all available data servers

Metadata of a single file is not distributed

The metadata for any file is managed by exactly one metadata
server

Supported by PIOviz

It is possible to visualize internal server operations

7 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Object Types

PVFS distinguishes several different types of physical objects

These can be stored and combined to make up logical objects
like files and directories
For example, a (logical) file is made up of a (physical) metafile
object and multiple (physical) datafile objects

The servers are just object stores, all the real work is done by
the clients

8 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Object Types

Metafile objects represent logical files

Used to store file metadata like ownership and permissions
Also stores all handles of the datafile objects associated with
this particular file

Datafile objects are used to store the actual data of files

They are distributed across all data servers
Metadata is not stored with each datafile object

Directory objects represent logical directories

They store directory metadata like ownership and permissions
So-called directory hints can be set on these directory objects
These hints affect all files within the directory

9 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Directory Hints

The directory hints are currently mostly used to control the
distribution of file data across the data servers

The num dfiles hint is simply used to assign the number of
datafile objects that should be used for a file
Normally one datafile object is created on each data server

Directory hints can be used to influence other behavior of
objects within the directory they are set on

This can be used for our optimizations

10 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

1 Introduction

2 Current Design of PVFS

3 Metadata Optimizations

4 Evaluation

5 Visualization

6 Conclusion and Future Work

11 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

PVFS Architecture

Application

BMI

System Interface
acache ncache

User Level Interface

Flow

Main

BMI  Trove

Flow

...Kernel-VFS

Job

Job

S
e
rv

e
r

C
lie

n
t

MPI-IO

DiskNetwork

Server
Client

Client

Most changes in the client’s System Interface layer

All higher layers automatically benefit from the changes

12 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Overview

Metadata optimizations are targeted at small files

Striping does not improve performance considerably and can
therefore be disabled
They can still be used for files of any size, but may degrade
performance for larger files

Introduce new directory hint: no metafile

It is possible to turn the metadata optimizations on and off on
a per-directory basis
Must be enabled explicitly

Change file system semantics to achieve better performance

13 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Unmodified PVFS File System

Size: 65536

Datafile (1001)

testfile: 101

Directory (11)

Datafiles: 1001, 1002

Metafile (101)

Size: 2342

Datafile (1002)

/testdir

/testdir/testfile

UID/GID:       100/100
Permissions: 0755

UID/GID:       100/100
Permissions: 0644

Metafile objects link together all datafile objects that belong
to a particular file
It is not really necessary to create multiple datafile objects for
small files 14 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Optimized PVFS File System

testfile: 1001

Directory (11)

Datafile (1001)

/testdir

/testdir/testfile

UID/GID:       100/100
Permissions: 0755

Size: 67878

The metafile object can be omitted if only one datafile object
exists

Use the datafile object’s handle instead of the metafile object’s

15 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Optimization Effects

Several problems have to be considered
The limit of one datafile object per file must be enforced

Basically what num dfiles already does

The client and server expect a metafile object to be present
This metafile object stores all metadata of a file, so this
information must be faked in some way
No permission checks are possible

PVFS clients can send arbitrary credentials anyway

The following advantages become apparent

No metadata server has to be contacted if a file needs to be
read or written
Only one data server needs to be contacted for each file

16 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

1 Introduction

2 Current Design of PVFS

3 Metadata Optimizations

4 Evaluation

5 Visualization

6 Conclusion and Future Work

17 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Environment

A relatively simple benchmark program was used to measure
the benefits of the optimizations

The program creates, lists and removes a big number of files in
a relatively flat directory hierarchy
Number of concurrently accessing clients and underlying
storage were varied

Storage space on ext3 and tmpfs partitions

Simulated moderate load with one client and heavy load with
five concurrent clients

Five machines from our evaluation cluster were used

Two machines acted as data servers, another two as metadata
servers and a fifth machine was used for the clients
Each with two Intel Xeon 2.0 GHz, 1 GByte RAM, an ATA disk
and a 1 GBit/s network interface

18 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Creation Benchmark

Each client creates 100 child directories in a single parent
directory

Populates each with 500 files

Files of size 0 are created

19 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Creation (ext3)

1 client 5 clients
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

Normal

no_metafile

T
im

e
 n

e
e
d

e
d
 (

in
 s

e
co

n
d

s)

One client: 147 files/s vs. 286 files/s (195%)

Five clients: 355 files/s vs. 833 files/s (235%)

20 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Creation (tmpfs)

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

Normal

no_metafile

T
im

e
 n

e
e
d

e
d
 (

in
 s

e
co

n
d

s)

Speedup with five concurrent clients is less drastic
No disk seek times could be avoided

21 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Listing Benchmark

Each client lists the files in all directories

Details like permissions, ownership, etc. are shown
Forces the client to contact each datafile object’s server
Otherwise only the names would need to be fetched from the
metadata server

22 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Listing (ext3)

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

110

Normal

no_metafile

T
im

e
 n

e
e
d

e
d
 (

in
 s

e
co

n
d

s)

One client: 862 files/s vs. 1613 files/s (187%)
Five clients: 2315 files/s vs. 4098 files/s (177%)

No slow metadata writes to skip
23 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Listing (tmpfs)

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

110

Normal

no_metafile

T
im

e
 n

e
e
d

e
d
 (

in
 s

e
co

n
d

s)

The times are nearly identical
Reads on ext3 from cache

24 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Removal Benchmark

Each client removes all files and directories

25 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Removal (ext3)

1 client 5 clients
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

Normal

no_metafile

T
im

e
 n

e
e
d

e
d
 (

in
 s

e
co

n
d

s)

One client: 154 files/s vs. 256 files/s (167%)

Five clients: 309 files/s vs. 806 files/s (261%)

26 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Removal (tmpfs)

1 client 5 clients
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Normal

no_metafile

T
im

e
 n

e
e
d

e
d
 (

in
 s

e
co

n
d

s)

Speedup with five concurrent clients is less drastic
No disk seek times could be avoided

27 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Overview

Creation Listing Removal
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 client, disk

5 clients, disk

1 client, tmpfs

5 clients, tmpfs

R
a
ti

o
 o

f 
n

o
_m

e
ta

fi
le

 t
o
 n

o
rm

a
l

On average, all operations are about twice as fast
28 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

1 Introduction

2 Current Design of PVFS

3 Metadata Optimizations

4 Evaluation

5 Visualization

6 Conclusion and Future Work

29 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

PIOviz

PIOviz allows PVFS’s internal operations to be visualized

Consists of MPICH2, (modified) PVFS and some tools
MPICH2 already allows tracing of MPI programs
PIOviz does the same for PVFS (and more)
PVFS and MPI traces can then be merged

The MPI part was not used at all

Trace files were visualized with Jumpshot

30 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Creation (normal)

1. Read the parent directory’s attributes

2. Create the metafile object

3. Create the datafile objects

4. Write the metafile object’s attributes

5. Create a directory entry for the new file

31 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

File Creation (no metafile)

1. Read the parent directory’s attributes

3. Create the datafile object

5. Create a directory entry for the new file

32 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

1 Introduction

2 Current Design of PVFS

3 Metadata Optimizations

4 Evaluation

5 Visualization

6 Conclusion and Future Work

33 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Conclusion

The performance of some common file system operations
could be doubled

Only a relatively small amount of changes were made

13 files changed, 249 insertions(+), 11 deletions(-)

Optimizations must be enabled explicitly

They do not influence the normal operation of PVFS

Not yet ready to be used in production environments

Implementation is based on a modified development version
between versions 2.6.2 and 2.7.0
The modified version offers enhanced tracing capabilities used
for visualization

34 / 35



Introduction Design Optimizations Evaluation Visualization Conclusion

Future Work

File systems should provide some mechanism to tune file
system semantics

(Power) Users usually know best what they need

These optimizations are just a first step in this direction

The user should have control over as many file system aspects
as possible

Locking strategies
Data safety
Consistency

File data and metadata

. . .

35 / 35


	Introduction
	Current Design of PVFS
	Metadata Optimizations
	Evaluation
	Visualization
	Conclusion and Future Work

