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Parallel Distributed File Systems

Most operations are expensive to perform

Especially true for large amounts of small requests
Large number of clients performing many small operations can
easily saturate the I/O system

Many algorithms and optimizations for efficient I/O exist

Basically two categories:

Client-side: trying to minimize the work the servers have to do
Server-side: let the servers handle all the work themselves

3 / 11



Introduction Design Evaluation Conclusion

State of the Art

Traditionally, data is accessed in contiguous regions

Non-contiguous I/O enables applications to access several
regions in one request

Collective I/O explicitly relates I/O performed by multiple
clients with each other

Two-Phase is an optimization for collective I/O

Clients collaborate during I/O

Goal: analyze whether comparable performance results can be
achieved with server-side optimizations

4 / 11



Introduction Design Evaluation Conclusion

Simulation Framework

Presented optimizations are implemented in a simulator as a
first step

HDTrace can simulate, trace and visualize applications

PIOsimHD allows simulating arbitrary network topologies,
servers and client applications

Goal: allow easy and fast prototyping of new algorithms

Advantages:

Not dependent on any specific project environment
Can serve as a starting point for adoption into real-life projects
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Cache Layers

NoCache does no caching at all

All I/O operations are forwarded directly to the I/O subsystem

SimpleWriteBehindCache does rudimentary caching

Operations are written out in a background thread
Write operations do not block the calling client

AggregationCache performs simple read/write optimizations

Tries to combine I/O operations with queued ones

ServerDirectedIO additionally reorders I/O operations
Merge multiple client requests into larger contiguous
operations

Unnecessary write requests are discarded early

Access to all pending requests
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Comparison With Existing File Systems

Comparison with PVFS:

Normal buffer size per I/O operation is 256 KiB
Only a subset of reads is announced to the I/O subsystem
Large reads are fragmented

Might cause the access pattern to look like random accesses
Can cause a serious performance degradation

Read performance can be compared to NoCache

Comparison with Linux:

Performs write-behind
Some sort of aggregation
Observable write performance comparable to
AggregationCache
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Cluster Setup

Simulated cluster comprised of twenty nodes
Ten clients, ten (file) servers:

1GBits/s NIC
50MiB/s HDD

Maximum I/O throughput of 500 MiB/s
Data is striped across all servers with a round-robin scheme

Comparison uses individual and collective I/O operations

1.000 MiB file divided into data blocks of equal size
Individual: one data block (Ind.), 100 data blocks (Ind. (100))
or all data blocks (Ind. (All)) accessed in each iteration
Collective: one collective operation to access all data blocks
Resembles I/O patterns often found in HPC applications

Iterative algorithms perform I/O every n iterations
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NoCache (NC), SimpleWriteBehindCache (SWBC),
AggregationCache (AC) and ServerDirectedIO (SDIO)

Batching operations results in performance gains

For write operations, less batching is required

Can be processed in the background
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Better performance with non-optimizing cache layers
Due to the larger data block size
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Complex client-side optimizations are not necessarily better
than relatively simple server-side optimizations

AggregationCache and ServerDirectedIO deliver better
performance

Necessary to batch operations or use large operations

Simple server-side optimizations are often sufficient for our
use cases

Could alleviate the need for sophisticated client-side
optimizations

Some room for improvement:

ServerDirectedIO does not influence the order in which the
clients send their data
Benchmarks using SSDs would be interesting
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