
Introduction Design Evaluation Conclusion

Simulation-Aided Performance Evaluation of
Server-Side Input/Output Optimizations

Michael Kuhn, Julian Kunkel, Thomas Ludwig

Scientific Computing
Department of Informatics

University of Hamburg

2012-02-16

1 / 11



Introduction Design Evaluation Conclusion

1 Introduction

2 Design

3 Evaluation

4 Conclusion

2 / 11



Introduction Design Evaluation Conclusion

Parallel Distributed File Systems

Most operations are expensive to perform

Especially true for large amounts of small requests
Large number of clients performing many small operations can
easily saturate the I/O system

Many algorithms and optimizations for efficient I/O exist

Basically two categories:

Client-side: trying to minimize the work the servers have to do
Server-side: let the servers handle all the work themselves

3 / 11



Introduction Design Evaluation Conclusion

State of the Art

Traditionally, data is accessed in contiguous regions

Non-contiguous I/O enables applications to access several
regions in one request

Collective I/O explicitly relates I/O performed by multiple
clients with each other

Two-Phase is an optimization for collective I/O

Clients collaborate during I/O

Goal: analyze whether comparable performance results can be
achieved with server-side optimizations

4 / 11



Introduction Design Evaluation Conclusion

Simulation Framework

Presented optimizations are implemented in a simulator as a
first step

HDTrace can simulate, trace and visualize applications

PIOsimHD allows simulating arbitrary network topologies,
servers and client applications

Goal: allow easy and fast prototyping of new algorithms

Advantages:

Not dependent on any specific project environment
Can serve as a starting point for adoption into real-life projects

5 / 11



Introduction Design Evaluation Conclusion

Cache Layers

NoCache does no caching at all

All I/O operations are forwarded directly to the I/O subsystem

SimpleWriteBehindCache does rudimentary caching

Operations are written out in a background thread
Write operations do not block the calling client

AggregationCache performs simple read/write optimizations

Tries to combine I/O operations with queued ones

ServerDirectedIO additionally reorders I/O operations
Merge multiple client requests into larger contiguous
operations

Unnecessary write requests are discarded early

Access to all pending requests

6 / 11



Introduction Design Evaluation Conclusion

Comparison With Existing File Systems

Comparison with PVFS:

Normal buffer size per I/O operation is 256 KiB
Only a subset of reads is announced to the I/O subsystem
Large reads are fragmented

Might cause the access pattern to look like random accesses
Can cause a serious performance degradation

Read performance can be compared to NoCache

Comparison with Linux:

Performs write-behind
Some sort of aggregation
Observable write performance comparable to
AggregationCache

7 / 11



Introduction Design Evaluation Conclusion

Cluster Setup

Simulated cluster comprised of twenty nodes
Ten clients, ten (file) servers:

1GBits/s NIC
50MiB/s HDD

Maximum I/O throughput of 500 MiB/s
Data is striped across all servers with a round-robin scheme

Comparison uses individual and collective I/O operations

1.000 MiB file divided into data blocks of equal size
Individual: one data block (Ind.), 100 data blocks (Ind. (100))
or all data blocks (Ind. (All)) accessed in each iteration
Collective: one collective operation to access all data blocks
Resembles I/O patterns often found in HPC applications

Iterative algorithms perform I/O every n iterations

8 / 11



Introduction Design Evaluation Conclusion

Ind.
Ind. (100)

Ind. (All)
TP

I-TP

0
100
200
300
400
500

Read (5 KiB)

NC SWBC AC SDIO

T
hr

ou
gh

pu
t (

in
 M

iB
/s

)

Ind.
Ind. (100)

Ind. (All)
TP

I-TP

0
100
200
300
400
500

Write (5 KiB)

NC SWBC AC SDIO

T
hr

ou
gh

pu
t (

in
 M

iB
/s

)
NoCache (NC), SimpleWriteBehindCache (SWBC),
AggregationCache (AC) and ServerDirectedIO (SDIO)

Batching operations results in performance gains

For write operations, less batching is required

Can be processed in the background

9 / 11



Introduction Design Evaluation Conclusion

Ind.
Ind. (100)

Ind. (All)
TP

I-TP

0
100
200
300
400
500

Read (50 KiB)

NC SWBC AC SDIO

T
hr

ou
gh

pu
t (

in
 M

iB
/s

)

Ind.
Ind. (100)

Ind. (All)
TP

I-TP

0
100
200
300
400
500

Write (50 KiB)

NC SWBC AC SDIO

T
hr

ou
gh

pu
t (

in
 M

iB
/s

)

Ind.
Ind. (100)

Ind. (All)
TP

I-TP

0
100
200
300
400
500

Read (512 KiB)

NC SWBC AC SDIO

T
hr

ou
gh

pu
t (

in
 M

iB
/s

)

Ind.
Ind. (100)

Ind. (All)
TP

I-TP

0
100
200
300
400
500

Write (512 KiB)

NC SWBC AC SDIO

T
hr

ou
gh

pu
t (

in
 M

iB
/s

)

Better performance with non-optimizing cache layers
Due to the larger data block size

10 / 11



Introduction Design Evaluation Conclusion

Complex client-side optimizations are not necessarily better
than relatively simple server-side optimizations

AggregationCache and ServerDirectedIO deliver better
performance

Necessary to batch operations or use large operations

Simple server-side optimizations are often sufficient for our
use cases

Could alleviate the need for sophisticated client-side
optimizations

Some room for improvement:

ServerDirectedIO does not influence the order in which the
clients send their data
Benchmarks using SSDs would be interesting

11 / 11


	Introduction
	Design
	Evaluation
	Conclusion

