Simulation-Aided Performance Evaluation of
Server-Side Input/Output Optimizations

Michael Kuhn, Julian Kunkel, Thomas Ludwig

Scientific Computing
Department of Informatics
University of Hamburg

2012-02-16

1form
i'hl Universitdt Hamburg dle ZI.Ikunft

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Introduction

Design

Evaluation

Conclusion

Introduction

00

Parallel Distributed File Systems

m Most operations are expensive to perform
m Especially true for large amounts of small requests
m Large number of clients performing many small operations can
easily saturate the /O system
m Many algorithms and optimizations for efficient /O exist
m Basically two categories:

m Client-side: trying to minimize the work the servers have to do
m Server-side: let the servers handle all the work themselves

Introduction

oe

State of the Art

m Traditionally, data is accessed in contiguous regions

m Non-contiguous 1/O enables applications to access several
regions in one request

m Collective 1/0 explicitly relates |/O performed by multiple
clients with each other
m Two-Phase is an optimization for collective /0
m Clients collaborate during 1/0

m Goal: analyze whether comparable performance results can be
achieved with server-side optimizations

Introduction Design

000

Simulation Framework

m Presented optimizations are implemented in a simulator as a
first step

m HDTrace can simulate, trace and visualize applications
m PlOsimHD allows simulating arbitrary network topologies,
servers and client applications
m Goal: allow easy and fast prototyping of new algorithms
m Advantages:

m Not dependent on any specific project environment
m Can serve as a starting point for adoption into real-life projects

Introduction Design Evaluation

0®0

Cache Layers

m NoCache does no caching at all
m All I/O operations are forwarded directly to the |/O subsystem

SimpleWriteBehindCache does rudimentary caching

m Operations are written out in a background thread
m Write operations do not block the calling client

AggregationCache performs simple read/write optimizations
m Tries to combine 1/O operations with queued ones

m ServerDirectedIO additionally reorders /O operations

m Merge multiple client requests into larger contiguous
operations

m Unnecessary write requests are discarded early
m Access to all pending requests

Introduction Design

ooe

Comparison With Existing File Systems

m Comparison with PVFS:
m Normal buffer size per 1/O operation is 256 KiB
m Only a subset of reads is announced to the |/O subsystem
m Large reads are fragmented
m Might cause the access pattern to look like random accesses
m Can cause a serious performance degradation
m Read performance can be compared to NoCache
m Comparison with Linux:

m Performs write-behind

m Some sort of aggregation

m Observable write performance comparable to
AggregationCache

Introduction igi Evaluation

000

Cluster Setup

m Simulated cluster comprised of twenty nodes
m Ten clients, ten (file) servers:
m 1GBits/s NIC
m 50 MiB/s HDD
m Maximum |/O throughput of 500 MiB/s
m Data is striped across all servers with a round-robin scheme
m Comparison uses individual and collective 1/O operations
m 1.000 MiB file divided into data blocks of equal size
m Individual: one data block (/nd.), 100 data blocks (Ind. (100))
or all data blocks (Ind. (All)) accessed in each iteration

m Collective: one collective operation to access all data blocks
m Resembles |/O patterns often found in HPC applications

m lterative algorithms perform I/O every n iterations

Evaluation

000

Read (5 KiB) Write (5 KiB)

2 500 2 500

£ 400 £ 400

< 300 < 300

< 200 l] < 200

2 100 .] 32 100

5 o _ 5 o—m

3 Ind. (100) 3 Ind. (100)

£ Ind. Ind. (AII TP £ Ind. Ind AII I-TP
ENC ESWBC DAC ESDIO ENC BSWBC DAC ESDIO

m NoCache (NC), SimpleWriteBehindCache (SWBC),
AggregationCache (AC) and ServerDirectedIO (SDI/O)
m Batching operations results in performance gains
m For write operations, less batching is required
m Can be processed in the background

Evaluation
[ele]]

Read (50 KiB) Write (50 KiB)

@ 500 @ 500

€ 400 € 400

‘c 300 ‘c 300

< 200 < 200

2 100 .] 2 100

5 (=l o 0

3 Ind. (100) 3 Ind. (100)

E Ind. Ind (Al I-TP "5‘ Ind. Ind (All) I-TP
ENC ESWBC TOAC mSDIO ENC ESWBC DAC mSDIO

Read (512 KiB) Write (512 KiB)

@ 500 @ 500

€ 400 € 400

‘c 300 ‘c 300

< 200 < 200

2 100 .] 2 100

L <

> 0 © 0

3 Ind. (100) 3 Ind. (100)

E Ind. Ind (Al I-TP "5‘ Ind. Ind (All) I-TP
ENC ESWBC OAC ESDIO ENC ESWBC OAC ESDIO

m Better performance with non-optimizing cache layers
m Due to the larger data block size

10/11

Conclusion

m Complex client-side optimizations are not necessarily better
than relatively simple server-side optimizations

m AggregationCache and ServerDirectedIO deliver better
performance
m Necessary to batch operations or use large operations

m Simple server-side optimizations are often sufficient for our
use cases

m Could alleviate the need for sophisticated client-side
optimizations
m Some room for improvement:

m ServerDirectedIO does not influence the order in which the
clients send their data
m Benchmarks using SSDs would be interesting

11/11

	Introduction
	Design
	Evaluation
	Conclusion

