Überlegungen Einsatzgebiete Virtualisierungslösungen Fazit Hardwarevirtualisierung

Virtualisierung

Christian Voshage

11. Mai 2009

Inhaltsverzeichnis

- Überlegungen
 - Grundüberlegungen
 - Vorteile
 - Hardware-Emulation
 - Nachteile
- ② Einsatzgebiete
 - Servervirtualisierung
 - Clientvirtualisierung
- Virtualisierungslösungen
 - Applikationsvirtualisierung
 - Betriebssystemvirtualisierung
 - Virtual Machine Monitor
 - Paravirtualisierung
- 4 Fazit
- Hardwarevirtualisierung

Überlegungen

- Mehrere Instanzen (Partitionierung)
 - verhalten sich wie volle Maschinen (eigene CPU, RAM, Grafikkarte etc.)
 - virtualisierte Hardware sollte am Besten unabhänging von der echten Hardware einrichtbar sein
 - Virtualisierung soll nicht von Software erkannt werden
 - Erkennung der oder eine Anpassung für die Virtualisierungssoftware kann bei Entwicklungen stören
- Eine Instanz aus mehreren Rechnern (Konnotation)
 - Physikalisch Getrenntes zusammenfassen

Überlegungen

- Zugriffsregelung
 - Direktzugriff: Direkter Aufruf der Hardware
 - Hardware virtualisieren: Hardwareanforderungen werden an virtualisierte Hardware gestellt oder werden abgefangen
- Ressourcenaufteilung
 - reelle Hardware muss nun auf mehrere virtuelle Systeme verteilt werden
- Einfluss zwischen den Systemen
 - Speicherzugriffe auf andere Systeme vermeiden

Vorteile

- Änderungen am Server und Infraktrukturen kosten weniger Aufwand
 - Updates können zentral erledigt werden, statt auf einzelnen Systemen separat gemacht werden zu müssen
- Kosteneinsparung bei Entwicklungen, da benötigte Hardware virtualisiert werden kann (statt gekauft werden muss)
- System speicherbar (Snapshots) Gesamter Systemzustand wird in Daten gespeichert und kann kopiert, portiert und wieder aufgerufen werden
 - wiederherstellbar
 - vervielfältigbar

Vorteile

- Sichere Umgebung
 - Abschottung gegenüber anderen Systemen
 - Wiederherstellbarkeit nach Fehlern/Abstürzen
 - Absturz eines Systems berührt andere Systeme nicht
- kostengünstige Testumgebung
 - Mehrere verschiedene Systeme auf einer Hardware
 - Zusätzliche oder überschüssige Hardware kann durch Simulation ausgeglichen werden
- Simulieren Emulieren alter Systeme
 - Kompatibilität zu älteren Programmen und Systemen

Hardware-Emulation

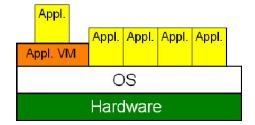
- Gerät soll Hardware nachbilden
 - gleicher Eingabe
 - mit gleichen Programmen
 - sollen gleiches Ergebnis erzielen

Nachteile

- Performanceaufteilung auf die einzelnen (Gast-)Systeme
 - Einzelne Hardware muss die Arbeit für mehrere Systeme leisten
- Emulationsaufwand (Virtualisierungsschwund) bis zu 25%
 - Hardware muss passend angesprochen werden(ggf. Zwischenschritte nötig)
 - Anfragen auf andere Systeme oder deren Ressourcen müssen abgefangen werden
- Kommunikation zwischen Gast- und Host-System vieleicht problematisch
 - Virtualisierungssoftware muss das Betriebssystem oder die Hardware unterstützen und passend ansprechen
- Wissen über Virtualisierung beim (betreuenden) Personal nötig
- Schlechte Virtualisierung kostet Zeit und Geld

Servervirtualisierung

- Mehrere Server/Dienste auf einer Maschine
- Weniger Hardware spart
 - Anschaffungskosten
 - Stromkosten Betrieb und Kühlung
 - Stellplätze
 - Administration


Clientvirtualisierung

- Rechenzentrum-Infrastruktur
 - Daten(Einstellungen und Applikationen) werden via Netzwerk beim Starten geladen
- PC-Desktop virtualisiert
 - Betriebssystem
 - Anwendungen
 - Einstellungen
- Arbeitsplatz-PC geschützt

Applikationsvirtualisierung - Überlegung

- Plattformunabhängig
 - nicht jede Applikation auf ein Betriebssystem ausrichten, sondern alle auf eine virtualisierte Maschine, die auf dem Betriebsystem läuft
- Systemschonend
 - Zwischenergebnisse und Daten können in der virtuellen Maschine gespeichert werden und beim Beenden gelöscht werden

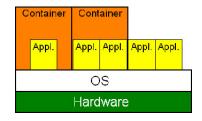
Applikationsvirtualisierung - Grafik

Applikationsvirtualisierung - Vorteile

- Einfaches Einbinden der Applikation, da keine Verflechtung mit dem OS besteht
 - mehrere Lösungen & Versionen gleichzeitig lauffähig, auch wenn Ressourcen ungeteilt benötigt werden
 - Programm kann Admin-Rechte erhalten und der Virtualisierung nur eingeschränkte Rechte zugestanden werden
- Fehlerhafte programmierte Software ungefährlicher
 - Systemabstürze sind unwahrscheinlicher (da abgestürzte virtuelle Umgebung einfach terminiert werden kann)
 - Originalzustand des Programms kann jederzeit hergestellt werden
- Applikation ohne Installation verfügbar
- Zero Footprint
 - Registry von Windows geschont

Applikationsvirtualisierung - Nachteile

- Weitere Komplexitätsebene
 - Mehr Zeit in der Planung nötig
- Rechenintensiv
 - Die virtualisierte Maschine muss jede Kommunikation mit dem Betriebssystem angemessen anpassen
- Fraglich, ob Virtualisierungssoftware auf anderen Systemen verfügbar ist (bei gängigen Betriebssystemen sicherlich der Fall)
- bis zu 100 € pro Client


Applikationsvirtualisierung - Beispiele

- Java Virtual Machine
- VMware ThinApp
- Xenocode Virtual Application Studio
- Microsoft App-V (Softgrid)

Betriebssystemvirtualisierung - Überlegung

- Kein neues Betriebssystem, sondern neue Container(Jails) im System
 - Partitionierung des Betriebsystems
 - Mehrere Instanzen als Prozesse nebeneinander
- Unter einem Kernel laufen verschiedene Instanzen
 - Kernel kann allen Instanzen zur Verfügung gestellt werden
- Host-System kann wie gewohnt Ressourcen verteilen
 - Instanzen sind Prozesse, die im Betriebssystem laufen

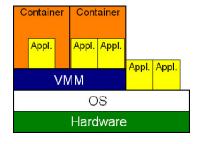
Betriebssystemvirtualisierung - Grafik

Betriebssystemvirtualisierung - Vorteile

- Wenig Speicheraufwand
 - Anderungen und Einstellungen müssen nur gespeichert werden
- Hohe Geschwindigkeit im Gastsystem
- Geringer Ressourcenbedarf

Betriebssystemvirtualisierung - Nachteile

- Nur ein Betriebssystem kann virtualisiert werden
 - durch gemeinsame Nutzung der Bibliothek kann nur das Host-Betriebssystem virtualisiert werden
- Hoständerungen (in geteilten Bereichen) betreffen Gäste


Betriebssystemvirtualisierung - Beispiele

- FreeBSD Jails
- Solaris Zone/Container
- Open VZ
- Linux Vserver
- Virtuozzo

Virtual Machine Monitor - Überlegung

- Auf einem Betriebssystem verschiedene Systeme simulieren
 - Gäste können unterschiedlich virtualisiert werden in
 - Hardware
 - Software
- Anpassung des Systems zur Laufzeit
 - nur teilweise möglich

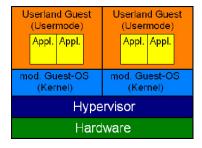
Virtual Machine Monitor - Grafik

Virtual Machine Monitor - Vorteile

- Gast muss nicht angepasst werden
 - da Gäste immer den VMM ansprechen
- Gast-Hardware flexibel
 - ohne Abhängigkeit zum Betriebssystem kann die Hardware simuliert werden
- Host und Gäste (OS- und Versions-) unabhängig
 - Gäste nutzen eigene Bibliotheken im Gegensatz zu vorherig genannten Lösungen

Virtual Machine Monitor - Nachteile

- Hardware muss unterstützt werden
- Hardware- und Prozessorvirtualisierung aufwendig
 - jede Virtuelle Maschine benötigt einen zusätlichen Prozess, der die Hardwarevirtualisierung übernimmt
- Applikationen laufen optimal, wenn sie auf dem Gast installiert sind


Virtual Machine Monitor - Beispiele

- VM Ware Server
- Microsoft Virtual Server

Paravirtualisierung - Überlegung

- Einmalige Virtualisierung der Hardware
 - VM weiß von der virtuellen Hardware
- Hypervisor
 - Abstrakte Verwaltungssicht
 - Verteilt Ressourcen wie Prozessor unter Applikationen
 - Keine Hardware, sondern eine API steht den Gastsystemen zur Verfügung

Paravirtualisierung - Grafik

Paravirtualisierung - Vorteile

- flexible Anpassung der Gasthardware
- Abbildung der virtuellen Hardware erfordert nur einen Prozess
 - verbesserter Zugriff auf die virtuelle Hardware durch das Gast-Betriebssystem
 - Geringerer Schwund

Paravirtualisierung - Nachteile

- Hardwarespezifischer als andere Lösungen
- Anpassung der Gast-Betriebssysteme notwendig
- stetige Anpassung bei Updates des Hosts/Gasts erforderlich

Paravirtualisierung - Beispiele

- Citrix XenServer
- Virtual Iron
- Microsoft Hyper-V

- Die Wahl der Virtualisierungslösung ist stark abhängig von dem Umfang des zu virtualisierenden Bereichs
 - Reine Softwarevirtualisierung ist mit Applikationsvirtualisierung bereits möglich
 - Sollen mehrere Applikationen zusammen in einer virtuellen Umgebung laufen, so werden bereits Container nötig
 - Sollen auch andere Betriebssysteme und Hardware unterstützt werden muss ein Virtual Maschine Monitor eingesetzt werden
 - Wenn die Virtualisierung nicht über das Betriebsystem gehen soll erledigt dies die Hypervisor-Lösung, die direkt auf der Hardware sitzt

Exkurs: CPU-Ringe

- Um das System vor Zugriffsverletzungen zu schützen nutzen CPUs verschiedene Rechtevergaben
- Ein Prozess darf nur auf Prozesse in weiter außen gelegenen Schichten Einfluss nehmen
- Heute ist es gängig nur Ring 0 für den Kernel des Betriebsystems zu nutzen und den Ring 3 für alle anderen Prozesse

Hardwarevirtualisierung

- Neue CPUs haben Virtualisierungs-Erweiterung
 - CPU erkennt Ring0-Zugriffe von virtuellen Instanzen und verweigert Zugriffe auf Prozesse außerhalb der Instanz
- Privilegien neu geordnet
- Neue Hypervisorschicht beim Speicherzugriff