
Hybrid Parallel Programming
Slide 1 Höchstleistungsrechenzentrum Stuttgart

Hybrid MPI and OpenMP
Parallel Programming

MPI + OpenMP and other models
on clusters of SMP nodes

Rolf Rabenseifner
High-Performance Computing-Center Stuttgart (HLRS), University of Stuttgart,

rabenseifner@hlrs.de www.hlrs.de/people/rabenseifner

Invited Talk in the Lecture
“Hochleistungsrechnen“

Prof. Dr. habil Thomas Ludwig, Deutsches Klimarechenzentrum (DKRZ),
Hamburg

June 28, 2010

Slide 2 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Outline
slide number

• Introduction / Motivation 2

• Programming models on clusters of SMP nodes 6

• Case Studies / Benchmark results 13

• Mismatch Problems 23

• Opportunities: Application categories that can 52
benefit from hybrid parallelization

• Thread-safety quality of MPI libraries 62

• Other options on clusters of SMP nodes 67

• Summary 81

• Appendix 89

Slide 3 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Motivation

• Efficient programming of clusters of SMP nodes
SMP nodes:
• Dual/multi core CPUs
• Multi CPU shared memory
• Multi CPU ccNUMA
• Any mixture with shared memory programming model

• Hardware range
• mini-cluster with dual-core CPUs
• …
• large constellations with large SMP nodes

… with several sockets (CPUs) per SMP node
… with several cores per socket

���� Hierarchical system layout

• Hybrid MPI/OpenMP programming seems natural
• MPI between the nodes
• OpenMP inside of each SMP node

Node Interconnect

SMP nodes
cores
shared
memory

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

Slide 4 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

Motivation

• Which programming model
is fastest?

• MPI everywhere?

• Fully hybrid
MPI & OpenMP?

• Something between?
(Mixed model)

?• Often hybrid programming
slower than pure MPI
– Examples, Reasons, …

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

Slide 5 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Goals of this tutorial

• Sensitize to problems on clusters of SMP nodes

see sections � Case studies
� Mismatch problems

• Technical aspects of hybrid programming

see sections � Programming models on clusters
� Examples on hybrid programming

• Opportunities with hybrid programming

see section � Opportunities: Application categories
that can benefit from hybrid paralleliz.

• Issues and their Solutions

with sections � Thread-safety quality of MPI libraries
� Tools for debugging and profiling

for MPI+OpenMP

•Less
frustration
&

•More
success
with your
parallel
program on
clusters of
SMP nodes

Slide 6 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / Benchmark results
• Mismatch Problems
• Opportunities:

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Other options on clusters of SMP nodes
• Summary

Slide 7 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Major Programming models on hybrid systems

• Pure MPI (one MPI process on each core)
• Hybrid MPI+OpenMP

– shared memory OpenMP
– distributed memory MPI

• Other: Virtual shared memory systems, PGAS, HPF, …
• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the
SMP nodes

MPI between the nodes
via node interconnect

Slide 8 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Slide 9 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Pure MPI

Advantages
– No modifications on existing MPI codes
– MPI library need not to support multiple threads

Major problems
– Does MPI library uses internally different protocols?

• Shared memory inside of the SMP nodes
• Network communication between the nodes

– Does application topology fit on hardware topology?
– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each core

Discussed
in detail later on
in the section
Mismatch
Problems

Slide 10 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

Major Problems

– All other threads are sleeping
while master thread communicates!

– Which inter-node bandwidth?

– MPI-lib must support at least
MPI_THREAD_FUNNELED

� Section
Thread-safety
quality of MPI

libraries

Slide 11 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv….
i.e., communicate all halo data

} else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

}

Execute those parts of the application
that need halo data
(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 12 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes

• e.g., Intel® Cluster OpenMP

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier)

OpenMP only
distributed virtual
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters!

Experience:
� Mismatch

section

Slide 13 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes

• Case Studies / Benchmark results
– The Multi-Zone NAS Parallel Benchmarks

Gabriele Jost (University of Texas,TACC/Naval Postgraduate School, Monterey CA)

– Micro Benchmarks
Georg Hager (Regionales Rechenzentrum Erlangen, RRZE)

• Mismatch Problems
• Opportunities: Application categories that can benefit from hybrid paralleli.
• Thread-safety quality of MPI libraries
• Other options on clusters of SMP nodes
• Summary

Slide 14 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

• Aggregate sizes:
– Class D: 1632 x 1216 x 34 grid points
– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)
– Alternative Directions Implicit (ADI) method
– #Zones: 1024 (D), 4096 (E)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• LU-MZ: (LU decomposition simulated CFD application)
– SSOR method (2D pipelined method)
– #Zones: 16 (all Classes)
– Size of the zones identical:

• no load-balancing required
• limited parallelism on outer level

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)
– #Zones: 1024 (D), 4096 (E)
– Size of zones identical

• no load-balancing required

The Multi-Zone NAS Parallel Benchmarks

Load-balanced on
MPI level: Pure MPI
should perform best

Pure MPI: Load-
balancing problems!
Good candidate for

MPI+OpenMP

Limitted MPI
Parallelism:

� MPI+OpenMP
increases

Parallelism

Expectations:

Slides, courtesy of Gabriele Jost, TACC, Austin, USA

Slide 15 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Sun Constellation Cluster Ranger (1)

• Located at the Texas Advanced Computing Center (TACC),
University of Texas at Austin (http://www.tacc.utexas.edu)

• 3936 Sun Blades, 4 AMD Quad-core 64bit 2.3GHz processors per
node (blade), 62976 cores total

• 123TB aggregrate memory
• Peak Performance 579 Tflops
• InfiniBand Switch interconnect
• Sun Blade x6420 Compute Node:

– 4 Sockets per node
– 4 cores per socket
– HyperTransport System Bus
– 32GB memory

Slides, courtesy of Gabriele Jost, TACC, Austin, USA

Slide 16 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

NPB-MZ Class E Scalability on Sun Constellation

0
500000

1000000
1500000

2000000
2500000

3000000
3500000

4000000
4500000

5000000

1024 2048 4096 8192core#

M
F

lo
p/

s

SP-MZ (MPI)
SP-MZ MPI+OpenMP
BT-MZ (MPI)
BT-MZ MPI+OpenMP

• Scalability in Mflops
• MPI/OpenMP outperforms pure MPI
• Use of numactl essential to achieve scalability

SUN: NPB-MZ Class E Scalability on Ranger

BT
Significant improve-

ment (235%):
Load-balancing

issues solved with
MPI+OpenMP

SP
Pure MPI is already

load-balanced.
But hybrid

9.6% faster, due to
smaller message

rate at NIC

Cannot be build for
8192 processes!

Hybrid:
SP: still scales

BT: does not scale

Slides, courtesy of Gabriele Jost, TACC, Austin, USA

Slide 17 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

NUMA Control: Process Placement

• Affinity and Policy can be changed externally through numactl at
the socket and core level.

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

������	
��������

��

��

��������������

��������������������

����	
��������

���� ����	numactl -N 1 ./a.out ���� ����	numactl –c 0,1 ./a.out

—
skipped —

Slides, courtesy of Gabriele Jost, TACC, Austin, USA

Slide 18 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

NUMA Operations: Memory Placement

Memory allocation:
• MPI

– local allocation is best
• OpenMP

– Interleave best for large, completely
shared arrays that are randomly
accessed by different threads

– local best for private arrays
• Once allocated,

a memory-structure is fixed

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

 �� ��!�	������	
��������

�

��

�

���� ����	numactl -N 1 -l ./a.out

—
skipped —

Slides, courtesy of Gabriele Jost, TACC, Austin, USA

Slide 19 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

NUMA Operations (cont. 3)—
skipped —

Slides, courtesy of Gabriele Jost, TACC, Austin, USA

Slide 20 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 processors):

• Intranode (1S): mpirun –np 2 –pin “1 3” ./a.out
• Intranode (2S): mpirun –np 2 –pin “2 3” ./a.out
• Internode: mpirun –np 2 –pernode ./a.out

wc = MPI_WTIME()

do i=1,NREPEAT

if(rank.eq.0) then
MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)
MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

status,ierr)
else
MPI_RECV(…)
MPI_SEND(…)

endif

enddo

wc = MPI_WTIME() - wc

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Slides, courtesy of Georg Hager, RRZE, Erlangen

Slide 21 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

3,24

0,55
0,31

0

0,5

1

1,5

2

2,5

3

3,5

La
te

nc
y

[µ
s]

IB internode IB intranode 2S IB intranode 1S

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Slides, courtesy of Georg Hager, RRZE, Erlangen

Slide 22 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

IMB Ping-Pong: Bandwidth Characteristics
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

Shared cache
advantage

intranode
shm comm

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Between two cores of
one socket

Between two nodes
via InfiniBand

Between two sockets
of one node

Slides, courtesy of Georg Hager, RRZE, Erlangen

Slide 23 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / Benchmark results

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries
• Other options on clusters of SMP nodes
• Summary

Slide 24 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Mismatch Problems

• None of the programming models
fits to the hierarchical hardware
(cluster of SMP nodes)

• Several mismatch problems
� following slides

• Benefit through hybrid programming
� Opportunities, see next section

• Quantitative implications
� depends on you application

Examples: No.1 No.2
Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%
Total +20% –15%

In most
cases:
Both
categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

Slide 25 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

17 x inter-node connections per node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1 x inter-socket connection per node

Sequential ranking of
MPI_COMM_WORLD

Does it matter?

Slide 26 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

A

A

A

A

A

AA

A

B

B

B

B

B

BB

B

C

C

C

C C

CC

C

D

D

D

D D

DD

D

E

E

E

E E

E

E

E

F

F

F

F F

F

F

F

G

GG

G G

G

G

G

H

HH

H H

H

H

H

I

II

I

I

I

I

I

J

JJ

J

J

J

J

J

32 x inter-node connections per node

0 x inter-socket connection per node

Round robin ranking of
MPI_COMM_WORLD

AA
AA

AA

AA

JJ
JJ

JJ

JJ

Never trust the default !!!

Slide 27 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of
domain decomposition

12 x inter-node connections per node

Bad affinity of cores to thread ranks
4 x inter-socket connection per node

Slide 28 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of
domain decomposition

12 x inter-node connections per node

2 x inter-socket connection per node

Good affinity of cores to thread ranks

Slide 29 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

The Topology Problem with

Problem
– Does application topology inside of SMP parallelization

fit on inner hardware topology of each SMP node?

Solutions:
– Domain decomposition inside of each thread-parallel

MPI process, and
– first touch strategy with OpenMP

Successful examples:
– Multi-Zone NAS Parallel Benchmarks (MZ-NPB)

Optimal ?

Loop-worksharing
on 8 threads

Exa.: 2 SMP nodes, 8 cores/node

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI process 0 MPI process 1

Optimal ?

Minimizing ccNUMA
data traffic through
domain decomposition
inside of each
MPI process

Slide 30 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

The Topology Problem with

Application example:
• Same Cartesian application aspect ratio: 5 x 16
• On system with 10 x dual socket x quad-core
• 2 x 5 domain decomposition

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI Level

OpenMP

Application

3 x inter-node connections per node, but ~ 4 x more traffic

2 x inter-socket connection per node

Affinity of cores to thread ranks !!!

Slide 31 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Inside of an SMP node

2nd level of domain decomposition: OpenMP

3rd level: 2nd level cache

4th level: 1st level cache

Optimizing the
numerical
performance

—
skipped —

Slide 32 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

The Mapping Problem with mixed model

Several multi-threaded MPI
process per SMP node:

Problem
– Where are your processes

and threads really located?

Solutions:
– Depends on your platform,
– e.g., with numactl

hybrid MPI+OpenMP

pure MPI
&

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI
pro-
cess

0

MPI
pro-
cess

1

� Case study on
Sun Constellation Cluster

Ranger
with BT-MZ and SP-MZ

Further questions:
– Where is the NIC1) located?
– Which cores share caches?

1) NIC = Network Interface Card

Slide 33 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Unnecessary intra-node communication

Problem:
– If several MPI process on each SMP node

� unnecessary intra-node communication
Solution:

– Only one MPI process per SMP node
Remarks:

– MPI library must use appropriate
fabrics / protocol for intra-node communication

– Intra-node bandwidth higher than
inter-node bandwidth
� problem may be small

– MPI implementation may cause
unnecessary data copying
� waste of memory bandwidth

Quality aspects
of the MPI library

Mixed model
(several multi-threaded MPI
processes per SMP node)

pure MPI

Slide 34 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Sleeping threads and network saturation
with

Problem 1:
– Can the master thread

saturate the network?
Solution:
– If not, use mixed model
– i.e., several MPI

processes per SMP node

Problem 2:
– Sleeping threads are

wasting CPU time
Solution:
– Overlapping of

computation and
communication

Problem 1&2 together:
– Producing more idle time

through lousy bandwidth
of master thread

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside of

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

sle
ep

ing

sle
ep

ing

Slide 35 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

OpenMP: Additional Overhead & Pitfalls

• Using OpenMP
� may prohibit compiler optimization
� may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality
or missing first touch strategy

– E.g. with the masteronly scheme:
• One thread produces data

• Master thread sends the data with MPI

�data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries? � Are they prepared for hybrid?

See, e.g., the necessary –O4 flag
with mpxlf_r on IBM Power6 systems

Slide 36 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Overlapping communication and computation

Three problems:
• the application problem:

– one must separate application into:
• code that can run before the halo data is received
• code that needs halo data

�very hard to do !!!

• the thread-rank problem:
– comm. / comp. via

thread-rank
– cannot use

work-sharing directives
�loss of major

OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

….
}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 37 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Overlapping communication and computation

Subteams
• Important proposal

for OpenMP 3.x
or OpenMP 4.x

#pragma omp parallel
{
#pragma omp single onthreads(0)

{
MPI_Send/Recv….

}
#pragma omp for onthreads(1 : omp_get_numthreads()-1)

for (……..)
{ /* work without halo information */
} /* barrier at the end is only inside of the subteam */
…

#pragma omp barrier
#pragma omp for

for (……..)
{ /* work based on halo information */
}

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Barbara Chapman et al.:
Toward Enhancing OpenMP’s
Work-Sharing Directives.
In proceedings, W.E. Nagel et
al. (Eds.): Euro-Par 2006,
LNCS 4128, pp. 645-654,
2006.

Slide 38 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

Different strategies
to simplify the
load balancing

Slide 39 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is
always faster in this
experiments

• Reason:
Memory bandwidth
is already saturated
by 15 CPUs, see inset

• Inset:
Speedup on 1 SMP node
using different
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .

fu
nn

el
ed

 &
 r

es
er

ve
d

is
 fa

st
er

m
as

te
ro

nl
y

is
 fa

st
er

pe
rf

or
m

an
ce

 r
at

io
 (

r)

Slide 40 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Overlapping: Using OpenMP tasks

NEW OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation.

Slides, courtesy of Alice Koniges, NERSC, LBNL

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide 41 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Case study: Communication and Computation in
Gyrokinetic Tokamak Simulation (GTS) shift routine

Work on particle array (packing for sending, reordering, adding after
sending) can be overlapped with data independent MPI
communication using OpenMP tasks.

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�	��

�
�
�
�
�
�
�
�
�

GTS shift routine

Slides, courtesy of Alice Koniges, NERSC, LBNL

Slide 42 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Overlapping can be achieved with OpenMP tasks (1st part)

Overlapping MPI_Allreduce with particle work

• Overlap: Master thread encounters (!$omp master) tasking statements and creates
work for the thread team for deferred execution. MPI Allreduce call is immediately
executed.

• MPI implementation has to support at least MPI_THREAD_FUNNELED
• Subdividing tasks into smaller chunks to allow better load balancing and scalability

among threads.
Slides, courtesy of Alice Koniges, NERSC, LBNL

Slide 43 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Overlapping can be achieved with OpenMP tasks (2nd part)

Overlapping particle reordering

Overlapping remaining MPI_Sendrecv

Particle reordering of remaining
particles (above) and adding sent
particles into array (right) & sending
or receiving of shifted particles can
be independently executed.

Slides, courtesy of Alice Koniges, NERSC, LBNL

Slide 44 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

OpenMP tasking version outperforms original shifter,
especially in larger poloidal domains

• Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-
cess with varying domain decomposition and particles per cell on Franklin Cray XT4.

• MPI communication in the shift phase uses a toroidal MPI communicator
(constantly 128).

• Large performance differences in the 256 MPI run compared to 2048 MPI run!
• Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands

CPUs since MPI communication is more expensive.

256 size run 2048 size run

Slides, courtesy of
Alice Koniges, NERSC, LBNL

Slide 45 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

OpenMP/DSM

• Distributed shared memory (DSM) //
• Distributed virtual shared memory (DVSM) //
• Shared virtual memory (SVM)

• Principles
– emulates a shared memory
– on distributed memory hardware

• Implementations
– e.g., Intel® Cluster OpenMP

OpenMP only

Slide 46 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP –
Consistency Protocol
Basic idea:
• Between OpenMP barriers, data exchange is not necessary, i.e.,

visibility of data modifications to other threads only after synchronization.
• When a page of sharable memory is not up-to-date,

it becomes protected.
• Any access then faults (SIGSEGV) into Cluster OpenMP runtime library,

which requests info from remote nodes and updates the page.
• Protection is removed from page.
• Instruction causing the fault is re-started,

this time successfully accessing the data.

OpenMP only

Courtesy of J. Cownie, Intel

Slide 47 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Comparison:
MPI based parallelization � �� �� �� � DSM
• MPI based:

– Potential of boundary exchange between two domains in one large message

� Dominated by bandwidth of the network

• DSM based (e.g. Intel® Cluster OpenMP):
– Additional latency based overhead in each barrier

� May be marginal

– Communication of updated data of pages
� Not all of this data may be needed

� i.e., too much data is transferred

� Packages may be to small

� Significant latency

– Communication not oriented on boundaries
of a domain decomposition

� probably more data must be transferred than
necessary

hybrid MPI+OpenMP OpenMP only

by rule of thumb:

Communication
may be

10 times slower
than with MPI

Slide 48 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Comparing results with heat example

• Normal OpenMP on shared memory (ccNUMA) NEC TX-7

heat_x.c / heatc2_x.c with OpenMP on NEC TX-7

0

2

4

6

8

10

12

14

16

18
se

ria
l 1 2 3 4 6 8 10

threads

S
p

ee
d

up

1000x1000

250x250

80x80

20x20

ideal speedup

—
skipped —

Slide 49 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Heat example: Cluster OpenMP Efficiency

• Cluster OpenMP on a Dual-Xeon cluster

heats2_x.c with Cluster OpenMP on NEC dual Xeon EM64T cluster

0

1

2

3

4

5

6

7
se

ria
l

1/
2 1 2 3 4 5 6 7 8

nodes

S
pe

ed
up

6000x6000 static(default) 1 threads/node

6000x6000 static(default) 2 threads/node
6000x6000 static(1:1) 1 threads/node

6000x6000 static(1:2) 1 threads/node
6000x6000 static(1:10) 1 threads/node

6000x6000 static(1:50) 1 threads/node
3000x3000 static(default) 1 threads/node

3000x3000 static(default) 2 threads/node

1000x1000 static(default) 1 threads/node
1000x1000 static(default) 2 threads/node

250x250 static(default) 1 threads/node
250x250 static(default) 2 threads/node

No speedup with 1000x1000

Second CPU only usable in small cases

Up to 3 CPUs
with 3000x3000

Efficiency only with small
communication foot-print

Terrible with non-default schedule

—
skipped —

Slide 50 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Back to the mixed model – an Example

• Topology-problem solved:
Only horizontal inter-node comm.

• Still intra-node communication
• Several threads per SMP node are

communicating in parallel:
� network saturation is possible

• Additional OpenMP overhead
• With Masteronly style:

75% of the threads sleep while
master thread communicates

• With Overlapping Comm.& Comp.:
Master thread should be reserved
for communication only partially –
otherwise too expensive

• MPI library must support
– Multiple threads
– Two fabrics (shmem + internode)

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

Slide 51 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– But there are major opportunities � next section

• In the NPB-MZ case-studies

– We tried to use optimal parallel environment

• for pure MPI

• for hybrid MPI+OpenMP

– i.e., the developers of the MZ codes and we
tried to minimize the mismatch problems

� the opportunities in next section dominated the comparisons

Slide 52 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / Benchmark results
• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid
parallelization

• Thread-safety quality of MPI libraries
• Other options on clusters of SMP nodes
• Summary

Slide 53 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Nested Parallelism

• Example NPB: BT-MZ (Block tridiagonal simulated CFD application)
– Outer loop:

• limited number of zones ���� limited parallelism
• zones with different workload ���� speedup <

– Inner loop:
• OpenMP parallelized (static schedule)
• Not suitable for distributed memory parallelization

• Principles:
– Limited parallelism on outer level
– Additional inner level of parallelism
– Inner level not suitable for MPI
– Inner level may be suitable for static OpenMP worksharing

Sum of workload of all zones
Max workload of a zone

Slide 54 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Load-Balancing
(on same or different level of parallelism)

• OpenMP enables
– Cheap dynamic and guided load-balancing
– Just a parallelization option (clause on omp for / do directive)
– Without additional software effort
– Without explicit data movement

• On MPI level
– Dynamic load balancing requires

moving of parts of the data structure through the network
– Significant runtime overhead
– Complicated software / therefore not implemented

• MPI & OpenMP
– Simple static load-balancing on MPI level, medium quality

dynamic or guided on OpenMP level cheap implementation

Slide 55 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Memory consumption

• Shared nothing
– Heroic theory
– In practice: Some data is duplicated

• MPI & OpenMP
With n threads per MPI process:
– Duplicated data may be reduced by factor n

Slide 56 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Using more
OpenMP threads
could reduce the
memory usage
substantially,
up to five times on
Hopper Cray XT5
(eight-core nodes).

Case study: MPI+OpenMP memory usage of NPB

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger,
Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide, courtesy of
Alice Koniges, NERSC, LBLN

Always same
number of cores

Slide 57 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Memory consumption (continued)

• Future:
With 100+ cores per chip the memory per core is limited.
– Data reduction through usage of shared memory

may be a key issue
– Domain decomposition on each hardware level

• Maximizes
– Data locality
– Cache reuse

• Minimizes
– ccNUMA accesses
– Message passing

– No halos between domains inside of SMP node
• Minimizes

– Memory consumption

Slide 58 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

How many threads per MPI process?

• SMP node = with m sockets and n cores/socket
• How many threads (i.e., cores) per MPI process?

– Too many threads per MPI process
� overlapping of MPI and computation may be necessary,
� some NICs unused?

– Too few threads
� too much memory consumption (see previous slides)

• Optimum
– somewhere between 1 and m x n threads per MPI process,
– Typically:

• Optimum = n, i.e., 1 MPI process per socket
• Sometimes = n/2, i.e., 2 MPI processes per socket
• Seldom = 2n, i.e., each MPI process on 2 sockets

Slide 59 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Opportunities, if MPI speedup is limited due to
algorithmic problems

• Algorithmic opportunities due to larger physical domains inside of
each MPI process
� If multigrid algorithm only inside of MPI processes
� If separate preconditioning inside of MPI nodes and between

MPI nodes
� If MPI domain decomposition is based on physical zones

Slide 60 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

� Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

� MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

� MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)

Slide 61 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Summary: Opportunities of hybrid parallelization
(MPI & OpenMP)
• Nested Parallelism

� Outer loop with MPI / inner loop with OpenMP

• Load-Balancing
� Using OpenMP dynamic and guided worksharing

• Memory consumption
� Significantly reduction of replicated data on MPI level

• Opportunities, if MPI speedup is limited due to algorithmic problem
� Significantly reduced number of MPI processes

• Reduced MPI scaling problems
� Significantly reduced number of MPI processes

Slide 62 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / Benchmark results
• Mismatch Problems
• Opportunities:

Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Other options on clusters of SMP nodes
• Summary

Slide 63 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

MPI rules with OpenMP /
Automatic SMP-parallelization
• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded,

(virtual value, but only master thread will make MPI-calls
not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Multiple threads may call MPI,

with no restrictions
• returned provided may be less than REQUIRED by the application

int MPI_Init_thread(int * argc, char ** argv[],
int thread_level_required,
int * thead_level_provided);

int MPI_Query_thread(int * thread_level_provided);
int MPI_Is_main_thread(int * flag);

Slide 64 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!
• The additional barrier implies also the necessary cache flush!

Slide 65 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

… the barrier is necessary –
example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

Slide 66 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Thread support in MPI libraries

• The following MPI libraries offer thread support:

Always announces MPI_THREAD_FUNNELED.

ch3:sock supports MPI_THREAD_MULTIPLE

ch:nemesis has “Initial Thread-support”
ch3:nemesis (default) has MPI_THREAD_MULTIPLE

Full MPI_THREAD_MULTIPLE
MPI_THREAD_FUNNELED

Full MPI_THREAD_MULTIPLE (with libmtmpi)

Not thread-safe?
Full MPI_THREAD_MULTIPLE

MPI_THREAD_SERIALIZED

MPIch-1.2.7p1

MPIch2-1.0.8

MPIch2-1.1.0a2
Intel MPI 3.1

SciCortex MPI

HP MPI-2.2.7

SGI MPT-1.14

IBM MPI

Nec MPI/SX

Thread support levelImplementation

• Testsuites for thread-safety may still discover bugs in the
MPI libraries

Courtesy of Rainer Keller, HLRS and ORNL

Slide 67 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / Benchmark results
• Mismatch Problems
• Opportunities:

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries

• Other options on clusters of SMP nodes

• Summary

Slide 68 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Pure MPI – multi-core aware

• Hierarchical domain decomposition
(or distribution of Cartesian arrays)

Domain decomposition:
1 sub-domain / SMP node

Further
partitioning:

1 sub-domain /
socket

1 / core

Cache
optimization:

Blocking inside of
each core,

block size relates
to cache size.

1-3 cache levels.
Example on 10 nodes, each with 4 sockets, each with 6 cores.

Slide 69 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

How to achieve a
hierarchical domain decomposition (DD)?
• Cartesian grids:

– Several levels of subdivide
– Ranking of MPI_COMM_WORLD – two choices:

a) Sequential ranks through original data structure
+ locating these ranks correctly on the hardware
� can be achieved with one-level DD on finest grid

+ special startup (mpiexec) with optimized rank-mapping
b) Sequential ranks in comm_cart (from MPI_CART_CREATE)

� requires optimized MPI_CART_CREATE,
or special startup (mpiexec) with optimized rank-mapping

c) Sequential ranks in MPI_COMM_WORLD
+ additional communicator with sequential ranks in the data structure
+ self-written and optimized rank mapping.

• Unstructured grids:
� next slide

Slide 70 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

How to achieve a
hierarchical domain decomposition (DD)?
• Unstructured grids:

– Multi-level DD:

• Top-down: Several levels of (Par)Metis
• Bottom-up: Low level DD + higher level recombination

– Single-level DD (finest level)

• Analysis of the communication pattern in a first run
(with only a few iterations)

• Optimized rank mapping to the hardware before production run
• E.g., with CrayPAT + CrayApprentice

Slide 71 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Top-down – several levels of (Par)Metis

Steps:
– Load-balancing (e.g., with

ParMetis) on outer level,
i.e., between all SMP nodes

– Independent (Par)Metis
inside of each node

– Metis inside of each socket

� Subdivide does not care on
balancing of the outer boundary

� processes can get a lot of
neighbors with inter-node
communication

� unbalanced communication

—
skipped —

Slide 72 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Bottom-up –
Multi-level DD through recombination
1. Core-level DD: partitioning of application’s data grid
2. Socket-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains

• Problem:
Recombination
must not
calculate patches
that are smaller
or larger than the
average

• In this example
the load-balancer
must combine
always
� 6 cores, and
� 4 sockets

• Advantage:
Communication
is balanced!

Slide 73 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Profiling solution

• First run with profiling
– Analysis of the communication pattern

• Optimization step
– Calculation of an optimal mapping of ranks in MPI_COMM_WORLD

to the hardware grid (physical cores / sockets / SMP nodes)
• Restart of the application with this optimized locating of the ranks on the

hardware grid

• Example: CrayPat and CrayApprentice

Slide 74 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

The vendors will
(or must) deliver

scalable MPI
libraries for their
largest systems!

Scalability of MPI to hundreds of thousands …

Weak scalability of pure MPI
• As long as the application does not use

– MPI_ALLTOALL
– MPI_<collectives>V (i.e., with length arrays)

and application
– distributes all data arrays

one can expect:
– Significant, but still scalable memory overhead for halo cells.
– MPI library is internally scalable:

• E.g., mapping ranks ���� hardware grid
– Centralized storing in shared memory (OS level)
– In each MPI process, only used neighbor ranks are stored (cached) in

process-local memory.
• Tree based algorithm wiith O(log N)

– From 1000 to 1000,000 process O(Log N) only doubles!

Slide 75 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Remarks on Cache Optimization

• After all parallelization domain decompositions (DD, up to 3 levels)
are done:

• Additional DD into data blocks
– that fit to 2nd or 3rd level cache.
– It is done inside of each MPI process (on each core).
– Outer loops over these blocks
– Inner loops inside of a block
– Cartesian example: 3-dim loop is split into

do i_block=1,ni,stride_i
do j_block=1,nj,stride_j

do k_block=1,nk,stride_k
do i=i_block,min(i_block+stride_i-1, ni)

do j=j_block,min(j_block+stride_j-1, nj)
do k=k_block,min(k_block+stride_k-1, nk)

a(i,j,k) = f(b(i±0,1,2, j±0,1,2, k±0,1,2))
… … … end do

end do
Access to 13-point stencil

—
skipped —

Slide 76 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Remarks on Cost-Benefit Calculation

Costs
• for optimization effort

– e.g., additional OpenMP parallelization
– e.g., 3 person month x 5,000 � = 15,000 � (full costs)

Benefit
• from reduced CPU utilization

– e.g., Example 1:
100,000 � hardware costs of the cluster
x 20% used by this application over whole lifetime of the cluster
x 7% performance win through the optimization
= 1,400 � ���� total loss = 13,600 �

– e.g., Example 2:
10 Mio � system x 5% used x 8% performance win
= 40,000 � ���� total win = 25,000 �

Slide 77 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Parallelization always means
– expressing locality.

• If the application has no locality,
– Then the parallelization needs not to model locality
� UPC with its round robin data distribution may fit

• If the application has locality,
– then it must be expressed in the parallelization

• Coarray Fortran (CAF) expresses data locality explicitly through “co-
dimension”:
– A(17,15)[3]

= element A(17,13) in the distributed array A in process with rank 3

—
skipped —

Slide 78 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Future shrinking of memory per core implies
– Communication time becomes a bottleneck
� Computation and communication must be overlapped,

i.e., latency hiding is needed

• With PGAS, halos are not needed.
– But it is hard for the compiler to access data such early that the

transfer can be overlapped with enough computation.

• With MPI, typically too large message chunks are transferred.
– This problem also complicates overlapping.

• Strided transfer is expected to be slower than contiguous transfers
– Typical packing strategies do not work for PGAS on compiler level
– Only with MPI, or with explicit application programming with PGAS

—
skipped —

Slide 79 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Point-to-point neighbor communication
– PGAS or MPI nonblocking may fit

if message size makes sense for overlapping.

• Collective communication
– Library routines are best optimized
– Non-blocking collectives (comes with MPI-3.0)

versus calling MPI from additional communication thread
– Only blocking collectives in PGAS library?

—
skipped —

Slide 80 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• For extreme HPC (many nodes x many cores)
– Most parallelization may still use MPI
– Parts are optimized with PGAS, e.g., for better latency hiding
– PGAS efficiency is less portable than MPI
– #ifdef … PGAS
– Requires mixed programming PGAS & MPI

� will be addressed by MPI-3.0

—
skipped —

Slide 81 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / Benchmark results
• Mismatch Problems
• Opportunities:

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Other options on clusters of SMP nodes

• Summary

Slide 82 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Acknowledgements

• We want to thank
– Georg Hager, Gerhard Wellein, RRZE
– Gabriele Jost, TACC
– Alice Koniges, NERSC, LBNL
– Rainer Keller, HLRS and ORNL
– Jim Cownie, Intel
– KOJAK project at JSC, Research Center Jülich
– HPCMO Program and the Engineer Research and

Development Center Major Shared Resource Center,
Vicksburg, MS (http://www.erdc.hpc.mil/index)

Slide 83 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Summary – the good news

MPI + OpenMP
• Significant opportunity � higher performance on smaller number of threads
• Seen with NPB-MZ examples

– BT-MZ � strong improvement (as expected)
– SP-MZ � small improvement (none was expected)

• Usable on higher number of cores
• Advantages

– Load balancing
– Memory consumption
– Two levels of parallelism

• Outer ���� distributed memory ���� halo data transfer ���� MPI
• Inner ���� shared memory ���� ease of SMP parallelization ���� OpenMP

• You can do it � “How To”

Slide 84 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Summary – the bad news

MPI+OpenMP: There is a huge amount of pitfalls
• Pitfalls of MPI
• Pitfalls of OpenMP

– On ccNUMA � e.g., first touch
– Pinning of threads on cores

• Pitfalls through combination of MPI & OpenMP
– E.g., topology and mapping problems
– Many mismatch problems

• Tools are available
– It is not easier than analyzing pure MPI programs

• Most hybrid programs � Masteronly style
• Overlapping communication and computation with several threads

– Requires thread-safety quality of MPI library
– Loss of OpenMP worksharing support � using OpenMP tasks

as workaround

Slide 85 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Summary – good and bad

• Optimization
– 1 MPI process 1 MPI process

per core ……………………………………..… per SMP node
^– somewhere between

may be the optimum

• Efficiency of MPI+OpenMP is not for free:
The efficiency strongly depends on
the amount of work in the source code development

mismatch
problem

Slide 86 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Summary – Alternatives

Pure MPI
+ Ease of use
– Topology and mapping problems may need to be solved

(depends on loss of efficiency with these problems)

– Number of cores may be more limited than with MPI+OpenMP
+ Good candidate for perfectly load-balanced applications

Pure OpenMP
+ Ease of use
– Limited to problems with tiny communication footprint
– source code modifications are necessary

(Variables that are used with “shared” data scope
must be allocated as “sharable”)

± (Only) for the appropriate application a suitable tool

Slide 87 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Summary

• This tutorial tried to
– help to negotiate obstacles with hybrid parallelization,
– give hints for the design of a hybrid parallelization,
– and technical hints for the implementation � “How To”,
– show tools if the application does not work as designed.

• This tutorial was not an introduction into other parallelization models:
– Partitioned Global Address Space (PGAS) languages

(Unified Parallel C (UPC), Co-array Fortran (CAF), Chapel, Fortress, Titanium,
and X10).

– High Performance Fortran (HPF)
� Many rocks in the cluster-of-SMP-sea do not vanish

into thin air by using new parallelization models
� Area of interesting research in next years

Slide 88 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Conclusions
• Future hardware will be more complicated

– Heterogeneous � GPU, FPGA, …
– ccNUMA quality may be lost on cluster nodes
– ….

• High-end programming � more complex
• Medium number of cores � more simple

(if #cores / SMP-node will not shrink)
• MPI+OpenMP � work horse on large systems
• Pure MPI � still on smaller cluster
• OpenMP � on large ccNUMA nodes

(not ClusterOpenMP)

Thank you for your interest

Q & A
Please fill in the feedback sheet – Thank you

Slide 89 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Appendix

• Author
• References (with direct relation to the content of this tutorial)
• Further references

Slide 90 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Rolf Rabenseifner

Dr. Rolf Rabenseifner studied mathematics and physics at the University of
Stuttgart. Since 1984, he has worked at the High-Performance Computing-
Center Stuttgart (HLRS). He led the projects DFN-RPC, a remote procedure
call tool, and MPI-GLUE, the first metacomputing MPI combining different
vendor's MPIs without loosing the full MPI interface. In his dissertation, he
developed a controlled logical clock as global time for trace-based profiling of
parallel and distributed applications. Since 1996, he has been a member of
the MPI-2 Forum and since Dec. 2007, he is in the steering committee of the
MPI-3 Forum. From January to April 1999, he was an invited researcher at the
Center for High-Performance Computing at Dresden University of Technology.

Currently, he is head of Parallel Computing - Training and Application
Services at HLRS. He is involved in MPI profiling and benchmarking, e.g., in
the HPC Challenge Benchmark Suite. In recent projects, he studied parallel
I/O, parallel programming models for clusters of SMP nodes, and optimization
of MPI collective routines. In workshops and summer schools, he teaches
parallel programming models in many universities and labs in Germany.

Slide 91 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

References (with direct relation to the content of this tutorial)

• NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/npb.html

• R.v.d. Wijngaart and H. Jin,
NAS Parallel Benchmarks, Multi-Zone Versions,
NAS Technical Report NAS-03-010, 2003

• H. Jin and R. v.d.Wijngaart,
Performance Characteristics of the multi-zone NAS Parallel Benchmarks,
Proceedings IPDPS 2004

• G. Jost, H. Jin, D. an Mey and F. Hatay,
Comparing OpenMP, MPI, and Hybrid Programming,
Proc. Of the 5th European Workshop on OpenMP, 2003

• E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost,
Employing Nested OpenMP for the Parallelization of Multi-Zone CFD Applications,
Proc. Of IPDPS 2004

Slide 92 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

References
• Rolf Rabenseifner,

Hybrid Parallel Programming on HPC Platforms.
In proceedings of the Fifth European Workshop on OpenMP, EWOMP '03,
Aachen, Germany, Sept. 22-26, 2003, pp 185-194, www.compunity.org.

• Rolf Rabenseifner,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In proceedings of the 45nd Cray User Group Conference, CUG SUMMIT 2003,
May 12-16, Columbus, Ohio, USA.

• Rolf Rabenseifner and Gerhard Wellein,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In Modelling, Simulation and Optimization of Complex Processes (Proceedings of
the International Conference on High Performance Scientific Computing,
March 10-14, 2003, Hanoi, Vietnam) Bock, H.G.; Kostina, E.; Phu, H.X.;
Rannacher, R. (Eds.), pp 409-426, Springer, 2004.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models
on Hybrid Architectures.
In the International Journal of High Performance Computing Applications,
Vol. 17, No. 1, 2003, pp 49-62. Sage Science Press.

Slide 93 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

References
• Rolf Rabenseifner,

Communication and Optimization Aspects on Hybrid Architectures.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface, J.
Dongarra and D. Kranzlmüller (Eds.), Proceedings of the 9th European PVM/MPI
Users' Group Meeting, EuroPVM/MPI 2002, Sep. 29 - Oct. 2, Linz, Austria, LNCS,
2474, pp 410-420, Springer, 2002.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models on
Hybrid Architectures.
In proceedings of the Fourth European Workshop on OpenMP (EWOMP 2002),
Roma, Italy, Sep. 18-20th, 2002.

• Rolf Rabenseifner,
Communication Bandwidth of Parallel Programming Models on Hybrid
Architectures.
Proceedings of WOMPEI 2002, International Workshop on OpenMP: Experiences
and Implementations, part of ISHPC-IV, International Symposium on High
Performance Computing, May, 15-17., 2002, Kansai Science City, Japan, LNCS
2327, pp 401-412.

Slide 94 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

References
• Georg Hager and Gerhard Wellein:

Introduction to High Performance Computing for Scientists and Engineers.
CRC Press, to appear in July 2010, ISBN 978-1439811924.

• Barbara Chapman et al.:
Toward Enhancing OpenMP’s Work-Sharing Directives.
In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654, 2006.

• Barbara Chapman, Gabriele Jost, and Ruud van der Pas:
Using OpenMP.
The MIT Press, 2008.

• Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar, Ewing
Lusk, Rajeev Thakur and Jesper Larsson Traeff:
MPI on a Million Processors.
EuroPVM/MPI 2009, Springer.

• Alice Koniges et al.: Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

• H. Shan, H. Jin, K. Fuerlinger, A. Koniges, N. J. Wright: Analyzing the Effect of
Different Programming Models Upon Performance and Memory Usage on Cray XT5
Platorms. Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide 95 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Further references
• Sergio Briguglio, Beniamino Di Martino, Giuliana Fogaccia and Gregorio Vlad,

Hierarchical MPI+OpenMP implementation of parallel PIC applications on
clusters of Symmetric MultiProcessors,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

• Barbara Chapman,
Parallel Application Development with the Hybrid MPI+OpenMP Programming
Model,
Tutorial, 9th EuroPVM/MPI & 4th DAPSYS Conference, Johannes Kepler University
Linz, Austria September 29-October 02, 2002

• Luis F. Romero, Eva M. Ortigosa, Sergio Romero, Emilio L. Zapata,
Nesting OpenMP and MPI in the Conjugate Gradient Method for Band Systems,
11th European PVM/MPI Users' Group Meeting in conjunction with DAPSYS'04,
Budapest, Hungary, September 19-22, 2004

• Nikolaos Drosinos and Nectarios Koziris,
Advanced Hybrid MPI/OpenMP Parallelization Paradigms for Nested Loop
Algorithms onto Clusters of SMPs,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

Slide 96 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Further references
• Holger Brunst and Bernd Mohr,

Performance Analysis of Large-scale OpenMP and Hybrid MPI/OpenMP
Applications with VampirNG
Proceedings for IWOMP 2005, Eugene, OR, June 2005.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic performance analysis of hybrid MPI/OpenMP applications
Journal of Systems Architecture, Special Issue "Evolutions in parallel distributed
and network-based processing", Volume 49, Issues 10-11, Pages 421-439,
November 2003.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic Performance Analysis of Hybrid MPI/OpenMP Applications
short version: Proceedings of the 11-th Euromicro Conference on Parallel,
Distributed and Network based Processing (PDP 2003), Genoa, Italy, February
2003.
long version: Technical Report FZJ-ZAM-IB-2001-05.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

Slide 97 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Further references

• Frank Cappello and Daniel Etiemble,
MPI versus MPI+OpenMP on the IBM SP for the NAS benchmarks,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappello00mpi.html
www.sc2000.org/techpapr/papers/pap.pap214.pdf

• Jonathan Harris,
Extending OpenMP for NUMA Architectures,
in proceedings of the Second European Workshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• D. S. Henty,
Performance of hybrid message-passing and shared-memory parallelism for
discrete element modeling,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/henty00performance.html
www.sc2000.org/techpapr/papers/pap.pap154.pdf

Slide 98 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Further references

• Matthias Hess, Gabriele Jost, Matthias Müller, and Roland Rühle,
Experiences using OpenMP based on Compiler Directed Software DSM on a
PC Cluster,
in WOMPAT2002: Workshop on OpenMP Applications and Tools, Arctic Region
Supercomputing Center, University of Alaska, Fairbanks, Aug. 5-7, 2002.
http://www.hlrs.de/people/mueller/papers/wompat2002/wompat2002.pdf

• John Merlin,
Distributed OpenMP: Extensions to OpenMP for SMP Clusters,
in proceedings of the Second EuropeanWorkshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka,
Design of OpenMP Compiler for an SMP Cluster,
in proceedings of the 1st European Workshop on OpenMP (EWOMP'99), Lund,
Sweden, Sep. 1999, pp 32-39. http://citeseer.nj.nec.com/sato99design.html

• Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel,
Transparent Adaptive Parallelism on NOWs using OpenMP,
in proceedings of the Seventh Conference on Principles and Practice of Parallel
Programming (PPoPP '99), May 1999, pp 96-106.

Slide 99 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Further references

• Weisong Shi, Weiwu Hu, and Zhimin Tang,
Shared Virtual Memory: A Survey,
Technical report No. 980005, Center for High Performance Computing,
Institute of Computing Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005.ps.

• Lorna Smith and Mark Bull,
Development of Mixed Mode MPI / OpenMP Applications,
in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT 2000),
San Diego, July 2000. www.cs.uh.edu/wompat2000/

• Gerhard Wellein, Georg Hager, Achim Basermann, and Holger Fehske,
Fast sparse matrix-vector multiplication for TeraFlop/s computers,
in proceedings of VECPAR'2002, 5th Int'l Conference on High Performance Computing
and Computational Science, Porto, Portugal, June 26-28, 2002, part I, pp 57-70.
http://vecpar.fe.up.pt/

Slide 100 / 88 Rolf Rabenseifner
Hybrid Parallel Programming

Further references

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes.
In proceedings, W. E. Nagel, W. V. Walter, and W. Lehner (Eds.): Euro-Par 2006,
Parallel Processing, 12th International Euro-Par Conference, Aug. 29 - Sep. 1,
Dresden, Germany, LNCS 4128, Springer, 2006.

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Nesting OpenMP in MPI to Implement a Hybrid Communication Method of
Parallel Simulated Annealing on a Cluster of SMP Nodes.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra (Eds.), Proceedings
of the 12th European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2005,
Sep. 18-21, Sorrento, Italy, LNCS 3666, pp 18-27, Springer, 2005

