
GPGPU and Stream Computing

Julian Fietkau

University of Hamburg

June 30th, 2011



Julian Fietkau

Things to clear up beforehand. . .

These slides are published under the CC-BY-SA 3.0 license.
Sources for the numbered figures are in the →list of figures.

Non- numbered pictures and illustrations are from the
OpenClipArt Project or are based on content from there.

Download these slides and give feedback:
http://www.julian-fietkau.de/gpgpu_and_stream_computing

2 / 21

http://creativecommons.org/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://openclipart.org/
http://www.julian-fietkau.de/gpgpu_and_stream_computing


Agenda Julian Fietkau

Agenda

Introduction
General Idea of GPGPU
Stream Computing

Languages
Common Ideas
OpenCL
CUDA
Others
Compilation to Intermediary Languages

Properties
Programmability
Efficiency

Prospects and Conclusions
Future Developments
Conclusion

3 / 21



Introduction: General Idea of GPGPU Julian Fietkau

Flynn’s Taxonomy

SISD MISD
SIMD MIMD

4 / 21



Introduction: General Idea of GPGPU Julian Fietkau

Why Does It Exist?

� How long can Moore’s law
hold true? → parallelism as
a possible answer to
computational demands

� “swiss army knife”
(generally optimal solution)
for parallel programming
has not been found

� idea: exploit
consumer-grade graphics
hardware

Figure 1: Moore’s law – 2011

5 / 21



Introduction: General Idea of GPGPU Julian Fietkau

About Graphics Hardware

� games need to display increasingly
realistic objects/scenes in real
time

� need to calculate a lot of vertices
and a lot of pixels very quickly
→ Pixel/Vertex Shaders, later
Unified Shader Model

� consumer market ensures that
graphics adapters remain
(relatively) cheap

� General Purpose computation on
Graphics Processing Units

6 / 21



Introduction: Stream Computing Julian Fietkau

Stream Computing

� idea: operate on a “stream” of data passing through different
“kernels”

� related to SIMD
� mitigates some of the difficulties of parallelism on von Neumann
architectures as well as simple SIMD implementations like SSE or
AltiVec

� first came up in the 70ies, didn’t gain much traction as “pure”
implementations, but hybrid architectures survived

7 / 21



Introduction: Stream Computing Julian Fietkau

Stream Computing Example

Input: u, v, w;

x = u - (v + w);
y = u * (v + w);

Output: x, y;

Figure 2: Stream Computing Example
8 / 21



Languages: Common Ideas Julian Fietkau

Common Ideas

modern streaming programming languages. . .
� . . . are verbose about different usage scenarios for memory
� . . . help with partitioning problem spaces in a multitude of ways
� . . . are not afraid to introduce limitations to faciliate optimization

9 / 21



Languages: OpenCL Julian Fietkau

OpenCL™

� Open Computing Language, free standard by Khronos™ Group

Context

Application Kernel

Command 
Queue

Device

Figure 3: OpenCL™ Application Model

10 / 21



Languages: OpenCL Julian Fietkau

OpenCL™ in Detail

Host

Application

Device

NDRange
Work 
group
(0,0)

Work 
group
(1,0)
Work 
group
(1,1)

Work 
group
(2,0)

Work 
group
(0,1)

Work 
group
(1,2)

Work
item

(0,1,0)

Work
item

(1,1,0)

Work 
item

(2,1,0)

Work 
item

(0,0,0)

Work item
(2,0,1)

Work item
(2,1,1)

Work 
item

(1,0,0)

Work 
item

(2,0,0)

Figure 4: OpenCL™ Problem Partitioning
11 / 21



Languages: CUDA Julian Fietkau

CUDA

� NVIDIA’s custom framework for high-level GPGPU
� (it’s actually older than OpenCL though)

� same basic idea, but specific to NVIDIA GPUs
� conceptually only minor differences between CUDA and OpenCL

� biggest one: CUDA is compiled at application compile time while
OpenCL is (typically) compiled at application run time

� also, annoying nomenclature differences (e.g. shared vs. local vs.
private memory)

12 / 21



Languages: Others Julian Fietkau

Others

There are several more stream processing languages, some of them
long in development. Notable:
� Brook (and Brook+)
� Cilk, compare also Intel Array Building Blocks

13 / 21



Languages: Compilation to Intermediary Languages Julian Fietkau

Intermediary Languages

Problem
The actual binary code that runs on devices needs to “know” about
exact numbers for cores, memory, registers etc., information that is
generally not known at compile time.

→ compilation to an intermediary language like NVIDIA’s PTX and
AMD’s IL, low-level and assembly-like yet abstracting some hardware
limitations

14 / 21



Languages: Compilation to Intermediary Languages Julian Fietkau

PTX and AMD IL

PTX example
.reg .b32 r1, r2;
.global .f32 array[N];

start: mov.b32 r1, %tid.x;
shl.b32 r1, r1, 2; // shift thread id by 2 bits
ld.global.b32 r2, array[r1]; // thread[tid] gets array[tid]
add.f32 r2, r2, 0.5; // add 1/2

AMD IL example
sample_resource(0)_sampler(0) r0.x, v0.xy00
mov r2.x, r0.xxxx
dcl_output_generic o0
ret

15 / 21



Properties: Programmability Julian Fietkau

Programmability

� as they’re mostly custom versions of C, GPGPU languages are
rather simple to pick up for someone with C experience

� OpenCL™ and CUDA both look slightly boilerplate-y for small
tasks
� hypothesis: they might not be designed for small tasks

� disadvantage of the cutting edge: toolchain maturity might be
lacking

� watch out for vendor dependencies!

16 / 21



Properties: Efficiency Julian Fietkau

Efficiency

� hard to find actual data
� optimizations and proficiency might skew the results
� conceptual similarities indicate that implementations would also be
similar

� CUDA can get a (constant) head start vs. OpenCL™ due to being
precompiled

� CUDA might generally perform faster, sometimes significantly,
than OpenCL (but take this with a grain of salt)

17 / 21

http://arxiv.org/abs/1005.2581


Prospects and Conclusions: Future Developments Julian Fietkau

Things to Come

The future remains notoriously hard to predict.
� at the moment, we see increased interest in specialized GPGPU
boards (cf. NVIDIA Tesla and AMD FireStream)

� OpenCL promotes device flexibility at the cost of efficiency – no
way to know if this strategy will win

� Intel pushes for integrated solutions with more processing power
(cf. Sandy Bridge, Ivy Bridge)

18 / 21



Prospects and Conclusions: Conclusion Julian Fietkau

Conclusion

� GPGPU is a viable way to to massively parallel work even on a
home PC

� will be further developed and refined, knowledge may be valuable

19 / 21



External Links: Weblinks Julian Fietkau

Weblinks

AMD Developer Central: Introduction to OpenCL™

Programming
http://developer.amd.com/zones/openclzone/...-may-2010.aspx

GPGPU: OpenCL™ (Università di Catania)
http://www.dmi.unict.it/~bilotta/gpgpu/notes/11-opencl.html

NVIDIA: PTX ISA Version 2.1
http://developer.download.nvidia.com/compute/.../ptx_isa_2.1.pdf

AMD: High Level Programming for GPGPU
http://coachk.cs.ucf.edu/courses/CDA6938/s08/AMD_IL.pdf

20 / 21

http://developer.amd.com/zones/openclzone/courses/pages/introduction-opencl-programming-may-2010.aspx
http://www.dmi.unict.it/~bilotta/gpgpu/notes/11-opencl.html
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/ptx_isa_2.1.pdf
http://coachk.cs.ucf.edu/courses/CDA6938/s08/AMD_IL.pdf


External Links: List of figures Julian Fietkau

List of figures

1 Moore’s Law – 2011, by Wgsimon via Wikimedia Commons, CC-BY-SA
2 Stream Computing Example, by Kallistratos via German Wikipedia, public domain
3 OpenCL – Simple Kernel Exec, by Joachim Weging, CC-BY-SA
4 OpenCL – Problem Partitioning, by Joachim Weging, CC-BY-SA

21 / 21

http://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore's_Law_-_2011.svg
http://commons.wikimedia.org/wiki/User:Wgsimon
http://commons.wikimedia.org/
http://de.wikipedia.org/wiki/Datei:Datenflussgraph.jpg
http://de.wikipedia.org/wiki/Benutzer:Kallistratos
http://de.wikipedia.org/

	Title slide
	Agenda
	Introduction
	General Idea of GPGPU
	Stream Computing

	Languages
	Common Ideas
	OpenCL
	CUDA
	Others
	Compilation to Intermediary Languages

	Properties
	Programmability
	Efficiency

	Prospects and Conclusions
	Future Developments
	Conclusion

	External Links
	
	


