
Joachim

Nitschke

PARALLEL

PROGRAMMING

Project Seminar “Parallel Programming”, Summer Semester 2011

 Introduction

 Parallel program design

 Patterns for parallel programming

 A: Algorithm structure

 B: Supporting structures

CONTENT

2

Context

around

parallel

programming

INTRODUCTION

 Many different models reflecting the various

different parallel hardware architectures

 2 or rather 3 most common models:

 Shared memory

 Distributed memory

 Hybrid models (combining shared and distributed memory)

PARALLEL PROGRAMMING MODELS

4

Shared memory Distributed memory

PARALLEL PROGRAMMING MODELS

5

Shared memory

 Synchronize memory

access

 Locking vs. potential

race conditions

Distributed memory

 Communication

bandwidth and

resulting latency

 Manage message

passing

 Synchronous vs.

asynchronous

communication

PROGRAMMING CHALLENGES

6

 2 common standards as examples for the 2

parallel programming models:

 Open Multi-Processing (OpenMP)

 Message passing interface (MPI)

PARALLEL PROGRAMMING STANDARDS

7

 Collection of libraries and compiler directives for
parallel programming on shared memory
computers

 Programmers have to explicitly designate blocks
that are to run in parallel by adding directives like:

 OpenMP then creates a number of threads
executing the designated code block

OpenMP

8

 Library with routines to manage message passing

for programming on distributed memory computers

 Messages are sent from one process to another

 Routines for synchronization, broadcasts, blocking

and non blocking communication

MPI

9

MPI.Scatter MPI.Gather

MPI EXAMPLE

10

General

strategies

for finding

concurrency

PARALLEL PROGRAM

DESIGN

 General approach: Analyze a problem to identify

exploitable concurrency

 Main concept is decomposition : Divide a

computation into smaller parts all or some of

which can run concurrently

FINDING CONCURRENCY

12

 Tasks: Programmer-defined units into which the

main computation is decomposed

 Unit of execution (UE) : Generalization of processes

and threads

SOME TERMINOLOGY

13

 Decompose a problem into tasks that can run

concurrently

 Few large tasks vs. many small tasks

 Minimize dependencies among tasks

TASK DECOMPOSITION

14

 Group tasks to simplify managing their
dependencies

 Tasks within a group run at the same time

 Based on decomposition: Group tasks that belong
to the same high-level operations

 Based on constraints: Group tasks with the same
constraints

GROUP TASKS

15

 Order task groups to satisfy constraints among

them

 Order must be:

 Restrictive enough to satisfy constraints

 Not too restrictive to improve flexibility and hence efficiency

 Identify dependencies – e.g.:

 Group A requires data from group B

 Important: Also identify the independent groups

 Identify potential dead locks

ORDER TASKS

16

 Decompose a problem‘s data into units that can be
operated on relatively independent

 Look at problem‘s central data structures

 Decomposition already implied by or basis for task
decomposition

 Again: Few large chunks vs. many small chunks

 Improve flexibility: Configurable granularity

DATA DECOMPOSITION

17

 Share decomposed data among tasks

 Identify task-local and shared data

 Classify shared data: read/write or read only?

 Identify potential race conditions

 Note: Sometimes data sharing implies
communication

DATA SHARING

18

Typical

parallel

program

structures

PATTERNS FOR

PARALLEL

PROGRAMMING

 How can the identified concurrency be used to

build a program?

 3 examples for typical parallel algorithm

structures:

 Organize by tasks: Divide & conquer

 Organize by data decomposition: Geometric/domain

decomposition

 Organize by data flow: Pipeline

A: ALGORITHM STRUCTURE

20

 Principle: Split a problem recursively into smaller

solvable sub problems and merge their results

 Potential concurrency: Sub problems can be solved

simultaneously

DIVIDE & CONQUER

21

 Precondition: Sub problems can be solved

independently

 Efficiency constraint: Split and merge should be

trivial compared to sub problems

 Challenge: Standard base case can lead to too

many too small tasks

 End recursion earlier?

DIVIDE & CONQUER

22

 Principle: Organize an algorithm around a linear

data structure that was decomposed into

concurrently updatable chunks

 Potential concurrency: Chunks can be updated

simultaneously

GEOMETRIC/DOMAIN DECOMPOSITION

23

 Example: Simple blur filter

where every pixel is set to

the average value of its

surrounding pixels

 Image can be split into

squares

 Each square is updated by a

task

 To update square border

information from other

squares is required

GEOMETRIC/DOMAIN DECOMPOSITION

24

 Again: Granularity of decomposition?

 Choose square/cubic chunks to minimize surface

and thus nonlocal data

 Replicating nonlocal data can reduce

communication → “ghost boundaries”

 Optimization: Overlap update and exchange of

nonlocal data

 Number of tasks > number of UEs for better load

balance

GEOMETRIC/DOMAIN DECOMPOSITION

25

 Principle based on analogy assembly line : Data

flowing through a set of stages

 Potential concurrency: Operations can be performed

simultaneously on different data items

PIPELINE

26

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

Pipeline stage 1

Pipeline stage 2

Pipeline stage 3

time

 Example: Instruction pipeline in CPUs

 Fetch (instruction)

 Decode

 Execute

 ...

PIPELINE

27

 Precondition: Dependencies among tasks allow an

appropriate ordering

 Efficiency constraint: Number of stages << number

of processed items

 Pipeline can also be nonlinear

PIPELINE

28

 Intermediate stage between problem oriented

algorithm structure patterns and their realization

in a programming environment

 Structures that “support” the realization of parallel

algorithms

 4 examples:

 Single program, multiple data (SPMD)

 Task farming/Master & Worker

 Fork & Join

 Shared data

B: SUPPORTING STRUCTURES

29

 Principle: The same code runs on every UE

processing different data

 Most common technique to write parallel

programs!

SINGLE PROGRAM, MULTIPLE DATA

30

 Program stages:

1. Initialize and obtain unique ID for each UE

2. Run the same program on every UE: Differences in the

instructions are driven by the ID

3. Distribute data by decomposing or sharing/copying global

data

 Risk: Complex branching and data decomposition

can make the code awful to understand and

maintain

SINGLE PROGRAM, MULTIPLE DATA

31

 Principle: A master task (“farmer”) dispatches

tasks to many worker UEs and collects (“farms”)

the results

TASK FARMING/MASTER & WORKER

32

TASK FARMING/MASTER & WORKER

33

 Precondition: Tasks are relatively independent

 Master:

 Initiates computation

 Creates a bag of tasks and stores them e.g. in a shared queue

 Launches the worker tasks and waits

 Collects the results and shuts down the computation

 Workers:

 While the bag of tasks is not empty pop a task and solve it

 Flexible through indirect scheduling

 Optimization: Master can become a worker too

TASK FARMING/MASTER & WORKER

34

 Principle: Tasks create (“fork”) and terminate

(“join”) other tasks dynamically

 Example: An algorithm designed after the Divide &

Conquer pattern

FORK & JOIN

35

 Mapping the tasks to UEs can be done directly or

indirectly

 Direct: Each subtask is mapped to a new UE

 Disadvantage: UE creation and destruction is expensive

 Standard programming model in OpenMP

 Indirect: Subtasks are stored inside a shared

queue and handled by a static number of UEs

 Concept behind OpenMP

FORK & JOIN

36

 Problem: Manage access to shared data

 Principle: Define an access protocol that assures

that the results of a computation are correct for

any ordering of the operations on the data

SHARED DATA

37

 Model shared data as a(n) (abstract) data type with

a fixed set of operations

 Operations can be seen as transactions (→ ACID

properties)

 Start with a simple solution and improve

performance step-by-step:

 Only one operation can be executed at any point in time

 Improve performance by separating operations into

noninterfering sets

 Separate operations in read and write operations

 Many different lock strategies…

SHARED DATA

38

QUESTIONS?

 T. Mattson, B. Sanders and B. Massingill. Patterns
for parallel programming. Addison-Wesley, 2004.

 A. Grama, A. Gupta, G. Karypis and V. Kumar.
Introduction to parallel computing. Addison
Wesley, 2nd Edition, 2003.

 P. S. Pacheco. An introduction to parallel
programming . Morgan Kaufmann, 2011.

 Images from Mattson et al. 2004

REFERENCES

40

