THE PREDATORS’ - GUIDE

A PARALLELIZED PREY-PREDATOR-SIMULATION

AUTHORS: MARKUS FASSELT, JULIAN SCcHMID, KiM KORTE

SUMMER 2013

Contents

1 Introduction 1
2 The Model 2
2.1 World 2
2.2 Creatures e 2
221 Energy 2

222 Death 3

223 Birth 3

2.24 Fighting 3

2.3 Plants 3
2.4 behavior 4
3 Simulation 4
3.1 Stepexecution. 4
3.2 Statistics 4
4 Implementation 5
4.1 Simulation 5
4.1.1 World)

4.1.2 Fields 6

4.1.3 Animal behavior 6

4.1.4 Fighting 7

4.1.5 The configurationo 7

4.2 Parallelization 7
4.2.1 Segmentation and animal movements 7

4.2.2 Communication 8

4.3 Statistics 9
5 Performance analysis 9
5.1 Speedup withonenode 9
5.2 Speedup with multiple nodes 10
5.3 Weak Scaling 11
6 Addendum 11

This project aims to show the consequences resulting from a simulation of
prey and predator in a virtual world. By altering one or many of the key
parameters, the behavior of the animals is controlled and different outcomes
can be observed. Outcome does not necessarily mean a final state of the
world in which the simulation eventually runs into but rather the state of
the world after a pre-defined number of rounds. It is possible for the simula-
tion to reach a dead-end before completing the set number of rounds. This
can happen, for instance, if one population dies from starvation or one eats
the other.

The final program is able to visualize the results and show appropriate data
about the actions leading up to the results. Furthermore, it can be run si-
multaneously on multiple cores in order to improve performance.

The project is written mainly in the programming language C. The paral-
lelization and communication between the processes is based on OpenMPI.

1 Introduction

The basic idea of the prey - predator - model is two populations interacting with each
other, hence varying in size, location and spread. The particular model is often associ-
ated with diagrams showing the size of the two populations. These are often antiym-
metric, as described in the Lotka - Volterra equation(Figure 1). The Lotka - Volterra
equation describes the interaction between predators and prey, using the amount of
specimen per species. This leads to an antisymmetric graph, as an excelling amount of
predators reduces the amount of prey. This in turn reduces the amount of predators,
since they can no longer find enough food.

® predator ® prey
90
67.5
45
22,5
0
Round 1 Round 40 Round 8¢ Roundi1zo Roundi16o Round 200

Figure 1: The lottka - volltera equation

2 The Model

In this section we will explain the main concepts of our simulation.

2.1 World

The world is a two dimensional map. Its size can be adjusted in the configuration.
Depending on its size, it contains a specific amount of fields, Each of which can contain
a creature and/or a plant. Each field has 8 direct neighboring fields (Figure 2). The world
is considered to be round, therefore the fields on the edges of the map are neighboring

the edge - fields on the other side of the map (Figure 2).

] Active Field

B Neighbor Field

Figure 2: Fields and their neighbors

2.2 Creatures

This term includes both predators and prey. Predators are equal to carnivores, as prey
is equal to herbivores. There can only be one (or no) creature on each field. Every
creature has an energy level and an age, which determine whether the creature lives
another round.

2.2.1 Energy

The energy level represents the hunger of a creature. It has a maximum value of ten,
to which is is restored when a herbivore eats a plant, or respectively a carnivore eats
a herbivore. Each round the creature does not eat, the energy level decreases by two
until a minimum value of zero is reached. By then the creature will die of starvation. A
carnivore will not eat plants, but only creatures from the herbivore population.
Additionally, the energy level suffers from fights between a predator and its prey, de-
creasing the energy level even further.

2.2.2 Death

Another dying reason is the age of the creature. With each round it increases by one
until a certain value is reached. This value can be set as a parameter and stands for
the lifespan of the creature. All creatures die eventually, as is only natural, in order to
make room for their children.

There is an addional death rate for both carnivore and herbivore. It is independent from
age or energy level of the creature and represents all other possible ways of death, for
example a natural accident, sickness or death while birthing a child. The natural dying
rate is 0,5% for the prey and 2% for the predators.

These values are also parameters, which can be adjusted.

2.2.3 Birth

Except for the initial round of a simulation no creatures will be spawned randomly.
There is a birth rate in order to ensure sufficient successors. Each creature has a chance
of spawning an offspring every round. A creature of the prey population will bear a
child roughly every 2 rounds (50% birth rate), whereas a predator gives birth less often
(at a birth rate of 20 %). There does not have to be another creature from the same
population nearby for the creature to bear a child.

2.2.4 Fighting

When a carnivore attacks a herbivore it comes to a fight until one of them dies. Fighting
costs energy, so the more energy a creature has when engaging in a fight, the higher the
chance that it will survive that fight. Only one creature can survive a fight. There are
several fighting rounds, which are all completed within one simulation round.

2.3 Plants

Plants will randomly spawn on fields of the map. The occurence of a plant is independent
from any creatures residing on that field. They serve as the food for all herbivore
creatures. When a herbivore stands on a field with a plant on it, the creature will eat
the food and therefore resets its energy level. This process removes the plant from the
field.

Plants cannot become extinct, since they spawn randomly and independently from any
other parameters. This assumes that the weather is providing a constant stream of
growing conditions and sets aside the real-word neccesarity of seeds.

2.4 behavior

Herbivores and Carnivores will both search for food in their surrounding area. Should
they find any food, they will engage it. For herbivores this means that they will move
towards the plant and eat it. Carnivores, however, will find herbivores not as easy to
consume. When they engage the herbivores, a fight will take place. The result of the
fight is dependent on the energy level of both participants. Although carnivores will
have a natural benefit, a strong and well fed herbivore will be able to defeat a weak
carnivore.

3 Simulation

This section explains the order in which the steps of the simulation are executed, as well
as the generated statistics.

3.1 Step execution

The first step of the simulation is the creatures looking for food (prey or plants) in the
adjacent fields. If they find something, they move to the field and eat the food residing
on it. It is not until all creatures have searched for food that the next step is executed.
Neighboring fields are the ones left, right, above, below, upper left, upper right, lower
left and lower right, so eight in total. Every creature who did not move in the previous
step, moves randomly to an empty, adjacent field. In the next step creatures bear chil-
dren, depending on a combination of birth rate and chance. In the last step the program
checks for dying reasons, which can be either old age, starvation or the natural death rate.
It will then remove all creatures who happen to have at least one dying reason. (figure 3)

Check for food Eat food, if found ° Move, if didn't eat @
Finished searc

Figure 3: General steps of the execution

3.2 Statistics

Since the program is parallelized, each process generates its own statistics. After every
simulation step the process counts the number of herbivores and carnivores. The data

is then sent to the master process, which cumulates it and stores it in a file for later
evaluation. Using gnuplot, the program is able to turn this data into a useful graph
(figure 4).

80000
Predator
Prey
Plants
70000
60000

50000 /\

) A
wl LA A N
LAV VARV,

10000

0 100 200 300 400 500
Time

Figure 4: Simulated population over time

4 Implementation

4.1 Simulation

The implementation of the simulation itself.

4.1.1 World

The world is divided into several segments depending on the number of processes avail-
able for computing. For example: a simulation using a 90 - 80 map with 12 processes

will be divided up into 12 30 - 20 segments. The numbers in the upper row are the left
border/starting points of the segments (x1), whereas the leftmost column contains the
upper border of the segment (y1). As seen here, each segment is 30 fields wide and 20
fields high. If we take, for example, the segment p4, its delimiting corner fields would
be x1 = 30,22 =59, y1 = 20,y = 39.

P3 P4 P5

pé p7 p8
P9 PIO PII

Figure 5: segmentation of a map

4.1.2 Fields

The fields are the basic components of the map on which the simulation runs. The fields
are storing a lot of the information needed to run the simulation. Each Field contains
the following information:

The coordinates of the field, the population type currently residing on the field, the age
and energy level of that creature and whether or not the field has a plant growing on it.
Should the animal move to another field, these values will be copied to the other field.

4.1.3 Animal behavior

The behavior of the animals is different for prey and predators.

Any animal which is considered prey will check its eight neighboring fields for plants. If
any of these fields should contain a plant it will move onto that field, as long as there is
no other creature blocking it. If none of the surrounding fields have a plant the animal
will wander around and move to a random direction. Predators will search its eight
neighboring fields for prey. If the neighboring fields have prey on them, both predator
and prey will start fighting. Only one of them will survive. Should the predator survive,
it will eat the prey. Otherwise the predator will die and the prey will survive.

4.1.4 Fighting

When a predator engages its prey, a fight will break out between them. The fight will
last until one of the participants dies. A creature dies in combat by losing all of its
energy. The fight lasts multiple fighting rounds, not to be confused with simulation
rounds. The entire fight will be resolved within one simulation round.

For each fighting round, every participant generates a random number between 0 and
its fighting energy. The fighting energy equals the normal energy. Predators get a bonus
of five added to their fighting energy.

When the energy level of one of the participants reaches zero, the participant will die
and the fight is over.

4.1.5 The configuration

In order to allow easy and quick modification of the parameters for the simulation, the
program offers an easy to use configuration. It offers the ability to change almost every
parameter that contributes to the simulation. The offered parameters are: The size of
the world described with a width and height parameter.

The number of simulation steps before termination. If offers the option to go for an
infinite number of steps, although this is not recommended.

Spawn-rates, determining the percentage of the map which gets filled with creatures in
the beginning of the simulation. Aditionally, there is an option for how many of the
creatures are spawned as prey and how many as predators. An additional spawn rate
exists for plants, unrelated to the creature spawn rate.

Additional creature parameters, such as the age at which creatures die of old age, the
maximum energy level, the birth - rate and the death - rate, which represents natural
causes of death, except old age and starvation.

4.2 Parallelization

The implementation of running the simulation on multiple processes.

4.2.1 Segmentation and animal movements

As mentioned earlier, the world is divided into several segments on startup. The number
and size of them is determined by the number of processes available.

The program determines the distribution of segments using prime factorization. If the
prime factorization results in more than two prime numbers, the program will multiply

the results with each other until only 2 results remain. To make this process as balanced
as possible the program see-saws between multiplying the results at the front of the list
and the results at the end of the list.

For example: There are have 64 processes. The prime factorization yields 2-2-2-2-2-2.
The programm will then multiply the first two results, resulting in 4-2-2-2-2. Then
the last two results. 4-2-2-4. In the end we will get the results 8 * 8.

Based on this process the program will then divide the map into 64 segments, dividing
it eight times on the x - axis and eight times on the y - axis.

Each segment is assigned to exactly one process which will then calculate the movements
and events on the fields of the segment during the simulation.

Since creatures are able to cross segments, a process does not only have to store the
fields it is directly responsible for, but also the fields that surround his segment, called
outer - fields (figure 6).

The fields that are on the edges of a processors segment are called border - fields and
are important for communication between processors.

. Inner field

|:| Border field

(] outer field

Figure 6: Fields used by a process

4.2.2 Communication

This section explains the communication between the different processes. A process will
send out information when it updates a field that is either an outer field or a border
field.

When a border or outer field is updated, all processes that can see this field will get
notified. This can be up to three processes depending on the location of the field. For
example: If the field is on the corner, rather than the edge, of a segment more processes
need to be notified.

In our simulation a field is implemented as a struct. Structs cannot be transfered with
standard MPI data types, so we created our own MPI data type. This brings the
advantage of being able to directly transfer the field, without any transformations.

The communication itself is implemented using the blocking MPI_send() and the non -
blocking MPI Irecv().

4.3 Statistics

After each round, every process calculates its statistics for the remaining, living crea-
tures. These will be sent to the master process, using another self - created MPI data
type. After these statistics have been received, they get merged using MPI reduce() and
a self - created MPI operation.

At last, should any creature become extinct, every process is notified that the simulation
has to be terminated.

Otherwise the simulation continues with the next round.

5 Performance analysis

5.1 Speedup with one node

40

35 .

30 .

25 .

Mop/s
N
o
Il

15 .

10 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 24
Number of Processes

Figure 7: Speedup in Million Operations per second

160

140

120

100

Time (s)
@©
o
T

60

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 24
Number of Processes

Figure 8: Speedup in time

The speedup is shown in figure 7 and figure 8.

While the speed does increase over an increasing number of processes, there is some data
standing out due to a sudden increase of computing time.

We assume this is caused by a uneven distribution of segments. The problem seems to
occur every time the number of processes does not allow for a balanced segmentation of
the map. For example: Ten processes result in a segmentation of 2-5. Twelve processes
result in a segmentation of 4 - 3, which is much more balanced.

However, the fact that seven processes seem to be almost as fast as eight processes, while
not allowing for a balanced segmentation at all, seems to contradict this theory.

5.2 Speedup with multiple nodes

With multiple nodes the speedup is significantly greater (figure 9), than with only one
node. Using four nodes we can observe that the speedup graph follows Amdahl’s law. A
higher number of nodes seems to pull the point, were increasing the number of processes,
decreases the speed of the program, farther back.

10

160

T T T 160
Time (s)
Mops/s

140 - 140

120 | - 120

100 | 4 100
z K
@ 80| 48 &
15
E =
60 [4 60
40 | 4 20
20 -4 20

1/1 2/2 3/3 4/4 A48 4/16 4/20 4/32 4/48 4/56 4/64 4/68 4/72 4/80 4/90 4/92 4/96

Figure 9: Speedup with 4 Nodes

5.3 Weak Scaling

The speedup using weak scaling. Weak scaling describes the method of having a fixed
size for the segments and making the size of the map dependent on the number of
processes(figure 10). We ran twelve processes using one node and up to 96 processes
using multiple nodes to avoid hyper - threading. We can see that the graph for weak
scaling is very simillar to strong scaling, although slower than strong scaling. The
speed increases in a simillar manner and the sudden speeddrops for specific numbers of
processes are still happening.

6 Addendum

The development of the program was aided by the IDE Eclipse and the compilers GC-
C/MPICC.

For code collaboration, we used the version control system git.
For debugging purposes we used gdb, valgrind and DDT.

Additional software used for creation of the paper and presentation includes Apple Pages,

11

35 T T T
30 el
BT e e e s it s SIS S e el
T e e e it SRS B B e mm e el
Y
=
o
=
R e e B B B M e S M B mE e mE me el
I e I N e e e B M e S M B mE e mE me el
[N W NN BN NN W O WW O WW BN W W W W W W B e . 4

0
171 12 1/3 14 1/5 16 1/7 1/8 1/9 1/10 1/11 1/12 2/12 2/24 3/36 4/48 5/60 6/72 7/84 8/96
Number of Processes

Figure 10: Speedup with weak scaling

LaTeX, dia and gnuplot.

12

