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Overview

stack

heap

uninitialized data

initialized data

text (program code)

high address

low address

read from

program file

initialized to

zero

command line arguments 

and environment variables

Figure : http://infohost.nmt.edu/~eweiss/222_book/222_book/

0201433079/ch07lev1sec6.html
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The stack

Used for local variables in C

Lightweight LIFO data structure
⇒ Very fast (de-)allocation

Automatic (de-)allocation of variables
⇒ Out of scope, out of reach

(Severely) space constrained
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High level stack layout

1 void bar() {

2 int j = 42;

3 }

4

5 void foo() {

6 bar();

7 }

8

9 int main() {

10 int i = 42;

11 foo();

12 return 0;

13 }
main()

foo()

bar()
Local variables

internal state
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The heap

Used for working with varying amounts of data
→ Dynamic memory management

Manual allocation, deallocation of memory

Access only through pointers

Allows access to a lot more memory than stack
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What is a pointer?

42

0x0000100C

Address

0x00001008

0x0000100Cint i = 42;

int *ptr = &i;

Source code

Contents of memory
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What are pointers needed for?

data structures
Linked Lists
Trees

Dynamic memory management
Normally in C: call-by-value - called function works on
copies of its parameters

1 void swap(int a, int b) {

2 int c = a;

3 a = b;

4 b = c;

5 }

6

7 int main() {

8 int a = 42, b = 21;

9 swap(a,b);

10 printf("a = %d, b = %d\n", a, b);

11 }

⇒ call-by-reference - Use pointers (references) as
parameters to make swap work!
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Declaration

type * [cv-qualifier] name [= expression];

cv-qualifier refers to type-qualifiers directly related to the
pointer type (e.g. const)

type can itself be a pointer type

expression can be NULL, address-of variable, ...
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Initialization

expression can be any expression that yields a value of type
type * or more general type

& is called address-of operator
Given a variable a of type type, &a yields the address of a,
which is of type type *

1 int a = 42;

2 // assign address -of a to b

3 const int * b = &a;
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NULL

NULL indicates that the pointer does not refer to a valid
memory location

can be assigned to any pointer, regardless of type

Often used as return value to signal failure
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void *

typeless-pointer

Implicit conversion between void * and any other pointer
type (and the other way around)

Commonly used in the standard library to offer generic
functions

1 void * memset(void * b,

2 int c,

3 size_t len);

4

5 int memcmp(void * s1 ,

6 void * s2 ,

7 size_t n);
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Referencing & Dereferencing

Referencing: Using the address-of operator (&) to assign the
address of a variable to a pointer

Dereferencing: Access the contents of memory where the
pointer points to

Using asterisk operator *

1 // call -by -reference

2 void swap(int * a, int * b) {

3 int c = *a;

4 *a = *b;

5 *b = c;

6 }

7

8 int main() {

9 int a = 42, b = 21;

10 swap(&a, &b);

11 printf("a = %d, b = %d\n", a, b);

12 }
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Comparing pointers

Comparing for equality, inequality using
== and !=

Operators >=, >, <, <= also defined (see next section)
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Pointer arithmetic

1 int arr [3] = {1,2,3};

2 int * ptr = &arr [0];

1 2 30x1004

0x0008 0x1004 0x1008 0x100cAddress

Value in 
memory

Variable ptr arr[0] arr[1] arr[2]

*ptr *(ptr + 1) *(ptr + 2)

ptr[0] ptr[1] ptr[2]
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Pointer arithmetic

*ptr ≡ arr[0]

(ptr + n) ≡ &arr[n]

⇒ *(ptr + n) ≡ arr[n]

If ptr points to the i-th element of an array, (ptr + n)

points to the (i + n)-th element of that array.

(ptr1 op ptr2) true, iff

op ≡ <, ptr1 points to element with smaller index than ptr2

op ≡ >, ptr1 points to element with larger index than ptr2

· · ·
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When & Why?

Dynamic memory management used in functions

results should persist after function exits
allocate very large blocks of temporary memory

Adapt to changing needs (the same program can e.g. sort
data no matter the size)

Dynamic data structures need dynamic memory management
for

Growing
Shrinking
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malloc()

Declaration:

1 void * malloc(size_t size);

malloc() reserves memory block with at least size bytes
⇒ returns NULL if not enough memory available

Use sizeof(type) to find out size of type in bytes

malloc() does not initialize the memory for you!
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calloc()

Declaration:

1 void * calloc(size_t count , size_t size);

calloc() allocates enough memory to hold count elements,
each occupying size bytes in memory.
⇒ returns NULL if not enough memory available

Every byte is set to 0.
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realloc()

Declaration

1 void * realloc(void * ptr , size_t size);

ptr is a pointer previously returned by malloc(), calloc()
or realloc()

size is the new size (in bytes)

realloc() tries to change size of ptr and returns a new pointer
to memory with the requested size.
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free()

1 void free(void * ptr);

ptr has to be a value previously returned by malloc(),
calloc() or realloc()

size is part of internal records, so you don’t need to specify
that

General cycle:
malloc() → Using memory → free()
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Pitfalls / Problems

Check return values
⇒ Dereferencing NULL will (most likely) crash your program!

Use-after-free: Never access a memory block you already
free()’d.

Memory leaks: Don’t loose track of references to valid
memory. You won’t be able to free() it if you do so.

Buffer overrun / underrun: No built in bounds checking in
C!

Operator precedence: (*ptr)++ 6≡ *(ptr++)
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