
SwarmFlocking

Praktikum Parallele Programmierung

Fabian Besner, Dominik Lohmann, Jakob Rieck
{2besner,2lohmann,2rieck}@informatik.uni-hamburg.de

2014

1

Contents

1 Introduction 3

2 The model 4
2.1 Boids . 4
2.2 Forces . 4

2.2.1 Alignment . 5
2.2.2 Cohesion . 5
2.2.3 Separation . 5

2.3 Predators . 6
2.4 The world . 6

3 Serial implementation 7
3.1 Performance optimisations and hotspot analysis 7
3.2 Runtime behaviour . 8

4 Parallelisation 9
4.1 Trivial approach . 9

4.1.1 Hiding communications 10
4.1.2 Scalability . 12
4.1.3 Conclusion . 13

4.2 Segmented approach . 13
4.2.1 MPI Optimisations and tweaks 15
4.2.2 Scalability . 19

5 Visualisation 20
5.1 Output file format . 20
5.2 Data visualisation . 20
5.3 Cluster detection . 20

6 Remarks and future work 22

7 Conclusion 24

2

1 Introduction

Swarm behaviour is something humans have long admired for its elegance
and beauty, efficiency and seemingly perfect self organisation. The emergent
behaviour that results from each individual animal following some very ba-
sic rules is simply astonishing. Amongst the most prominent examples of
swarm behaviour (also often simply called "swarming") are "flocking" for
birds or "schooling" for fish. Often times essential for survival, swarms form
to guard against attackers, to keep warm in rough conditions and to harness
aerodynamics effectively.

Biologists are not the only people professionaly invested in understand-
ing, modeling and simulating swarms. Swarm simulations are also used for
entertainment purposes, in animated movies, TV shows and even computer
games.

Swarm simulations for us are a great problem to work on for lots of rea-
sons: The results produced can be visualised in a multitude of ways leaving
room for unique and uncommon approaches. The simulation, while compu-
tationally intensive, can be broken down into smaller pieces and is thus a
prime candidate for parallelisation.

The foundation of our work was laid by Craig Reynolds in his paper titled
"Flocks, Herds, and Schools: A Distributed Behavioral Model" in 1987. In
this report, we will follow the terminology he introduced closely.

With our project, we set out to create a functioning simulation of the
boid flocking algorithm, while learning to use libraries and tools like MPI
and OpenMP that faciliate parallel programming.

3

2 The model

In this section we are going to present our model, including our world, boids,
predators and forces that govern the interactions between boids, boids and
predators and predators among themselves.

2.1 Boids

In our model, a Boid is a massless particle representing one organism in a
swarm. Its two important properties are position and velocity, but there is
also a third field, force, which is used to store the force calculated in each
step.

The actual structure definition reads as follows:

struct Boid {
Vector3 f p o s i t i o n ;
Vector3 f v e l o c i t y ;
Vector3 f f o r c e ;

// . . .
} ;

typedef Boid Predator ;

Each boid‘s position is confined to our world boundaries. Velocities are
also bounded by a maximum velocity.

2.2 Forces

Each boid follows three simple steering behaviours called alignment, cohesion
and separation.

For every force we present both a short text describing the basics and a
graphic for visualisation: A green triangle represents the boid that is cur-
rently being observed, every other triangle represent neighbours of this boid.
Each triangle inside the grey circle is a direct neighbour. It influences the
boid that is being observed. The arrows point in the direction each boid
is heading. The green arrow symbolises the force of the next discrete time
step.

4

2.2.1 Alignment

The first force is alignment, which
results in each boid flying towards
the average heading of its neigh-
bours.

2.2.2 Cohesion

Cohesion results in each boid flying
towards the centroid of all surround-
ing boids. This helps keep the swarm
close.

2.2.3 Separation

In our model, just like in the
real world, organisms in swarms
rarely, if ever, collide. To model
this, Reynolds introduced Cohe-
sion which makes sure a boid
steers away from other boids that
get too close.

5

Each of these forces can be weighted differently and, by carefully choos-
ing parameters, the resulting sum of those three forces results in swarm
behaviour. If these forces are assigned indifferent weights, for example if
alignment and cohesion are not considered at all, the resulting model does
not resemble swarm behaviour, but instead it looks like a static particle grid.
In this case, since all boids try to steer away from all the other boids, we
expect to see a uniform distribution of boids in our world.

In Reynolds original proposal, the direct neighbourhood was defined in
terms of a specific distance and a specific angle to model the fact, that any
organisms perspective is limited. In our implementation we decided only to
consider the distance and disregard the angle component. This was mainly
done to keep the implementation as simple as possible. Nonetheless, it should
be easy to take the angle under consideration as well.

2.3 Predators

Predators were added to make the simulation more dynamic. They are
modelled the same way boids are, but interact differently with each other
and with boids: A predator tends to avoid other predators and tries to get
close to boids, which, on the other hand, are trained to evade predators and,
if a predator gets too close, steer in the opposite direction to maximize the
distance between the attacker and themselves. In our model, predators never
actually catch boids, since there is no collision detection.

2.4 The world

We use a three-dimensional cube to model the world. All endings are con-
nected: Left wraps around to Right, Up to Down, Front to Back. Because
no boid leaves the world, we do not have to manage spawning new ones.

6

3 Serial implementation

Our earliest prototype, written in C, made it clear we needed operator over-
loading, mainly to work with three-dimensional vectors, so we chose C++
for our programming language. C++11 allows us to use many advanced
language features like extended for-loops, enum classes for better readabil-
ity and anonymous lambda functions to encapsulate common tasks inside
of functions. As for libraries, we use Boost C++ Libraries for parsing of
command line parameters and SFML for visualising the data.

We built seperate programs for producing the data and for consuming
the data. This was done because we knew we only had to parallelise the
actual simulation, not the visualisation. For initialisation, we populated our
world with boids generated with pseudo random position and velocity. To
allow easier testing and to ensure each process in the parallel version would
always generate the same data during initialisation, we seed srand with a
constant.

After initialisation the main simulation loop begins: In each iteration,
forces for all boids and all predators are calculated, new positions are de-
termined - based on the forces calculated previously - and the new data is
written to disk.

To fully implement and create our idea, we had to change our calculate
Difference() function that is used to calculate a difference vector between two
boids’ positions. Starting off, we used a simple vector subtraction to calculate
the distance between two boids. Obviously this behaviour is different from
the behaviour we originally wanted to create in our model, so we had to redo
this function. Our new, more complicated version fixed this discrepancy, but
introduced a performance loss by more than factor two.

3.1 Performance optimisations and hotspot analysis

Profiling the application using gprof, we realized our more complex
calculateDifference() function took up roughly 50% of our runtime. (Up
from approximately 1%). By rewriting calculateDifference() and our vector
class using SSE2 intrinsics, we were able to improve performance by roughly
80%, compared to our slower version. Because SSEs load instructions tend
to be faster for 16 Byte aligned data, we chose to add a padding field to our
Vector3f class.

For our main loop, we added an OpenMP statement to execute the loop
in parallel. This resulted roughly in the projected speedup.

7

3.2 Runtime behaviour

The underlying algorithm is of complexity O(n2). Because we also added
predators, our new complexity for n boids and m predators is O((n+m)2).

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

20

40

60

80

100

120

Number of boids

R
un

ti
m
e
in

se
co
nd

s

Runtime behaviour

The graph above is a diagram showing the runtime of our serial program.
Plotted on the x-axis is the number of boids, plotted on the y-axis is the
runtime in seconds. We simulated 1000 steps - no predators were included.
The diagram shows the general runtime behaviour as n gets large: For twice
as many boids, there are roughly four times as many calculations to be done.
This fits perfectly with the projected complexity of O((n+m)2).

8

4 Parallelisation

Over the course of our work, we ended up creating two different versions, both
with a unique approach. We ended up using the same MPI datatypes for both
versions, so they are introduced first. Boid, predator and vector datatypes
are used to send data to other processes without relying on implementation
dependent details like sizeof(float), as well as to save bandwidth, as we do
not need to send padding data in Vector3f.

The graphic shown below visualises our design. Grey fields are skipped
when sending or receiving data.

X Y Z -

X Y Z -

X Y Z -

X Y Z -

X Y Z -

X Y Z -

X Y Z -

X Y Z -

X Y Z -

position velocity force

1.

2.

3.

1. is the datatype Boid used in our code. Each field is a Vector3f, and
each vector consists of 3 floats and one padding field (also a float)

2. is an illustration of ourMPI_BOID datatype: The force is recalculated
in each step, so we do not need to send it. The padding field does not
contain relevant data so it does not need to be sent. This datatype is
used during synchronisation.

3. is MPI_BOID_THIN. It is used to store data to disk using MPI I/O
routines. We decided to only save the position.

4.1 Trivial approach

Our first version is the logical continuation of the obvious approach to thread-
ing. Just like with t threads, where we made sure each thread updates n

t
boids, we now use p processes, each with t threads, and make sure each pro-
cess updates just n

t·p boids. Thus we do not divide the world but rather the
individual boids. The algorithm works as follows:

1. Process setup: MPI initialisation, create pseudo randomly positioned
boids.

2. Synchronisation: Receive each other processes data, send local data to
each other process.

9

3. Serialisation: Save local data to disk (in order of MPI process number).

4. Calculation: Calculate velocities for locally stored boids; Update boid
positions.

5. If steps = 0 then exit else steps := steps− 1 and goto 2.

4.1.1 Hiding communications

For this version, we went through trouble trying to hide our MPI communica-
tions. In short: We extended the obvious threading approach by distributing
all data to all processes and selectively updating a subset of that data in each
process. After that we would redistribute the data using collective MPI oper-
ations such as MPI_Allgather to all other processes and repeat that process.
Thus, after each local update, we end up with parts of the data updated and
other parts not yet updated because different processes are responsible for
those parts. In order to hide our communications, during synchronisation
we initiated the data transfer and then started computing partial forces for
the boids in our reach. Since we already had part of the data from the next
step, namely boids that we had previously updated, we could use those to
start the process. After we consumed all data from our local cache, we would
wait for the communications to end, before continuing the calculation and
computing the new positions. This works well if the local cache of boids is
rather large, so this approach favors fewer processes and larger boid counts.
If there are few boids in each local cache, the partial force calculations are
not enough to cover the time to fetch data from the other processes and the
overall runtime is dominated by collective MPI operations.

We used vampirtrace to profile our application after we had made the
aforementioned change. Here is the data we gathered:

sample acc. application time (s) acc. MPI time (s) Walltime (s)
1 449.610 19.720 29.404
2 450.458 26.233 29.912
3 450.832 19.886 29.477
4 451.061 17.206 29.317
5 449.324 17.506 29.228

Data for asynchronous version:

10

sample acc. application time (s) acc. MPI time (s) Walltime (s)
1 451.798 23.218 29.766
2 451.193 21.321 29.634
3 450.731 22.415 29.649
4 450.419 18.096 29.331
5 450.264 20.151 29.484

As you can see, there are absolutely no improvements in our runtime.
From this data, you can even argue the opposite, it seems like the perfor-
mance degraded slightly. We think this is due to two reasons: First of all,
the message size each process contributes to the pool is comparatively small:
For each boid, only its position and its velocity are distributed, and for each
vector we only need to send 12 Bytes (3 Floats). Thus, for n = 216 and
nprocs = 16, each process contributes just 96 kB data per step. Sending
this data should not take long, perhaps not even warranting the use of asyn-
chronous collective operations. Secondly, since the time it takes a process to
calculate its chunk is not fixed but depends basically on the average number
of boids in each boids influence range, each processes’ runtime is slightly
different. Thus, the additional call to MPI_Wait to finish synchronisation
actually introduced new waiting times.

Since the flocking algorithm scales so poorly, it is unlikely we could ever
produce enough data for this optimisation to work out in practice. Further-
more, since we have no load balancing, we actually end up spending more
time in MPI routines than before: Most of that time is spent in MPI_Wait,
waiting for longer working processes to finish.

11

4.1.2 Scalability

0 10 20 30 40 50 60 70 80 90

0

5

10

15

20

25

30

Number of processes

Sp
ee
du

p

Speedup

For the diagram above, we simulated 200 steps with 65536 Boids, no
predators and a varying count of processes, plotted on the x-Axis. The
speedup on the y-Axis is relative to the runtime for the simulation with
p = 1 processes. As you can see, the runtime is increasing for p > 80. We
believe this is due to the fact that each process receives the whole dataset in
each step. Calculating with p > 80 processes, each one updates 65536

80 ≈ 819
boids in each step, which is probably the threshold when the communication
costs outweigh the calculation costs. At this point, adding more processes
does not have a positive impact. If we were to use an even higher boid
count, this scaling would most likely continue until this technical limitation
is reached once again.

12

4.1.3 Conclusion

To conclude, the "trivial approach" was great in two regards: No matter
how many processes one uses to compute the data, the result never changes,
allowing us to test new versions simply by checksumming the produced out-
put files. This is worth mentioning because floating point math is neither
associative nor commutative, so when trying to optimize floating point code
one almost always ends up changing the result slightly. Furthermore, the
implementation is straightforward and offers a playground for further exper-
iments.

4.2 Segmented approach

Our second approach works by segmenting the world into equidistant slices
along the x-axis:

Each process is responsible for calculating the forces in exactly one slice,
send these updated boids to its neighbours and receive updated boid data
from its neighbours. A slice a is a neighbour of another slice b if and only
if d = distance(a, b) is smaller or equal to the maximum range of any force.
This definition ensures that each process gets just the information it needs
to calculate new positions for boids in its bucket. Every process has at
least two neighbours: the leftmost processes neighbour are the last process
(rightmost process) and the second process. More neighbours are possible if
the maximum range of any force extends over more than one slice, say if the
width of a slice is 25.0 and the maximum range is 50.0, then each slice has
four neighbours, two on each side.

13

In the case depicted above, the segment containing the green boid (the
boid located in the center of the circle) has four neighbours, because the
maximum range extends for two segments on each side.

The general algorithm is as follows:

1. Process setup: MPI initialisation, create pseudo randomly positioned
boids.

2. Calculate velocity for boids in processes bucket, taking boids gathered
from neighbours in consideration.

3. Calculate partial predator forces by looping over local boid data only.
Update boid positions.

14

4. Synchronise: Send and receive partial predator forces to and from all
other processes; Compute the aggregated forces. Update predator po-
sitions (each process updates all predators as they are only stored lo-
cally). Send processes local boid data to all neighbours; Receive boid
data from all neighbours.

5. Serialisation: Save data to disk, using MPI I/O. Each process stores
its local data, there is no process dedicated just to save data to disk.

6. If steps = 0 then exit else steps := steps− 1 and goto 2.

4.2.1 MPI Optimisations and tweaks

Finally, we had two additional performance optimisations we wanted to work
on. Firstly, we wanted to use all available processes to calculate the next
predator positions, rather than just using one designated process as we had
done previously to do all the work. According to benchmarks, this practice
of ours accounted for a large percentage of all MPI work in our application,
as we used a Gather, followed by a Scatter to first send all data to the
root process and then distribute the updated predator positions, calculated
by the root, to all other processes. In order to improve this behaviour, we
originally wanted to use MPIs Reduce functions, but soon realized, that a
requirement for a user supplied reduce function in MPI is associativity, which
cannot be guaranteed when working with (vectors of) floating point numbers.
In order to retain some kind of testability, we instead chose to distribute
every processes information to every other process using MPI_Allgather
and to then let every process compute the final predator positions on its
own. Unfortunately, this only solves a part of the associativity problem, as
we are still computing partial forces on a per process basis. We changed
the final result slightly, again due to floating point arithmetic on modern
architectures. We think this change in the output is small enough to justify
the performance improvements.

Secondly, we have reduced the number of boids we send from each pro-
cess to its neighbours. Previously, we sent each processes’ local data to every
other process that could theoretically be influenced by any boid in the send-
ing processes’ segment. The graphic below visualises this behaviour. Even
though the maximum influence range of any force only extends to about
a third of the second neighbour, we still receive all local data from that
neighbour.

15

maximal range

boids under consideration

If only parts of a segment are needed to perform all calculations, now we
only send that part:

16

boids under

consideration

The performance improvements of this change depend in large parts on
the configuration, mainly the world size, number of processes and distribu-
tion of boids in each bucket. If we assume a uniform distribution of boids (in
terms of their position) in each bucket, a world size w and n processes are
working together, then the potential savings depend on w

n . If this fraction
works out to be less than the maximum influence range, almost nothing is
won, because we are still sending all of our data to our neighbours. After
all, every piece of our information could be used by any of the adjacent
processes. On the other hand, if said fraction is greater than the maximum

17

influence range, we only send part of our data to our neighbours. Assuming
uniform distribution of boids in our bucket, we send maxInfluenceRange

w
n

% to
each of our neighbours. Obviously, our simulation should never approach a
uniform distribution, but this can be used to estimate the savings. In real
life examples, the cost tends to be a lot more suddle, even if the world size is
large enough and we use comparatively few processes, and, while the average
message size still decreases, we end up sending lots of data to some processes
and little to others. This is a suboptimal assessment, since the speed of our
synchronisation is determined by its slowest part. Nevertheless, this change
saves bandwidth and may allow the usage of our program on a cluster with
more limited connectivity.

For this second version, we did not try to hide communications because of
the added complexity of the code in our main branch, as well as the consid-
erably smaller local datasets that could be used to fill the time to effectively
hide asynchronous MPI operations and the nature of our application requir-
ing synchronisation after every step. This decision was also informed by our
previous findings, but in theory, the same method we described for the trivial
implementation would also work here.

18

4.2.2 Scalability

0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

Number of processes

Sp
ee
du

p

Speedup

For this graph, we used the same parameters as before in the discussion
about scalability of the "trivial approach": We simulated 200 steps for 216 =
65536 boids and no predators in a world of size 3200. The most interesting
piece of information in this graph is the superlinear speedup for programs
with p ≤ 32 processes. This happens because for p > 1 processes, a process
does not need to loop over all boids, but only those in its segment (and over
some of the boids from his neighbours). When p > 64 and default weights
are used, each process has more than two neighbours, so the communication
overhead gets larger. We attribute the short downs for 32 < p < 64 to
missing load balancing, which ends up favoring some configurations over
others.

19

5 Visualisation

While calculating data is an important task, it is also important to check
for data validity. This can easily be done by visualising the output data and
checking whether there is noticable swarm behaviour. Visualising the swarm
behaviour also helps showing the ideas behind our calculations and the effect
of each individual force.

5.1 Output file format

For the file format used to channel data from the simulation into the visu-
alisation we decided to use a simple binary format. We chose not to include
any metadata, but just to dump the positions of all boids and predators to
disk. To process this data, a user has to supply the visualisation process
with the correct number of boids, predators and steps used in the process
that generated the file.

5.2 Data visualisation

Given an input file create by the simulation program, our visualisation bi-
nary is capable of showing the boids and predators in a rotatable three-
dimensional cube. Apart from the input data file, the visualisation expects
the number of boids, predators and steps simulated and optionally, an upper
bound to the number of frames rendered per second. On the implementa-
tion side, we chose to use SFML to create a window and draw the boids and
predators using GL_POINT on SFMLs underlying OpenGL context. We
used SFML for its ease of use to create windows and handle inputs, and for
its support for X11 forwarding via SSH.

The visualisation can be paused by pressing space at any given time and
the cube can be rotated with the arrow keys. The rotation defaults to 2◦

per frame, but can be accelerated using Numpad1 and decelerated using
Numpad2. Escape closes the application window.

5.3 Cluster detection

For visualisation purposes, we ended up adding an algorithm particularly
popular in the machine learning community: clustering using k-means. Be-
cause its results are not (yet) perfect, we only enable clustering for single
stepping mode. In the section "Remarks and future work" we share an in-
teresting idea to use this clustering approach as the basis for a completely
new implementation of the simulation.

20

Here is a screenshot of our visualisation taken while running in single
stepping mode. As you can see, the clustering is certainly not perfect, but
already works reasonably well.

21

6 Remarks and future work

We can think of a few ways to potentially improve performance in the serial
implementation that we have not had the time to implement by ourselves:
As we have already discussed, we added a padding field to our vector class
in order to get the benefits of loading aligned data. Looking back, additional
cache misses introduced by this change may end up being costlier than simply
loading from unaligned addresses. Furthermore, our boid data structure may
not be optimal: Most loops access only the position and velocity fields, so it
may be advantageaus to move from an array of structs (aos) to a struct of
arrays (soa) for this key data structure. For our project, we chose readability
over potentially minor performance improvements in our code.

One obvious problem with the segmented version is load balancing. Right
now, segments that contain more boids or have a huge number of neighbours
do more work compared to other processes, whose buckets might only contain
very few boids. So far, we have not made efforts to dynamically resize
the buckets, which could help in balancing the workload. In practice, at
least for relatively few steps (less than 10000) we have not observed large
discrepancies, but this is again dependent on various parameters, including
the weights of all three forces, which effect the flocking behaviour and are
directly responsible for the distribution of boids in the space domain, the size
of our world, which limits the positions the boids can be at (remember that
a wraparound is implemented), number of predators, which again affects
the swarm behaviour, and various other factors. Despite this, even small
discrepancies can dramatically limit the achievable speedup, so this is an
important problem to solve.

Benchmarks show the slowest MPI calls are related to I/O. These take up
a considerable amount of time and could possibly be queued up in a smart
way, wherein the individual data buffers are buffered for a longer time so
that the main simulation would not have to wait for the I/O operations to
complete. This is not trivial to implement, as each process holds its own
chunk of the data, so it is not directly possible to just dedicate one worker
process to this task. Another solution could be to make each process write
its data into a local file and then to combine them after program execution
has terminated.

We can also conceive an entirely new implementation that does not rely
on a segmentation of the world as is the case in our implementation, but
rather uses different means to distribute whole swarms to individual pro-
cesses. We implemented the first step for this in our visualisation: In single-
stepping mode, a clustering algorithm is used to calculate clusters, roughly

22

corresponding to swarm, and display them using different colours. It is
conceivable that the root process could calculate these clusters identifying
individual swarms, build up a graph encapsulating both each swarms cen-
troid and diameter and the relative distances between the swarms. Then
send each available process a specific subproblem, a swarm and the swarms
influencing that particular swarm. Afterwards, the process would either send
all calculated forces to the root process, or just the swarms new centroid and
diameter in cases where the nearest swarm is still so far off that it does not
influence the current processes data. In that case, communications between
processes could potentially be reduced drastically. It is worth noting that
in general, it is not easy to compute clusters, so perfect results cannot be
expected. Despite that, the resulting algorithm should work reasonably well.

23

7 Conclusion

If there is one thing developing this simulation has taught us, it is how to
properly work in a team. Coming from different programming backgrounds
and having different knowledge about the tools needed, we learned to com-
plement each others set of skills. Obviously there are a few things we wish
we had implemented differently, like simply ignoring boids that "fall out" of
our world and spawning new ones. Summarising, it took us a lot longer to
develop, debug and benchmark our programs than we would have expected.
Still, looking back, we met our goal: Our simulation is working and produces
data that can be fed into our visualisation to examine the results in detail.

In the last section we shared our thoughts about future improvements
and changes we think could improve the performance. If you would like to
continue working on this project, feel free to contact us. We would love to
hear about your efforts!

24

