<Witziger Titel> (work in progress)

Frederik Wille <3wille@informatik.uni-hamburg.de>
Alexander Timmermann <3timmerm@informatik.uni-hamburg.de>

Synopsis

- Effiziente Verteilung von Passagieren auf Flüge und Plätze
 - Fluggäste geben kein genaues Abflugdatum an, sondern Präferenzen (morgens/mittags/abends)
- Clusterung von zusammengehörenden Gruppen
 - möchten gerne zusammengehörige Plätze haben
- Einteilung in verschiedene Klassen
 - 1st, Business, Economy...
- Präferenzen
 - Gang, Fenster, Mitte

Sequentieller Algorithmus

INPUT:

- Buchungsdaten der Reisenden für einen Zeitraum
- Informationen der Flüge in diesem Zeitraum
 - Anzahl der Plätze pro Klasse
 - Abflugdaten

LOOP:

- Gruppen nach Größe absteigend auf Flüge verteilen
- Gruppen in verschiedene Klassen einteilen

Sequentieller Algorithmus

LOOP (cont.):

- Einzelpersonen auf die Flüge verteilen
- Einzelpersonen auf die verbleibenden Plätz verteilen

IF verbleibende freie Plätze > 10:

- versuchen, Flugzeug auf ein kleineres downzugraden

Lösungsansatz

- Clusterung der zusammengehörenden Gruppen beachten!
- parallelen Algorithmus für Verteilung auf die verschiedenen Flüge finden
 - naiv: einfach rein bis alle Flugzeuge voll ist
 - intelligenter(?): verschiedene Kombinationen ausprobieren und die "fitness"
 der jeweiligen Modelle vergleichen
- Parallelisierung der Verteilung auf die Klassen und einzelnen Plätze
 - Herausforderung: Gemeinsamer Zugriff auf eine Datenbasis, deren Änderungen ständig beachtet werden müssen

Zeitplan

- Zwei Prototypen/Beta-Versionen zu den jeweiligen Statustreffen
- Zum 1. Treffen
 - grundlegender Algorithmus mit Basis-Implementation
- Zum 2. Treffen
 - Effizientere Version, grundlegend parallelisiert
- Zum Praktikumsabschluss
 - Fertiggestellte Implementation, final optimiert

Parallelisierungsschema

Daten-Aufteilung:

- nach Passagierklasse
- nach zusammengehörenden Gruppen
- nach Flugziel
- nach Abflugpräferenzen