Einleitung 000000	Histogramme 0000000	Punktoperationen 000000000		

Bildverarbeitung in R

Tobias Klinke

Proseminar R Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

Betreuer: Jakob Lüttgau

2016-07-13

Einleitung	Histogramme		Zusammenfassung	

Gliederung (Agenda)

1 Einleitung

- 2 Histogramme
- 3 Punktoperationen

4 Filter

5 Zusammenfassung

6 Literatur

Einleitung ●00000	Histogramme 0000000	Punktoperationen		
Was ist Bildverarl	beitung?			

Was ist Bildverarbeitung?

keine einheitliche Definition, sondern Abgrenzung:

eigene Grafik nach Ausführungen von [Burge, 2006]

Einleitung 0●0000	Histogramme 0000000	Punktoperationen		
Grundlagen				

Was ist ein Bild?

zweidimensionale Abbildung: Quelle für (1) [Burge, 2006, S. 10]

$$I(u,v) \in \mathbb{P} \text{ und } u, v \in \mathbb{N}$$
(1)

bzw.

$$I: \mathbb{N} \times \mathbb{N} \to \mathbb{P} \tag{2}$$

P ist Menge (Intervall) und bestimmt Farbtiefe
Matrix von Zahlen

Einleitung 00●000	Histogramme 0000000	Punktoperationen		
Grundlagen				

Typen von Bildern

- Farbbild: Rot-, Grün- und Blaukomponente je 8 Bit: $\mathbb{P} = [0, 255]^3$
- Graustufenbild: Nur eine Farbkomponente 8 Bit: $\mathbb{P} = [0, 255]$
- Binärbild: Nur ein Bit pro Pixel: $\mathbb{P} = \{0, 1\}$

Farb-, Grau- und Binärbild ¹

¹Quelle: Lenna-Testbild von https://en.wikipedia.org/wiki/File:Lenna.png

Einleitung	Histogramme		Zusammenfassung	
000000				
Grundlagen				

Packages zur Bildverarbeitung

- readbitmap Sehr Low-level, nur lesen, Bilddaten als Array
- jpg, png, bmp Lesen/Schreiben der jeweiligen Formate
- EBImage Standardmethoden der Bildverarbeitung & Analyse, optimiert für Mikroskopie - wir behandeln nur EBImage
- adimpro Glättung und einige weitere Filter
- (Spezialpakete...)

```
1 # Installation
2 source("https://bioconductor.org/biocLite.R")
3 biocLite("EBImage")
4 
5 # Einbinden
6 library(EBImage)
```

Listing 1: Installation und Einbinden von EBImage

Einleitung	Histogramme		Zusammenfassung	
000000				
Beispiele				

Bilder lesen / schreiben / anzeigen

```
1
   > img <- readImage("inputimage.png")</pre>
2
   > img
3
   Image
4
     colorMode : Color
5
     storage.mode : double
6
     dim : 512 512 3
7
     frames.total : 3
8
     frames.render: 1
9
10
   imageData(object)[1:5,1:6,1]
11
             [,1] [,2] ...
12
   [1,] 0.8862745 0.8862745 ...
13
   [2,] 0.8862745 0.8862745 ...
14
   . . .
15
   > # Process image ...
16
   > writeImage(img, "outputimage.png") # display(img)
```

Listing 2: Grundgerüst für die weiteren Beispiele

Einleitung	Histogramme		Zusammenfassung	
000000				
Beispiele				

Farbbild in Graustufen konvertieren

- channel(x, mode)
- mode="gray"
 - R, G, B gleichgewichtet im Durchschnitt
 - gray = $\frac{1}{3} \cdot (R + G + B)$
- mode="luminance"
 - R, G, B nach Wahrnehmung gewichtet

gray =
$$0.2126 * R + 0.7152 * G + 0.0722 * B^{-2}$$

links: gray, rechts: luminance ³

³Quelle: Farbbild Lenna-Testbild von https://en.wikipedia.org/wiki/File:Lenna.png

²[EBImage, 2016]

Einleitung 000000	Histogramme ●○○○○○○	Punktoperationen		
Grundlagen				

Histogramm: Definition

Einleitung 000000	Histogramme ○●○○○○○	Punktoperationen		
Histogramme in F	2			

Histogramme in R anzeigen

1 hist(img)

Listing 3: Histogramm anzeigen

Image histogram: 262144 pixels

Intensity

Einleitung	Histogramme	Punktoperationen			
Histogramme in	R	00000000	000000000000000000000000000000000000000	00	0

Histogramm mit feinerer Einteilung

1 hist(img, breaks=256)

Listing 4: Histogramm mit feinerer Achseneinteilung

Image histogram: 262144 pixels

Einleitung 000000	Histogramme ○○○●○○○	Punktoperationen 000000000		
Histogramme in F	२			

Histogramm Skalierung

1 hist(img * 256, breaks=256)

Listing 5: Histogramm mit x-Achse von 0 bis 255

Image histogram: 262144 pixels

Intensity

Belichtung im Histogramm ablesen

Unterbelichtetes, normal belichtetes und überbelichtetes Bild⁴

⁴Quelle der Bilder: [Burge, 2006, S. 42]

Einleitung 000000	Histogramme ○○○○●○	Punktoperationen 000000000		
Kontrastanpassur	ıg			

Kontrastanpassung

- Kontrast: Differenz zwischen minimalem / maximalem vorkommenden Grauwert
- Kontrastanpassung Die einzelnen Grauwerte a werden wie folgt abgebildet⁵:

$$f_{ac}(a) = (a - a_{low}) \cdot rac{a_{max} - a_{min}}{a_{high} - a_{low}}$$

a_{min/max}: minimal / maximal *mögliche* Grauwerte *a_{low/high}*: minimal / maximal *vorkommende* Grauwerte

1 equimg <- equalize(img)</pre>

Listing 6: Kontrastanpassung mit EBImage

⁵Formel aus [Burge, 2006, S. 59]

Einleitung 000000	Histogramme ○○○○○●	Punktoperationen				
Kontrastanpassung						

Vorher / nacher

Bild und Histogramm vor und nach Kontrastanpassung⁶

Bildverarbeitung in R

⁶Quelle Originalbild: https://en.wikipedia.org/wiki/File:Unequalized Hawkes Bay NZ.jpg

Einleitung 000000	Histogramme 0000000	Punktoperationen ●00000000		
Grundlagen				

Grundlagen

$$I'(u,v) = f(I(u,v))$$

wobei $f : \mathbb{P} \to \mathbb{P}$ ist. ⁷

Jeder Pixel wird auf die gleiche Weise transformiert

- Unabhängig von Koordinaten
- in R mit EBImage
 - Rechnen wie mit Arrays z.B. img + 0.5
 - Kein automatisches Clamping
 - Clamping erst beim Speichern / Anzeigen

⁷Quelle Formel: [Burge, 2006, S. 55]

Einleitung 000000	Histogramme 0000000	Punktoperationen ○●○○○○○○		
Beispiele				

Invertieren

1 | img_inverted <- 1.0 - img

Listing 7: Invertieren eines Bildes

Bild und Negativ⁹

⁸Quelle Formel: [Burge, 2006, S. 57]

⁹Quelle: Lenna-Testbild von https://en.wikipedia.org/wiki/File:Lenna.png

Bildverarbeitung in R

Einleitung 000000	Histogramme 0000000	Punktoperationen		
Beispiele				

Aufhellen / Verdunkeln / Kontrast

- Aufhellen = Addition von Konstante
 - f(a) = a + c mit c > 0

Verdunkeln = Subtraktion von Konstante

$$f(a) = a - c \text{ mit } c > 0$$

- Kontrast ändern = Multiplikation mit Konstante
 - $f(a) = a \cdot c$ mit c > 1 zum Erhöhen, 0 < c < 1 verringern

img + 0.5

10

Einleitung 000000	Histogramme 0000000	Punktoperationen ○○○●○○○○○		
Thresholding				

Thresholding

$$f_{th}(a) = a_{min}$$
 für $a < a_{thr}$
 $f_{th}(a) = a_{max}$ für $a \ge a_{thr}$

Formel nach [Burge, 2006, S. 57]

- Umwandlung Grau- nach Binärbild
- Alle Werte bis zu einem Schwellenwert werden schwarz
- Alle Werte ab einem Schwellenwert werden weiß
- Ergebnis stark abhängig von der Wahl des Schwellenwertes

Listing 8: Thresholding mit Schwellenwert von 0.5

Einleitung 000000	Histogramme 0000000	Punktoperationen		
Thresholding				

Wahl des Schwellenwerts

Image histogram: 1154394 pixels

Einleitung 000000	Histogramme 0000000	Punktoperationen ○○○○○●○○○		
Thresholding				

Wahl des Schwellenwerts

Image histogram: 262144 pixels

Einleitung 000000	Histogramme 0000000	Punktoperationen		
Thresholding				

Wahl des Schwellenwerts

Schätzen im Histogramm:

- in der Mitte im "Tal" zwischen zwei Spitzen
- am "Fuß" eines Berges
- Berechnung des Optimums (nach Otsu) [wikipedia, 2016]
 - Aufteilung in zwei Klassen
 - seringste Varianz innerhalb der Klassen
 - maximale Varianz zwischen den Klassen

Einleitung 000000	Histogramme 0000000	Punktoperationen ○○○○○○●○		
Thresholding				

Beispiel

Graubild mit Histogramm und Binärbild nach Thresholding mit $a = otsu(img) \approx 0.82$

Einleitung	Histogramme	Punktoperationen	Filter	
Weitere Punktop	erationen		0000000000000	Ŭ

Weitere Punktoperationen

Verknüpfen von Bildern

- $I'(u, v) = f(I_1(u, v), I_2(u, v), ..., I_n(u, v))$ ¹¹
- Beispiel: Alpha-Blending mit zwei Bildern:

img <- a * img1 + (1.0 - a)* img2</pre>

- Farbraumkonvertierungen (z.B. Farbe nach Grau)
- Kontrastanpassung mittels Histogramm

¹¹Formel nach [Burge, 2006, S. 83]

Einleitung 000000	Histogramme 0000000	Punktoperationen 000000000	Filter ●0000000000000	
Lineare Filter				

Definition linearer Filter

- Filterregion: $R \subseteq \mathbb{Z} \times \mathbb{Z}$
- Filterfunktion $H: R \rightarrow \mathbb{R}$

$$I'(u,v) = \sum_{(i,j)\in R} I(u+i,v+j) \cdot H(i,j)$$

Darstellung des Filters als Matrix:

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Einfacher Box-Glättungsfilter (Ursprung)

Formeln nach [Burge, 2006, S. 92f]

		Filter	
		000000 0000000000	
Lineare Filter			

Berechnung der Anwendung eines linearen Filters

```
1
   filter(img, filtermatrix):
2
   erstelle kopie von img in img2
3
   fuer jeden Pixel:
4
       Setze Ursprung der Filtermatrix auf diesen Pixel
5
       Multipliziere die umgebenden Pixel mit den
           \hookrightarrow Gewichten aus der Matrix
6
       Summiere alle gewichteten Pixelwerte
7
       Schreibe Ergebnis an dieselbe Stelle in img2
8
   gib img2 aus
```

Listing 9: Algorithmus zur Anwendung eines Filters

		Filter	
		00000 0000000	
Lineare Filter			

Box-Filter zur Glättung

Box-Filter:

- Eigenschaften:
 - Bildet den Durchschnitt der benachbarten Pixel
 - erzeugt einfachen "Weichzeichnen"-Effekt
 - Unterdrückt Bildrauschen

Einleitung 000000	Histogramme 0000000	Punktoperationen	Filter 000●000000000	
Lineare Filter				

lineare Filter in EBImage

makeBrush(size, shape, [...])

- size Größe des Filters in Pixeln
- shape Filter-Form: z.B. "box" oder "Gaussian"
- filter2(img, filter, [...])
 - Wendet eine Filter-Matrix auf ein Bild an
 - img Das zu filternde Bild
 - filter Der Filter (von makeBrush())

```
1 # box braucht manuelle Skalierung
2 brush <- makeBrush(5, "box") * (1/25)
3 smooth <- filter2(img, brush)</pre>
```

Listing 10: Box-Filter auf Bild anwenden

Einleitung 000000	Histogramme 0000000	Punktoperationen	Filter 0000●00000000	
Lineare Filter				

Vor / nach Box-Filter

Links: vor, rechts: nach Box-Filter mit 5x5 Pixeln¹²

¹²Quelle Original: Lenna-Testbild von https://en.wikipedia.org/wiki/File:Lenna.png

Einleitung 000000	Histogramme 0000000	Punktoperationen	Filter 00000●0000000	
Lineare Filter				

Weitere lineare Filter

- Gauß-Filter als anderer Glättungsfilter
- 1 brush <- makeBrush(5, "Gaussian")</pre>

Listing 11: Anwendung des Gauß-Filters

Laplace-Filter zur Kantenerkennung/-verstärkung

		Filter	
Morphologische Filter		0000000000000	

Definition

- Anwendung auf Binärbilder: $I(u, v) \in \{0, 1\}$
- Strukturelement (= Filter): $H(i,j) \in \{0,1\}$
- Bilder in Mengenschreibweise: Alle Koordinaten-Paare der Vordergrund (weißen) Pixel: Q_I = {(u, v)|I(u, v) = 1}
 - Oftmals ist aber Schwarz auf Weiß, daher Bild negieren oder jeweils duale Operation (Erosion statt Dilation, Opening statt Closing) wählen! Bei den folgenden Beispielen ist jeweils Schwarz der Vordergrund!
- Verändern im Gegensatz zu linearen Filtern die Struktur des Bildinhalts

Formeln nach [Burge, 2006, S. 174f]

Einleitung 000000	Histogramme 0000000	Punktoperationen	Filter ○○○○○○●○○○○○			
Morphologische Filter						

Erosion

•
$$I \ominus H = \{(u', v') | \forall (i, j) \in Q_H((u' + i, v' + j) \in Q_I)\}$$

[Burge, 2006, S. 176]

1	Fuer jeden Pixel (u, v) in I:
2	positioniere Ursprung von H ueber (u, v)
3	Wenn unter jedem Vordergrundpixel von H ein
	\hookrightarrow Vordergrundpixel von I liegt:
4	I'(u, v) = Vordergrundpixel
5	Sonst:
6	I'(u, v) = Hintergrundpixel

Lässt Strukturen schrumpfen

Einleitung 000000	Histogramme 0000000	Punktoperationen	Filter 00000000●0000			
Morphologische Filter						

Beispiel: Erosion

```
1 img <- 1.0 - img # Schwarz ist Vordergrund
2 struct <- makeBrush(5, "disc") # 5x5 Kreis
3 eroded <- erode(img, struct)
4 eroded <- 1.0 - eroded</pre>
```


links: Original, rechts: mit 5x5 Kreis erodiert (schwarz = Vordergrund)

Einleitung 000000	Histogramme 0000000	Punktoperationen 000000000	Filter ○○○○○○○○●○○○			
Morphologische Filter						

Dilation

•
$$I \oplus H = \{(u', v') = (u + i, v + j) | (u', v') \in Q_I, (i, j) \in Q_H\}$$

[Burge, 2006, S. 175]
1 Fuer jeden Vordergrund-Pixel (u, v) in I:
2 positioniere Ursprung von H ueber (u, v)
3 Fuer alle Vordergrundpixel von H:
4 Mache darunterliegende Pixel von I zu
 \hookrightarrow Vordergrundpixeln

Lässt Strukturen wachsen

Einleitung 000000	Histogramme 0000000	Punktoperationen	Filter ○○○○○○○○○○○			
Morphologische Filter						

Beispiel: Dilation

```
1 img <- 1.0 - img # Schwarz ist Vordergrund
2 struct <- makeBrush(5, "disc") # 5x5 Kreis
3 dilated <- dilate(img, struct)
4 dilated <- 1.0 - dilated</pre>
```


links: Original, rechts: Dilation mit 5x5 Kreis (schwarz = Vordergrund)

Einleitung	Histogramme		Filter	Zusammenfassung		
			00000000000000000			
Morphologische Filter						

Opening / Closing

Opening

 $\bullet I \circ H = (I \ominus H) \oplus H$

[Burge, 2006, S. 179]

- Erosion gefolgt von Dilation
- Lässt kleine Strukturen verschwinden
- Funktion opening(img, filter)

Closing

- $\bullet I \cdot H = (I \oplus H) \ominus H$
 - [Burge, 2006, S. 182]
- Dilation gefolgt von Erosion
- Schließt Lücken in Strukturen
- Funktion closing(img, filter)

			Filter			
			000000000000			
Morphologische Filter						

Beispiel: Opening / Closing

links: Opening, rechts: Closing je mit 5x5 Kreis (schwarz = Vordergrund)

Einleitung 000000	Histogramme 0000000	Punktoperationen	Zusammenfassung ●○	
Praxisbeispiel				

Praxisbeispiel: Gescannte Abbildungen verschönern

```
scan <- readImage("scan.png")</pre>
1
2
   grey <- channel(scan, "luminance")</pre>
3
   binary <- grey > otsu(grey)
4
   inv <-1.0 - binary
5
   brush <- makeBrush(3, "disc")</pre>
   inv_dilated <- dilate(inv, brush)</pre>
6
7
   dilated <- 1.0 - inv_dilated
8
   display(dilated)
```


links: Original-Scan [Burge, 2006, S. 12], rechts: Bearbeitetes Bild Tobias Klinke Bildverarbeitung in R

Einleitung 000000	Histogramme 0000000	Punktoperationen	Zusammenfassung ○●	
Praxisbeispiel				

Zusammenfassung

- Bilder sind im Prinzip 2D-Arrays
- Histogramme anzeigen mit hist(img)
- Punktoperationen
 - neuer Wert des Pixels nur vom alten Wert abhängig
 - In R rechnen wie mit Arrays
 - z.B. Invertieren, Heller/Dunkler/Kontrast, Thresholding
- lineare Filter
 - neuer Wert auch von umgebenden Pixeln abhängig
 - vor allem Glättungsfilter
 - filter2(), makeBrush
- morphologische Filter
 - Strukturelemente als Masken
 - Strukturen in Binärbildern wachsen / schrumpfen lassen
 - erode(), dilate(), opening(), closing(), makeBrush()

Einleitung 000000	Histogramme 0000000	Punktoperationen		Literatur •
Literat	ur			

- [Burge, 2006] Burge, W. B. . M. J. (2006). Digitale Bildverarbeitung : eine Einführung mit Java und ImageJ. Springer, Berlin, 2., überarb. edition.
 - [EBImage, 2016] EBImage (2016). EBImage documentation http://www.bioconductor.org/packages/release/bioc/ manuals/EBImage/man/EBImage.pdf, 26.06.2016.
 - [Parker, 2011] Parker, J. (2011). Algorithms for Image Processing and Computer Vision. Wiley Publishing, Indianapolis, 2nd edition.
 - [wikipedia, 2016] wikipedia (2016). Otsu's method https://en.wikipedia.org/wiki/Otsu%27s_method, 26.06.2016.