
Universität Hamburg

Softwareentwicklung in der Wissenschaft

Benchmarking Java against C and
Fortran for scientific applications

Dmitri Bespalko

July 02, 2018



1 Abstract

Before developing software one of the most important matters is choosing
the right language. When it comes to scientific applications the choice of
programming language often falls on traditional languages like C and For-
tran, while Java for example is looked down upon and criticized for its
performance without any comparison metrics to prove those claims. To al-
low developers to make a better justifiable choice those metrics must be
provided.
The Edinburgh Parallel Computer Centre at the University of Edinburgh
developed the Java Grande benchmarking suite for Java Execution Envi-
ronments and used a set of those benchmarks to compare Java to C and
Fortran.
The results of those benchmarks show that Java’s performance overall is
still worse than that of C and Fortran, however that performance can be
optimized by choosing the right JRE and is often not significant enough to
make a big difference.

2 Java Grande

2.1 Description

Java Grande is a standard benchmarking suite designed by the EPCC, Uni-
versity of Edinburgh. Its purpose is to quantify the performance of different
Java Execution Environments, making comparison between them easier and
exposing critical features to encourage development in appropriate direc-
tions.

2.2 Structure

The benchmarking suite is divided into three sections:
Low-Level-Operations, Kernels and Applications.

2.3 Section I: Low-Level-Operations

As the name already suggests benchmarks in this section are used to compare
low-level operations, i.e.:

• Arithmetic operations, i.e. addition, multiplication etc.

• Casting between primitive types, i.e. int to long, double to float

• Exceptions

• java.lang.Math operations

• etc.

1



2.4 Section II: Kernels

This section contains benchmarks with relatively short code, defining com-
putations commonly used in scientific applications. For this exact reason
this section is supposed to be reflective of actual application performance in
terms of scientific applications. To compare the languages there are a total
of 6 different benchmarks used: Series, LUFact, HeapSort, SOR, FFT
and SparseMatmult.

2.4.1 Series

This benchmark computes the first N Fourier coefficients of the function
f(x) = (x + 1)x on the interval 0,2. The following is a representation of the
same function with sin and cos:

f(x) =
a0
2

+

∞∑
n=1

ancos(nx) +
∞∑
n=1

bnsin(nx)

With the following formulas used to compute the actual coefficients an and
bn:

an =
1

2

∫ 2

0
f(x)cos(nx)dx

bn =
1

2

∫ 2

0
f(x)sin(nx)dx

2.4.2 LUFact (Lower-Upper Factorization)

Lower-Upper factorization, also Lower-Upper decomposition, is a method to
represent a matrix as a product of a lower and an upper triangular matrix.
The example below shows both triangular matrices for a 2 x 2 matrix[

4 3
6 3

]
=

[
l11 0
l21 l22

] [
u11 u12
0 u22

]
[
4 3
6 3

]
=

[
1 0

1.5 1

] [
4 3
0 −1.5

]
The benchmark uses LU factorization to solve an N x N linear system.

2



2.4.3 HeapSort

HeapSort is a common sorting algorithm that uses a heap, a tree-based data
structure. To explain the algorithm shortly we try to sort the numbers 5,
12, 25, 3 and 14 represented below as an array and as a binary tree:

5 12 25 3 14

5

12

3 14

25

To begin with we need to transform the tree into a max heap, meaning each
parent has to be larger than its children. To do that we go through each
child from right to left, bottom to top and check if it is larger than its parent.
If that is the case we swap them:

25 14 5 3 12

25

14

3 12

5

After we have built a max heap we swap the root with the last element:

12 14 5 3 25

12

14

3 25

5

3



We now know that the last element is the largest in the tree, so it is sorted.
We remove it from the tree and proceed from the beginning until there is
only one element left:

3 5 12 14 25

3

This benchmark sorts an array of N integers using the heap sort algorithm.

2.4.4 SOR (Successive Over-Relaxation)

Successive Over-Relaxation is an iterative method for solving linear system
of equations.
This benchmark performs a total of 100 iterations on an N x N grid.

2.4.5 FFT (Fast Fourier Transform)

Fast Fourier Transform is an algorithm that samples a signal over a period
of time or space and divides it into its frequency components.
The benchmark performs a one-dimensional forward transform of complex
numbers.

2.4.6 SparseMatmult (Sparse Matrix Multiplication)

Sparse matrices are matrices that mostly contain zeros. Since knowing that
an element is zero is not valuable information, storing each element of the
array is inefficient and unnecessary. Therefore to store matrices it is much
better to store only the elements that are not equal to zero.
For example we have the following matrix:

2.0 −1.0 0 0
−1.0 2.0 −1.0 0

0 −1.0 2.0 −1.0
0 0 −1.0 2.0


To properly store the values of this array we have an array of 4 arrays, one
for each row, which then contain tuples for each non-zero value in that row
with the first value being the index of the column and the second value being
the actual value of the element.

[[(0, 2.0), (1, -1.0)],
[(0, -1.0), (1, 2.0), (2, -1.0)],
[(1, -1.0), (2, 2.0), (3, -1.0)],
[(2, -1.0), (3, 2.0)]]

The benchmark performs a simple matrix-vector multiplication.

4



2.5 Section III: Applications

This section contains benchmarks designed with the intention of being rep-
resentative of actual Grande applications. Consequently those benchmarks
are of a more complex type. Therefore the differences in performance, espe-
cially in comparison between multiple languages, are very hard to explain.
For this comparison there are two benchmarks used: Euler and MolDyn.

2.5.1 Euler

The benchmark is an application that solves the time-dependent Euler equa-
tions for flow in a channel with a ’bump’ on one of the walls.

2.5.2 MolDyn (Molecular Dynamics)

This benchmark represents a simple N-body code modelling the behaviour
of N argon atoms interacting under a Lennard-Jones potential in a cubic
spatial volume with periodic boundary conditions

2.6 Comparison

Since the Java Grande suite was mainly designed to compare Java Execution
Environments, applying it to other languages has its difficulties.
While Section I may be a good indicator of the differences in performance
between the different JREs, many of the low-level operations usually tested
are exclusive to Java, i.e. exceptions and java.lang.Math, or are way too
sensitive to compiler optimization to give any meaningful results. Therefore
this section was completely excluded in the comparison.
Considering Java is the only object-oriented language out of the three, trans-
lating the different benchmarks is not an easy task. While C’s syntax is still
very similar to Java’s, the differences between Java and Fortran are a lot
more significant. Therefore all the benchmarks have been translated into C,
while only LUFact and MolDyn have been translated into Fortran, with the
best effort to keep the syntax as similar as possible in both cases.
Each benchmark has been run 3 times, with the results representing the best
one.

5



3 Benchmark Results

3.1 Platforms/Compilers

The benchmarks were run on a total of 5 different platforms:

1. Pentium III, Windows NT

2. Pentium III, Linux 6.2

3. Sun UltraSparc II

4. Compaq ES40, Digital Unix v4.0F

5. SGI Origin 3000, Irix 6.5

With Pentium Windows and Linux being the most popular platforms and
Sun being the developer of Java at the time of testing, those platforms have
the largest variety of JREs, C and Fortran compilers, while the Compaq
ES40 and the SGI Origin 3000 have no choice in that regard, with the latter
even lacking a Fortran compiler.
In terms of compilers, the javac -o command was used for Java, with the -o
flag being the standard optimization flag at the time, while only standard
flags were used for C and Fortran compilers. No attempt of optimizing for
individual code has been made.
Table 1 shows all Java execution environments, C and Fortran compilers
and flags used.

6



Table 1: Tested Java execution environments, C and Fortran compilers (with
flags).

3.2 Section II: Kernels

3.2.1 FFT

Figure 1: Execution time for the FFT benchmark.

For the Fast Fourier Transform Java is performing considerably worse on
each platform. The fastest C compilers are more than twice as fast than the

7



fastest JREs on each platform except Pentium III, Linux, where the IBM
JDK is around 50% slower.

3.2.2 HeapSort

Figure 2: Execution time for the HeapSort benchmark.

The HeapSort benchmark performs very well for Java on the more popular
and supported platforms. On Windows the fastest JRE’s performance was
equal to the fastest C compiler, while on Linux it was even faster.
On the Sun UltraSparc Java was still worse, however the difference is quiet
small, although the difference between the individual JREs varies a lot.
The Compaq ES40 and SGI Origin 3000 still show a large performance loss
when using Java.

3.2.3 LUFact

Figure 3: Execution time for the LUFact benchmark.

Lower-Upper factorization is the first benchmark that has been translated
into both C and Fortran. Here Fortran has performed the best on all plat-

8



forms it was available on, followed very closely by C with Java being the
slowest, however not by a lot.
On the Sun UltraSparc there are strong fluctuations between the different
JREs once again.

3.2.4 Series

Figure 4: Execution time for the Series benchmark.

Similar to HeapSort the fastest JRE performed better than the fastest C
compiler on the Pentium III platforms, however there are JREs that are
almost three times slower than the fastest one.
On the Sun UltraSparc the performance is overall worse for both C and Java
and for the most part very similar. However the fastest C compiler is still
almost two times faster than the fastest JRE.
On the SGI platform the C compiler was, similarly to other benchmarks in
Section II, about twice as fast as the JRE.
The Compaq ES40 however had a performance loss of a factor of almost
seven and a half when using Java.

9



3.2.5 SOR

Figure 5: Execution time for the SOR benchmark.

The Successive Over-Relaxation performed similarly for Java and C on both
Pentium platforms aswell as on the Sun UltraSparc, however the fluctuations
between the JREs are a lot stronger on the Sun UltraSparc. Nevertheless the
fastest C compiler outperformed the fastest JRE on every single platform.

3.2.6 SparseMatmult

Figure 6: Execution time for the SparseMatmult benchmark.

Once again the C compiler outperformed the JRE. On Linux the difference
is minimal and a little higher on Windows. On the rest of the platforms
however C was much faster.
Overall the fluctuations between the JREs were very small, even on the Sun
UltraSparc where they are usually queiet high.

10



3.3 Section III: Applications

3.3.1 Euler

Figure 7: Execution time for the Euler benchmark.

On every platform the fastest C compiler outperformed all JREs. On the
Pentium platforms the difference is relatively small, while on the Sun Ultra-
Sparc the fastest JRE is almost two times slower than the fastest C compiler.
On the Compaq ES40 and the SGI Origin 3000 however the difference is im-
mense. Even though the Sun UltraSparc had JREs with worse performances
than the JREs used on these platforms, the C compilers were significantly
faster than on any other platform, therefore making the performance of the
JREs look a lot worse.

3.3.2 MolDyn

Figure 8: Execution time for the MolDyn benchmark.

For the Molecular Dynamics application the benchmark results look differ-
ent compared to other benchmarks. The reason being the fluctuations in
performance, especially between the different JREs. For Instance on the

11



Windows platform the fastest JRE is about five times faster than the slow-
est one.
Nevertheless the difference between the performance of the fastest compilers
and JRE is for the most part small, the Fortran and C compilers each being
the fastest on different platforms and Java being the slowest on every single
one.

3.4 Summary

Table 2: Mean execution time ratios for various Java execution environ-
ments. Figures in brackets represent the number of benchmarks used to
calculate the ratios.

Table 2 summarizes the overall performance of all used JREs in comparison
to the C and Fortran compilers over all benchmarks.
The results show that for the most part the ratios stay under 2, which
in most cases is not significant enough to choose a language solely for its
performance. However for situations where each performance increase is
very important the choice of the JRE can make a big difference, since the
ratios vary between them.

12



Table 3: Ratios of fastest Java execution times to fastest C/Fortran execu-
tion times.

Considering we always choose the best JRE for each situation Java’s per-
formance might still be worse then C’s and Fortran’s, however the difference
can be kept minimal.
Table 3 shows the ratios of the fastest Java execution times to fastest C
and Fortran execution times. As can be seen for the Series benchmark on
the Pentium platforms aswell as for the LUFact benchmark on Linux, Java
can outperform the traditional languages. Even for the MolDyn benchmark,
which is supposed to represent a real application, the performance loss of
Java is very small.

4 Conclusion

Overall, looking at the results, it is clear that Java’s performance in general
is still worse than C’s and Fortran’s. However the differences vary a lot with
the platform and benchmark used.
It is also apparent that a newer JRE does not necessarily mean a better
performance. Among all of the tested JREs there is none that has been the
best across all benchmarks. That means that with a proper understanding of
the platform used and the requirements of the software the right Execution
Environment can be chosen to minimize the performance loss by choosing
Java.
In a lot of cases however the performance difference is not significant enough
for the developers to worry about anyway, making it more important to look
at other aspects like comfort.

13



5 References

• Bull J.M., Smith L.A., Ball C., Pottage L. and Freeman R. Benchmark-
ing Java against C and Fortran for scientific applications. Concurrency
and Computation: Practice and Experience 2003;15(3-5):417-430.

• Bull J.M., Smith L.A., Westhead M.D., Henty D.S. and Davey R.A.
Benchmarking Java Grande Applications.
[https://pdfs.semanticscholar.org/db16/efd09640224c890bb188092bd
2a0cac48055.pdf]. Accessed July 02, 2018.

• Bull J.M., Smith L.A., Westhead M.D., Henty D.S. and Davey R.A.
A Methodology for Benchmarking Java Grande Applications.
[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.5439&
rep=rep1&type=pdf]. Accessed July 02, 2018.

14


