

Hausarbeit im Proseminar:

Softwareentwicklung in der Wissenschaft

Modern programming languages:

Clojure

Christian Wolff

christian.wolff-1@studium.uni-hamburg.de

Studiengang: Informatik

Matr.-Nr.: 7315329

Betreuerin: Georgiana Mania

2

Table of contents

1. Introduction ... 3

1.1. Development of Clojure .. 4

1.2. LISP .. 5

2. Features of Clojure ... 6

2.1. Using the Java Virtual Machine .. 6

2.2. Functional programming ... 7

2.3. Dynamic/ dynamic type system .. 8

2.4. Persistent data structures ... 8

2.5. Concurrency .. 9

2.6. Dynamic compilation/ REPL .. 11

3. Conclusion ... 12

4. Bibliography .. 13

3

1 Introduction

Since its release, Clojure has found its way into well-known companies such as Netflix, Apple, and

Walmart that use this programming language within their IT-system. These companies and more than

173 others find Clojure convenient to adopt due to its focus on being dynamic, offering interactive

development support, and a stable infrastructure for multithreaded programming through an as-

standard immutable data structure.[1][2] While it was only being hosted on the Java Virtual Machine

in the beginning, Clojure gained further popularity through its development towards implementing

interoperability to other platforms, e.g. Javascript and C#. Hence, it is possible to use this particular

language on multiple platforms. The combination of a simple but concise syntax and a compact code,

which is still very expressive, led to a high demand on Clojure programmers in those companies that

has not been saturated until now.[3]

A simple syntax and compact code or simplicity can often be misunderstood as being an easy to use

and easy to learn programming language, which cannot provide the level of complexity that is needed

for today’s requirements in the IT-industry. Clojure, however, offers mighty tools to satisfy the level

of complexity that is needed nowadays through its source-code-is-data principle and the flexible macro

system. In addition, it also provides the non-text-based syntax, which it has taken over from its

predecessor LISP. This leads people to refer to Clojure as a programmable programming language.

Namely, it is the functional programming aspect with the requirement of treating everything as data

offering nearly infinite possibilities on how to encounter problems when programming. Combining all

this with an REPL that focuses on an interactive programming experience ensures the growth of

Clojure’s community and popularity. [4]

Furthermore, the REPL, as a tool for direct feedback of your coding, leads to an overall better

understanding of coherences within the code to support debugging and maintenance. Beside the other

reasons mentioned above, the REPL may have been one of the top reasons why programmers enjoy

using Clojure. This programmers’ attitude has in turn facilitated the establishment of Clojure as an all-

purpose programming language.

To elaborate the features of Clojure, this paper will first talk about the development of Clojure and its

predecessor LIPS. Besides, it will also highlight its benefits of being a hosted language on the Java

Virtual Machine and show the differences in size and usability of the code base. Not only does being

hosted ensure Clojure’s interoperability and portability but also it grants easy access to the libraries of

the hosting platform helping to continue using best practices from other platforms in Clojure. Also,

this paper will introduce the basics of functional programming, Clojure’s persistent data structure and

its approach to concurrency. Finally, a discussion of the findings and the conclusion of the entire paper

will be presented in the last chapter.

4

1.1 The development of Clojure

According to its developer, Richard Hickey, the name Clojure is meant as a pun towards “closure”,

which is a technique in functional programming. Besides, it also contains the initial letters of C#, Lisp,

and Java that had major influences in the design of Clojure as a programming language.

Before Clojure was released, Hickey tried to provide interoperability between Lisp and Java in projects

such as “jfli”, “FOIL” and “Lisplets”, which have been the base for the development of Clojure, in his

earlier attempts. After 2,5 years of its development, Hickey released his first version of Clojure in 2007.

Most of this development process had been self-funded until then. After the release of the first version,

Hickey shifted the further development process of this programming language to be more community-

driven and everyone was invited to submit improvements or problems on clojure.org. Even though the

community-driven development was widely promoted by Richard Hickey, as the benevolent dictator for

life (BDFL) of Clojure, he has the last say in any major decisions made regarding Clojure.

To further improve its commercial support and to stay in touch with the community, Hickey holds

conferences all over the world every year. The majority of these conferences are organized by

Cognitect, a company co-funded by Richard Hickey, which offers IT-solutions focusing on Clojure.

His hard work and dedications seem to pay off. Not only is he able to grow his community through

these conferences, he has also been able to attract major companies across different industries. Nasa,

Netflix, Apple, and Walmart are among those companies that have been implementing Clojure in their

IT-solution to support their businesses.

The principle behind Clojure is to support concurrency and offering an interface between a modern Lisp,

as a functional programming, and Java, as a well-integrated platform. This is due to the fact that Lisp

cannot provide the functionality needed to ensure the interoperability towards Java on its own because

it is considered to be outdated in the programming industry. Therefore, Clojure is not often referred to

as a programming language on its own but as a dialect of Lisp. This means that Clojure takes over all

the basic functions of Lisp such as the syntax and the macro system and improves them. [5]

5

1.2 LISP

LISP, short for List Processor, was developed in 1958 at the Massachusetts Institute of Technology

(MIT). It is the second oldest programming language right after Fortran, another programming language

that is still in use until today. Even though pure LISP itself is not widely used anymore, some of its

dialects such as “Common Lisp”, “Scheme” and “Clojure” are still quite popular and commonly used

by programmers nowadays.

The basic structure of LISP are atoms and lists. Lists can consist of either other lists, which can also

have further lists nested within them, or atoms that consist of letters, numbers or strings. LISP is also

homoiconic, namely it does not differentiate between data and programs since everything comprises of

lists. In addition, it is also referred to as a dynamic language because it will automatically reserve the

space for executing a program.

The most visible difference between LISP and Java or Python is the non-text-based syntax which is

common for functional programming languages. [6][7]

Figure 1: Example of LISP code (Common Lisp) [A1]

The syntax in LISP consists of a lot of brackets. It is possible to directly define operations such as simply

add up numbers or define variables such as pi within those brackets. Besides, it is also manageable to

define and call functions like in the example above. First, there is a function defined that calculates the

square of a given number. Afterwards it is called to calculate the square of three. Since LISP is not text-

based, this is all that is needed to create or call a function showing the difference in size between LISP

and Java or Python.

6

2 Features of Clojure

To date, there is a huge variety of programming languages that are capable of solving any given problem,

with differences in speed, handling comfort, and complexity. Therefore, there is no specific need for a

certain programming language. However, to be able to compete with other well-implemented and

popular languages, it is important for a programming language to offer features that can help them to

stand out. For instance, features that support usability and speed will allow a programming language to

be more popular because of its ability to provide solutions for every individual problem. These are some

of the reasons why Clojure can stand out among other programming languages. In addition, it has a self-

understanding of not only being a niche language.

2.1 Using the Java Virtual Machine

The Java Virtual Machine (JVM) is a well implemented platform which were introduced in 1994. Since

then, many updates have improved the security and usability of the JVM. Clojure, which has been

designed to be a hosted language greatly benefits from this well implemented platform by compiling all

functions into Java bytecode. By using Java bytecode, Clojure is also taking advantage of the portability

and platform-independency of Java.

While the JVM itself is not platform-independent, since there are different JVM´s for each operating

system, the bytecode of Java is. A class written on a JVM on a MacOS can also be read on a JVM

running on windows, which also translates to the code written in Clojure. Also, by using the JVM,

Clojure’s users are able to use the java libraries such as “java.swing” to easily implement a graphical

user interface (GUI). As for the security aspect the JVM already monitors during runtime the execution

of a program to prevent buffer overflows, which are a commonly used security breach. [8][9]

„Clojure shrinks our code base to about one-fifth the size it would be if we had written in Java “

- Anthony Marcar [10]

This quote shows another feature of Clojure, especially compared to Java, where WalmartLabs was able

to reduce its overall code base by one-fifth when they started to use Clojure instead of Java.

Being able to reduce the amount of code while at the same time not creating complex nested functions

is another benefit of using Clojure. Less Code (with the premise mentioned above) means advantages

in debugging and maintenance.

7

2.2 Functional Programming

Clojure is focusing on the programming paradigm of functional programming, in which the functions

are treated as “first-class citizen”. In functional programming, functions are not only defined and used

but treated as any other data. They can be connected, used as parameters or for function results. Programs

are constructed by applying and composing functions. In this context, “first-class citizen” or “first-class

function” means that they can also be bound to names, passed as arguments, or also returned from other

functions since functions are treated as data. Instead of using a sequence of instructions, functional

programming uses complex functions which resolve in a better understanding, e.g. for calculations.[11]

[12]

 imperative [13] functional [14]

1

2

3

4

5

6

(defn fact [n]

 (loop [i n result 1]

 (if (zero? i)

 result

 (recur (dec i)

 (* result i)))))

(defn fac [n]

 (if (zero? n) 1

 (* n (fac (dec n)))))

At first glance, the difference in size between both programs can be easily identified. While the

functional programming only needs 3 lines of code, the imperative way needs twice as much. The

imperative way of solving the factorial is by using a loop (line 2). After checking for a zero (line 3), the

calculation is done recursively (line 5 and 6). When functional programming is used for the calculation

of the factorial, the recursive calculation (line 3) is immediately used after an input-check for zero (line

2). This is a good example of showing that smaller code does not always mean that it must be more

complex. In this comparison, the use of the functional method also helps to understand which

mathematical way the code is using to calculate the factorial, while the imperative way hinders the

mathematical understanding.

8

2.3 Dynamic/ dynamic type system

Both Clojure and Java are dynamic languages that do not require to manually reserve any kind of space

on the hard drive, RAM, or cache. This means that basic programming can be done without the need to

care about where something is stored, and how much space is used. Also, Clojure supports a dynamic

type system where the declaration of the variables is not made during the compiling time but

automatically done during the runtime.[15][16][17]

 Java Clojure

1

2

int i=5;

String x = “Hello World”;

(def i 5)

(def x “Hello World”)

While it is necessary to tell, when programming in Java that “i” is an integer or “x” is a String, it will

be decided and automatically interpreted during runtime when Clojure is used.

2.4 Persistent data structures

Clojure provides immutable data structures such as lists, sets, vectors, and maps. Immutable structures

are of a great benefit especially when concurrency is used. Due to the immutable state, changing one of

those structures by adding or removing a value does not mean changing the structure but updating it by

creating a new list, vector, etc. That way, the original version of the updated structure will still be

available after the change. Since the new version is based on the old version, they are both part of the

same structure and both are available. [12][18]

Figure 2: Example of the immutable data structure [A2]

In the example above, a vector, a map, and a list are created and filled (line 1 to 3). After that, elements

are added to each one of them (line 5 to 7), which will then be shown on the console (line 12). Both the

old and new versions still exist because the old version was not changed but updated to a new version.

9

2.5 Concurrency

Concurrency is the ability of a program or structure to use multiple threads to solve tasks, problems, or

calculations. It is highly supported by Clojure to save time and make use of today multicore processors

which also have multiple threads. The problem that often occurs, when concurrency is used, is the

inconsistencies or conflicts among shared resources. Instead of using a method for synchronizing,

Clojure benefits from its as-standard immutable data structure, as mentioned in the previous subchapter.

Therefore, instead of synchronizing each thread, Clojure will copy the object so it can be shared between

multiple threads. If the state of an object needs to be changed, the software transactional memory (STM)

comes into use. STM is a software-based solution to avoid inconsistencies or deadlocks. [19][20][21]

The following is a small example on how concurrency can be used in Clojure with a focus on the time-

saving aspect.

Figure 3: Example on the implementation of concurrency [A3]

This code defines a long-running-job with a variable n (line 1), which at first lets a thread sleep for 3

seconds (line 2) and will add 10 to the given variable/ variables (line 3) afterwards. The 3 seconds

waiting time are to simulate a long running job that needs more time than what the adding of numbers

would normally take. In line 5, the time measuring function is defined but it does not use concurrency.

As values, the long running job will be handed (range 4), which means we are handing over 4 numbers

from 0-3 while simultaneously monitoring the time needed to finish the task of long-running-job. In line

8, the same function is defined with the difference where “pmap” is used instead of “map”. This signifies

that concurrency is used for this operation.

10

Figure 4: Results of calculating with and without concurrency (range 4)

When concurrency is not used in the long-running-job, the task will be completed after about 12 seconds,

while the same task using concurrency takes only around 3 seconds to be completed. This is a prove that

concurrency may safe some time in a long running job. Without concurrency, where only a single thread

can be used, this thread is handed 0, the thread will wait three seconds and then adds 10, then the process

starts over by using the 1, waiting three seconds and adding 10, etc. Because the waiting time per turn

is always three seconds, the needed time is at least 3*4=12 seconds.

When the task uses concurrency, every thread gets handed one of the numbers of range 4, they all wait

once for three seconds simultaneously and then add 10 to their given number. Since the 3 second waiting

time is happening at the same time, the total time needed will be just over 3 seconds.

While a difference of nine seconds might not look like necessary, one can alter the task and increase the

input range from 4 to 64 with the following result to show the advantages of concurrency:

Figure 5 Results of calculating with and without concurrency (range 64)

By increasing the workload, the time saving will also be increasing drastically. When concurrency is

used, the time needed to complete the task will be just above 6 seconds, whereas the single thread worked

for about 3 minutes. Therefore, when time saving is needed concurrency is of great benefit.

11

2.6 Dynamic compilation/ REPL

In Clojure, the Read-Eval-Print-Loop (REPL) acts as a programming environment, in which it is

possible to interact with your own program. Besides, it enables the identification of the effects of

changes and visualizes the workflow of functions “on the fly”, with the goal to create an interactive

experience. Getting a direct feedback to your input helps to prevent bugs and, for debugging purposes,

it helps to reproduce the problem as well as narrow it down. [22]

Figure 6: Example of programming with the REPL [A6]

While using the REPL, one has to write down the code on the left window. By doing this, the code

will automatically be evaluated and printed on the right small window, to better understand the

coherences of the program. Also, it is possible to use the REPL to test just parts of any code outside of

the program, allowing a better overall understanding.

12

3 Conclusion

Clojure offers a wide range of interesting features and advantages especially when compared to Java.

Both Java and Clojure are hosted on the Java-Virtual-Machine (JVM) but Clojure uses significantly less

amount of code lines than Java does. This in turn facilitates the debugging and maintenance of systems.

Choosing the JVM as a platform is especially interesting for people who have worked with Java before

since they can keep using the libraries that they are used to. In addition, the interactive work with the

REPL and the easy use of concurrency makes Clojure a well performing, all-purpose programming

language, with a good entry into functional programming. [4]

The functional programming aspect might be one of the reasons why Clojure is still quite unpopular

among programmers despite a recurring trend towards functional programming in the recent years.[23]

Another aspect contributing to the obscurity of Clojure is the use of a non-text-based syntax. Switching

from a text-based syntax might feel like a step in the wrong direction, especially with languages such as

Python where the programmer is focused on a heavy text-based syntax. Combining both of these aspects,

functional programming and the non-text-based syntax, might be the reason that hinders programmers

from having a closer look at Clojure. [3][4]

This non-recognition of Clojure, on one hand, makes it harder for people to learn the language

autodidactic over the internet, since the number of sources, compared to the popular languages such as

Java or Python, are way less. On the other hand, its low popularity relative to the high demand in the

job market makes programming with Clojure one of the highest paid professions. In that sense, learning

Clojure can be financially motivated for anyone aspiring to be a programmer. [3]

Finally, it should be pointed out that there are experimental implementations for interoperability between

Clojure and Perl, C++, and Python, which might help increase Clojure’ popularity. These three

languages as such are already well implemented. Therefore, increasing the platforms that Clojure can

use may also increase the number of users. [4]

13

4 Bibliography

[1] https://clojure.org/

[2] Companies using Clojure:

https://clojure.org/community/companies

[3] Stackoverflow “Developer Survey Results 2019”

https://insights.stackoverflow.com/survey/2019

[4] “State of Clojure Community 2020”

https://de.surveymonkey.com/results/SM-CDBF7CYT7/

[5] “Closure”

https://en.wikipedia.org/wiki/Clojure#cite_note-37

[6] “Lisp (programming language)”

https://en.wikipedia.org/wiki/Lisp_(programming_language)

[7] “Lisp”

https://de.wikipedia.org/wiki/Lisp

[8] “Hosted on the JVM”

https://clojure.org/about/jvm_hosted

[9] “Java Virtual Machine”

https://de.wikipedia.org/wiki/Java_Virtual_Machine

[10] “Clojure Made Simple” 02.06.2015

https://www.youtube.com/watch?v=VSdnJDO-xdg

[11] “Functional Programming”

https://clojure.org/about/functional_programming

[12] “Functional programming”

https://en.wikipedia.org/wiki/Functional_programming

[13] Code by G. Mania

[14] Code from: https://gist.github.com/akonring/7804273

[15] “No, dynamic type systems are not inherently more open”

https://lexi-lambda.github.io/blog/2020/01/19/no-dynamic-type-systems-are-not-inherently-

more-open/

[16] “Programming Concepts: Static vs. Dynamic Type Checking”

 https://thecodeboss.dev/2015/11/programming-concepts-static-vs-dynamic-type-checking/

[17] “Dynamic Development”

14

 https://clojure.org/about/dynamic

[18] “Data Structures”

 https://clojure.org/reference/data_structures

[19] “Concurrent Programming”

https://clojure.org/about/concurrent_programming

[20] “Concurrency (computer science)”

 https://en.wikipedia.org/wiki/Concurrency_(computer_science)

[21] “Software transactional memory”

 https://en.wikipedia.org/wiki/Software_transactional_memory

[22] “Programming at the REPL: Introduction”

 https://clojure.org/guides/repl/introduction

[23] “Functional Programming is on the rise” by Roman Elizarov

 https://medium.com/@elizarov/functional-programing-is-on-the-rise-ebd5c705eaef

[A1] https://de.wikipedia.org/wiki/Lisp

[A2] https://clojure.org/about/functional_programming

[A3] Code from: https://clojuredocs.org/clojure.core/pmap

[A6] https://clojure.org/guides/repl/introduction

