
PARALLELIZATION LIBRARIES:

INTEL®

THREAD BUILDING BLOCKS

by Lars Taddey

13.07.2020

Structure

1. Intel® Thread Building Blocks (TBB)
• Motivation

• Overview

• Features

• Why Use TBB?

• When Does TBB Become Efficient?

• Who Is Using TBB?

2. Example

3. TBB And OpenMP – Differences And Similarities

4. Summary

5. Sources

2/17

TBB - Motivation

• Developed by Intel experts in 2006

• A solution for writing parallel programs in C++

• Became one of the most popular librarys for C++

• Open source

SOURCES 1 & 9 3/17

TBB - Overview

"Intel® Threading Building Blocks (Intel® TBB) is a widely used C++ library for shared
memory parallel programming and heterogeneous computing [...]" - (Source 1)

• Improve efficiency of multicore processors

• Gain performance, scaling and programming portability

• Used for task-based parallelism

SOURCES 1 & 9 4/17

TBB - Overview In Detail

SOURCES 1, 3, 5, 7 5/17

• Shared Memory

• Processors are able to access all memory as global address space

• Processors work independently

• Reduces communication effort and redundant copies

• Parallel Programing

• An abstraction of parallel computer architecture

• Express algorithms and their composition in programs

• Value and efficiency depends on architecture and tasks

• Different ways of implementing

"[…] library for shared memory parallel programming [...]"

TBB - Overview In Detail

SOURCES 1, 8 & 13 6/17

• Heterogenous computing

• Systems that use more than one processor

• Purpose is to gain performance and energy efficiency

• Makes use of dissimilar co-processors

• Co-Processor

• Supplements the functions of the primary processor

• Offloads processor-intensive tasks from the main processor

• Operations: e.g, floating point arithmetic or graphics operations

"[…] and heterogenous computing [...]"

TBB - Features

SOURCES 1, 9, 10, 11, 12 & 14

• Group of template classes and functions for C++

• Processing patterns that are cornerstones of multithreaded programming

Generic Parallel Algorithms

• Containers with built-in synchronization elements

• Collection locking mechanism

• e.g,. TBBs concurrent_queue with try_pop

Concurrent Containers

• Includes new and explicit calls to malloc and calloc

• Erases scalability bottlenecks

• Ensures correct line sharing in cache

Scalable Memory Allocator

7/17

TBB - Features

SOURCES 1, 16 & 17

• Helps to distribute threads to multiple processors

• Makes sure that related threads are running on the same processor

• Processors try to "steal" threads, that are done or haven't started yet

Work-Stealing Task Scheduler

• Used to avoid threads getting in the way of another

• Defines critical regions and ensures exclusive access

Low-level synchronization primitives

8/17

Why Use TBB?

More dynamic and
allows nesting (e.g,.

"if" and "while" in
C++)

Uses task parallel
programming

Removes the
problem of worrying

about available
threads

For high peak-
performance on as

many different
machines as

possible

9/17SOURCES 1, 6 & 9

Why Use TBB?

Requires not specific
compiler support and

supports high-
performance-

computing (HPC)

Better for data-
parallel programming

Task-Scheduler
allows a more
efficient use of

processor resources

Is compatible
with ofher software

e.g,. Microsofts
Parallel Patterns

Library (PPL)

10/17SOURCES 1, 2, 9 & 15

When Does TBB Become Efficient?

• Efficient for dynamic programming

• Performance gain scales with the number of processors
-> Large systems with more threads have a bigger gain

• Also efficient for smaller systems and different machines

• Not efficient for I/O operations

11/17SOURCES 1, 2, 9 & 15

Who Is Using TBB?

• Everyone programming software in C++ for different machines

• Scientists

• Engineers

• Commercial Applications

• Industry

12/17SOURCES 1, 2, 9 & 15

TBB And OpenMP - Differences And Similarities

TBB

• Creates and manages the thread pool

• Better for C++

• Efficient for object oriented programming styles and
more complex cases

• Efficient for dynamic scheduling

• Better for nested dominated programming

• Does not require specific compiler support

• Portable to a lot of operating systems

• Efficient for custom iteration spaces or complex
reduction operations

• Designed for threading, for performance
and scalability

OpenMP

• Creates and manages the thread pool

• Better for C and FORTRAN

• Efficient for a structured coding style and more
simple cases

• Efficient for static scheduling

• More efficient for array dominated processing, even
in C++

• Does require specific compiler support

• Portable to a lot of operating systems

• Efficient for bounded loops or do-loop parallelism

• Designed for threading, for performance and
scalability

SOURCES 9 & 18 13/17

Summary

• TBB provides algorithms and data structures to define tasks in parallel programming

• Tasks are queued into thread-local work queues

• Task-stealing for load imbalance

• Schedules tasks first that have been most recently added
-> unfair scheduling

• Used to optimize the efficiency of multicore processors

• Making processor resources less tedious and more efficient

• Portability provides flexibility and reduces code changes

• Supports heterogeneous computing

• Scales with a higher count of processors

SOURCES 1, 2, 3, 9 & 15 14/17

Main Sources:

1. https://software.intel.com/content/www/ us/en/develop/tools/threadi ng-building-blocks.html

2. https://kriemann.name/Ronald/publications/parpr og/lecture4. pdf

3. https://computing.llnl.gov/tutorials/parallel_comp/

4. https://en.wikipedia.org/wiki/Parallel_computing

5. https://en.wikipedia.org/wiki/Parallel_programming_ model

6. https://de.wikipedia.org/wiki/Threading_Building_Blocks

7. https://en.wikipedia.org/wiki/Shared_memory

8. https://en.wikipedia.org/wiki/Heterogeneous_computing

9. https://play.google.com/books/reader?id=BqahDwAAQBAJ&hl=de&printsec=frontcover&pg=GBS.PT67#v=onepage&q=tbb%20proxy%20method&f=false

10. https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/Containers.html

11. https://www.threadingbuildingblocks.org/tutorial-intel-tbb-c onc urrent-c ontainers

12. https://www.threadingbuildingblocks.org/tutorial-intel-tbb-generic-parallel-algorithms

13. https://en.wikipedia.org/wiki/Coprocessor

14. https://www.threadingbuildingblocks.org/tutorial-intel-tbb-scalable-memory-allocator

15. https://software.intel.com/en-us/node/506099

16. https://de.wikipedia.org/wiki/Work_stealing

17. https://kudos.readthedocs.io/en/latest/low-level-synchr onizati on. html

18. https://software.intel.com/content/www/ us/en/develop/articles/intel-threading-buildi ng-blocks-openmp-or-native-threads.html

15/17

https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html
https://kriemann.name/Ronald/publications/parprog/lecture4.pdf
https://computing.llnl.gov/tutorials/parallel_comp/
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_programming_model
https://de.wikipedia.org/wiki/Threading_Building_Blocks
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Heterogeneous_computing
https://play.google.com/books/reader?id=BqahDwAAQBAJ&hl=de&printsec=frontcover&pg=GBS.PT67
https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/Containers.html
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-concurrent-containers
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-generic-parallel-algorithms
https://en.wikipedia.org/wiki/Coprocessor
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-scalable-memory-allocator
https://software.intel.com/en-us/node/506099
https://de.wikipedia.org/wiki/Work_stealing
https://kudos.readthedocs.io/en/latest/low-level-synchronization.html
https://software.intel.com/content/www/us/en/develop/articles/intel-threading-building-blocks-openmp-or-native-threads.html

Context Sources:

19. https://www.infoworld.com/article/3201285/why-effective-parallel-programming-must-include-scalable-memory-allocation.html#:~:text=A%20critical%20part%20of%20any

20. http://www.c-howto.de/tutorial/arrays-felder/speicherverwaltung/

21. https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

22. https://de.wikipedia.org/wiki/Thread_(Informatik)

23. https://de.wikipedia.org/wiki/Template_(C%2B%2B)

24. https://de.wikipedia.org/wiki/Mehrkernprozessor

25. https://software.intel.com/content/www/us/en/develop/articles/get-started-with-tbb.html

26. https://de.wikipedia.org/wiki/Non-Uniform_Memory_Access

27. https://en.cppreference.com/w/cpp/algorithm/find

28. https://en.wikipedia.org/wiki/Massively_parallel

29. https://en.wikipedia.org/wiki/Computing

30. https://en.wikipedia.org/wiki/Supercomputer

31. https://en.wikipedia.org/wiki/Concurrent_computing

32. https://en.wikipedia.org/wiki/OpenMP

33. https://en.wikipedia.org/wiki/Parallel_Patterns_Library

16/17

https://www.infoworld.com/article/3201285/why-effective-parallel-programming-must-include-scalable-memory-allocation.html
http://www.c-howto.de/tutorial/arrays-felder/speicherverwaltung/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://de.wikipedia.org/wiki/Thread_(Informatik
https://de.wikipedia.org/wiki/Template_(C%2B%2B
https://de.wikipedia.org/wiki/Mehrkernprozessor
https://software.intel.com/content/www/us/en/develop/articles/get-started-with-tbb.html
https://de.wikipedia.org/wiki/Non-Uniform_Memory_Access
https://en.cppreference.com/w/cpp/algorithm/find
https://en.wikipedia.org/wiki/Massively_parallel
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/Parallel_Patterns_Library

THANK YOU
FOR

LISTENING

