
Undefined Behaviour in C

— Report —

Field of work: Scientific Computing
Field: Computer Science

Faculty for Mathematics, Computer Science and Natural Sciences
University of Hamburg

Presented by: Dennis Sobczak
E-mail-address: 1sobczak@informatik.uni-hamburg.de
Registration number: 6325177
Course of study: Computer Science

First surveyor:
Second surveyor:

Supervisor: Konstantinos Chasapis

Hamburg, 31.03.2014

mailto:adresse@email.de

Contents

1 Preface 3

2 What is meant by ’undefined behaviour’ in C? 4
2.1 Norms and Standards . 4
2.2 Why is undefined behaviour possible? . 4

3 How does the compiler benefit? 5
3.1 Division by zero . 5
3.2 Indexing arrays out of bounds . 6
3.3 Casting types . 6
3.4 Using uninitialized variables . 7
3.5 Signed integer overflow . 7
3.6 Oversized shift amounts . 7
3.7 Dereferencing a NULL Pointer . 8
3.8 Dereferencing a Dangling Pointer . 8

4 Dangers 9
4.1 Interacting compiler optimizations . 9
4.2 Security . 9
4.3 Changing compiler without adapting the code 10

5 What one should be aware of? 11

6 Clang options to avoid undefined behaviour 12

7 Code Analyzers 13

8 Recommendations 14

9 References 15

2

1 Preface

The C programming language was designed to be an extremely efficient low-level program-
ming language. Because of this there are things possible which may cause unexpected
behaviour of the program. Therefore C is called ’unsafe’ in opposite to Java for instance,
where the compiler restricts code evoking such behaviours. The kind of behaviour which
will be described in the following is referred to as ’undefined behaviour’.

3

2 What is meant by ’undefined
behaviour’ in C?

Undefined behaviour is some kind of a ’dark side’ of C. In general every C code which
contains operations against the C norms and standards may evoke this undefined
behaviour. So breaking these rules might end up in a mess if not recognized before. Even
if the programmer is aware of such content in his own code he or she should avoid that
and think about another possibility of implementing this current routine all the more
if the person is dealing with safety critical code. There are many different possibilities
to make the program result in an undefined behaviour and with this there exist many
classes one can categorize. So in the end there will be at least bugs in the program
which in turn may end in a system crash on certain CPUs or do other unexpected things.
There are lot of prominent examples for that kind of bugs in the later chapters.

2.1 Norms and Standards
C has been developed in the early 1970’s by computer scientist Dennis Ritchie at Bell
Labs. It has spread very fast what meant that constant modifications and expansions
were made and many versions of C have been created. These versions were not supported
completely by every C compiler. Therefore Ritchie and co-author Kernighan had written
down norms and standards, rules and restrictons, to keep faultless and reliable code. This
should allow to run the same code on different architectures with any C compiler without
any trouble with undefined behaviour. Nevertheless it is possible to evoke undefined
behaviour - rules can be broken.

2.2 Why is undefined behaviour possible?
As mentioned in the preface before, C is an extremely efficient low-level programming
language. Because of this it is not as safe as other programming languages. This means
that also forbidden things are possible, which are restricted in any other programming
language. Nevertheless using code which causes undefined behaviour might enable certain
optimizations the compiler can benefit from. Optimizations can be code optimizations,
compilation time optimizations, performance optimizations of the system and the appli-
cations and storage usage optimizations. How to reach that kind of optimizations will be
shown in the next chapter.

4

3 How does the compiler benefit?
There are two commonly used compilers, the GCC (GNU Compiler Collection) and
LLVM (Low-Level-Virtual-Machine) which is in focus from now on. The LLVM was
developed by the LLVM Developer Group. It was written in C++. The frontend is Clang.
In the following there are a few code examples which display some of the undefined
behaviour classes.

3.1 Division by zero
Division by zero is according to the standard undefined. Therefore one should check his
code if there are passages where division by zero is taking place.

Listing 3.1: Division by zero
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int divide_by_zero (int x,int y);
5
6 int main (){
7 int a,b;
8 a=1;
9 b=0;
10 printf("Result is: %d\n",divide_by_zero (a,b));
11 return 0;
12 }
13
14 int divide_by_zero (int x,int y){
15 int result;
16 result=x/y;
17 return(result);
18 }

If this code is compiled with no optimizations enabled, there will not occur any warning
message during compilation time. But if the program is run afterwards it will result in a
’Floating point exception’.

5

3.2 Indexing arrays out of bounds
Indexing an array beyond its bounds is a commonly known source of error. If this
happens in the code, dependend on which target architecture it is compiled, it can occur
that the program will en up in a crash, another program is started or even more worse,
the harddrive may be formatted. It also appears to be an advantage for hackers to
manipulate the program, to large data packets are stored in a far too small reserved
buffer which causes an overwrite of other store cells. This kind of attack is known as
bufferoverflow.

Listing 3.2: Bufferoverflow
1 void input_line ()
2 {
3 char line [1000];
4 if (gets(line)) // gets receives a pointer to the
5 parse_line (line); //array , no size information
6 }

Before the subroutine is executed the return address is written to the stack. After that
the local variables are written to the stack, the stack itself growing downwards. If fields
or strings are used, they are written upwards in the stack. The attacker may provoke
this gap in security and get back to the return address which then can be modified.
To prevent this the array should be range checked before accessing the current array

element and in such an error case an exception should be thrown.

3.3 Casting types
A type cast can reduce the size of used storage for example if an integer (2 or 4 bytes) is
casted to a char (1 byte):

Listing 3.3: Casting an integer into a char
1
2 int main ()
3 {
4 int *num;
5 char * charPtr ;
6 charPtr = (char *) num;
7 * charPtr = (char *) 0;
8 * charPtr = (char *) 1;
9 return 0;
10 }

Another advantage is that Type-Based Alias Analysis (uses the types of variables to
determine what things might alias what) gets enabled. The disadvantage is similar to

6

the example above, so is the solution again the same: Check the size of the variable
before accessing it.

3.4 Using uninitialized variables
In C variables which are not initialized directly in the code will not be initialized during
compilation time with a default value as known from other programming languages. This
means that there are no zero-initializations what in effect makes the program run faster.
A disadvantage is that this can cause overhead for stack arrays. Todays compilers have
special sections to omit the zero-initialization by marking the variable with the right
keyword according to the programming langauge used.

3.5 Signed integer overflow

Listing 3.4: Signed integer overflow
1 #include <limits.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 int main ()
6 {
7 int number = INT_MAX ;
8 result = number + 1;
9 printf("Result is: %d\n",result);
10 return 0;
11 }

Compiled with clang (no optimizations turned on) the result is ’-2147483648’,

INT_MIN

. This result is not guaranteed. On some architectures the result is undefined, what
means that it is something oter than

INT_MIN

, no wraparound is done. If such code is used for example in a for loop this may end up
in an infinite loop.

3.6 Oversized shift amounts
Shifting values by an amount greater or equal to the number of bits in the number can
evoke undefined behaviour. Depending on the used platform that kind of shift may be a

7

shift by zero or in the worst case format your harddrive. There are two possibilities to
prevent this. The first one requires knowledge of the bitwidth of the current type so it
can be checked before shifting by a certain value. The second possibility is to set the
variables to zero with a left shift (lsl).

3.7 Dereferencing a NULL Pointer
Dereferencing a NULL pointer enables certain optimizations like scalar optimizations
exposed by macro exapnasion and inlining. But there is also the danger of a system
crash doing that.

Listing 3.5: Dereferencing a NULL Pointer
1 int* ptr = NULL;
2 int& ref = *ptr;
3 int* ptr2 = &ref;

3.8 Dereferencing a Dangling Pointer
Dereferencing dangling pointers can enable similar optimizations. The danger is that
memory can be overwritten.

Listing 3.6: Dereferencing a Dangling Pointer
1 int* foo (){
2 int y; // decalring y as an integer
3 return &y; // returning the address of y
4 }
5
6 int main (){
7 int* pY = foo (); // declaring a pointer pY, which
8 // points to the address of y
9 }

8

4 Dangers

4.1 Interacting compiler optimizations
The interacting compiler optimization can be either helpful or it can cause sideeffects in
the program, which then can be exploited by attackers. Optimizers are different from
compiler to compiler. Optimization is run at various stages and in different order. So it
did in the prominent example below:

Listing 4.1: Linuxkernel: Checking for the NULL Pointer
1 void contains_null_check (int *P){
2 int dead = *P;
3 if(P == 0)
4 return;
5 *P = 4;
6 }

This code fragment caused an exploitable bug in the Linuxkernel. There are two
optimization sequences which become problematic if run in a certain order. It is about the
’Dead Code Elimination’ (DCE) and the ’Redundant Null Check Elimination’ (RNCE).
The first function, as the name is indicating, checks the code for possible dead code
(code which does not have any influence on the result) eliminates it. The second one
checks the code for redundant code fragments and eliminates these. So refered to the
bug in the Linuxkernel above: If the DCE is run before the RNCE the second line is
deleted. If the RNCE is run afterwards the following null check (line 3) is not redundant
and consequently kept. However, if the processing is different, i. e. if the compiler
is structured differently, the RNCE could be run before the DCE what means the if
condition above is always false, because ’P’ was dereferenced and can not be null. The
DCE follows and all is left is line 4, *P = 4;. To prevent this the volatile keyword could
precede the declaration in the second line, which will signalize the compiler that the
value will change during runtime.

4.2 Security
It is not a good idead to use undefined behaviour in security-critical code if it is the
intention. Undefined behaviour can make a system vulnerable: If an attacker figures out
this vulnerability he or she can exploit it. Another contra are totally unexpected system
crashes that may appear during utilization.

9

1 void process_something (int size){
2 if(size > size + 1)
3 abort ();
4 ...
5
6 char *string = malloc(size + 1);
7 read(fd , string , size);
8 string[size] = 0;
9 do_something (string);
10 free(string);
11 }

In the code above could result a similar bug as in the example before. malloc is
checking whether an integer overflow occurs. Through optimizations the if condition in
line 2 as well as the abort() in the following line are eliminate, just the lines from line 6
on are kept. This makes the program again vulnerable to exploits. Instead of checking
the condition ’size > size + 1’ the condition should be turned to

’size == INT_MAX’

, which will rectify this fault.

4.3 Changing compiler without adapting the code
If the code is used on a different compiler, it should be adapted before compiling it.
Another compiler can have different features than the previous one. The differences
mainly lie in optimizations techniques and diagnostics.

10

5 What one should be aware of?
The compiler does not always benefit from optimizations. As seen before in the code
examples the compilers optimization strategies can cross plans if it is eliminating impor-
tant code fragment, when it is seen as dead code or redundancy. Furthermore there are
no specially-tailored warning messages that could mark code that will evoke undefined
behaviour because there are far too many cases that would need to have a special warning
messages.

11

6 Clang options to avoid undefined
behaviour

There are a few options for clang which enable some kind of detection of passages in the
code which can damage the program:

• -fcatch-undefined-behaviour (-ftrapv)
– it is experimental
– it detects this code (and traps it)
– makes runtime checks (checking for shift-out-of-range etc.)
– because of the the applications runtime is slowed down

• -fwrapv
– trapping signed integer overflow at runtime

12

7 Code Analyzers
There are static and dynamic analyzers which can help to detect undefined behaviour:

• Clang Static Analyzer:
– CSA makes a deep analyzis
– includes checking for undefined behaviour (i. e. finds null pointer dereferences)
– does not generate information at runtime
– is not integrated into normal workflows

• Valgrind:
– Valgrind is a dynamic analyzer which generates information at runtime
– finds uninitialized variables and other memory bugs
– quiet slow
– it can not find bugs, which the optimizer removes, only bugs that still exist in

the machine code
– is not aware of the source language what makes it more difficult to notice

shift-out-of-range or signed integer overflow

13

8 Recommendations
Todays compilers optimize a lot automatically so not all of the presented examples
will have these side-effects anymore when tried out. After all we have seen you should
keep a few things in mind: Inform yourself about the compiler you want to use, how
its optimization strategies work and how warning messages are displayed which you
should also turn on. A well documented code is always a great help especially when you
document preconditions and postconditions (assertions). And of course debug and test
your program again and again.

14

9 References
http://de.wikipedia.org/wiki/Puffer%C3%BCberlauf
http://www.drdobbs.com/cpp/type-based-alias-analysis/184404273
http://stackoverflow.com/questions/14686030/is-it-possible-to-instruct-c-to-not-zero-initialize-global-arrays
http://stackoverflow.com/questions/8205858/clang-vs-gcc-for-my-linux-development-project
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.regehr.org/archives/213
http://en.wikipedia.org/wiki/Undefined_behavior
http://stackoverflow.com/questions/2727834/c-standard-dereferencing-null-pointer-to-get-a-reference

15

http://de.wikipedia.org/wiki/Puffer%C3%BCberlauf
http://www.drdobbs.com/cpp/type-based-alias-analysis/184404273
http://stackoverflow.com/questions/14686030/is-it-possible-to-instruct-c-to-not-zero-initialize-global-arrays
http://stackoverflow.com/questions/8205858/clang-vs-gcc-for-my-linux-development-project
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.regehr.org/archives/213
http://en.wikipedia.org/wiki/Undefined_behavior
http://stackoverflow.com/questions/2727834/c-standard-dereferencing-null-pointer-to-get-a-reference

	Preface
	What is meant by 'undefined behaviour' in C?
	Norms and Standards
	Why is undefined behaviour possible?

	How does the compiler benefit?
	Division by zero
	Indexing arrays out of bounds
	Casting types
	Using uninitialized variables
	Signed integer overflow
	Oversized shift amounts
	Dereferencing a NULL Pointer
	Dereferencing a Dangling Pointer

	Dangers
	Interacting compiler optimizations
	Security
	Changing compiler without adapting the code

	What one should be aware of?
	Clang options to avoid undefined behaviour
	Code Analyzers
	Recommendations
	References

