
E�cient Programming in C

Memory Allocation

Comparison and implementation of basic malloc

algorithms

Marcel Ellermann(6315155)

DKRZ - Deutsches Klima Rechenzentrum

Contents

E�cient Programming in C . 1
Marcel Ellermann(6315155)

1 Introduction . 2
2 Dynamic Memory Allocation . 3

2.1 Memory Management within the Unix Kernel 3
2.2 Virtual Memory and Address spaces . 3
2.3 The sbrk interface . 4
2.4 Segementation Faults . 4
2.5 The Heap . 4
2.6 External fragmentation . 5

3 General approaches . 6
3.1 Coalescing . 6
3.2 First �t . 6
3.3 Next �t . 6
3.4 Best �t . 6
3.5 Binning . 7
3.6 Caching . 7

4 Use case analysis . 8
4.1 Glibc Malloc . 8
4.2 Allocation of small memory blocks 8 to 512 Bytes 8
4.3 Allocation of larger memory blocks 512 to 8096 Bytes 8

5 Conclusion . 10

Abstract In this paper we are going to depict some basic algorithms
used in many malloc implementations like �rst-�t and best �t. After
introducing those algorithms we are going to compare them regarding
e�ciency in di�erent use cases and try to derive some general �best-use�
rules.

1 Introduction

Memory Management is one of the research �elds that yet still was not able to
�nd a solution that is the best. Many di�erent methods have been developed to
handle memory in computer systems and most commonly enhance only single
aspects like time or space consumption and thereby increase some others. There-
fore it is always a trade o� which method to use in each case. In this paper we can
not analyze all di�erent methods that have been developed or are currently used
in standard libraries but try to investigate some basic approaches that are used
commonly, though sometimes only partially, in malloc implementations. Hence a
short introduction to Memory Management is given in section 2. Some general

3

approaches are introduced in section 3 which are further analyzed in di�erent
use cases in section 4 together with common used malloc implementations from
other libraries. In section 5 we try to get to a conclusion and give some advise
on when to use which introduced approach.

2 Dynamic Memory Allocation

In this chapter we are going to give a short introduction on Memory Management
and how the Unix Kernel is handling physical and virtual memory address-
spaces. Moreover we are going to give a short overview of heap memory allocation
and depict the problems that occur if dynamic memory allocation is required.

2.1 Memory Management within the Unix Kernel

The Unix kernel describes the physical memory with pages. Pages describe a
speci�c amount of physical memory and their size is architecture dependent.
32-Bit systems usually de�ne a page size of 4 KB and 64-Bit systems usually
de�ne a page size of 8 KB. Often more than one page size is supported by the
architecture. For a 32-Bit Architecture with 2 GB memory and a page size of 4
KB the MMU (Memory Management Unit) would need 524288 pages to describe
the whole memory.[11]

2.2 Virtual Memory and Address spaces

The Unix Kernel di�erentiates between two di�erent spaces. The kernel space
and the user space. The kernel runs in kerne space and can directly communi-
cate with the hardware and has its own secured memory space, whereas the user
space is not allowed to directly communicate with the hardware.[7][11] As shown

Figure 1. Mapping of virtual address spaces to physical memory [7]

in �gure 1 each process receives a virtual address space. This virtual address

4

space is mapped to physical memory and therefore secure. Security derives from
the fact that each process has it's own address space and can't access the other
processes' memory, it's isolated. The Memory Management Unit typically han-
dles the task of mapping the virtual address spaces to the physical addresses. It
most commonly resides on the CPU. By default the process's virtual memory
is not mapped completely, just a small portion is mapped. This is due enor-
mous overhead of managing all page-tables for each process, even when they are
only using a small fraction of the total memory available. To request a mapping
from virtual memory to physical memory the process hast to make calls the the
kernel's interfaces that o�er such means. Though virtual memory might be con-
tiguous the same is not guaranteed for the mapped physical memory. The Unix
Kernel itself has internal methods to allocate contiguous physical memory but
those won't be part of this paper because we will only need the interfaces the
Unix Kernel o�ers the user-space. Those are sbrk and mmap.

2.3 The sbrk interface

We will brie�y introduce the kernel's sbrk interface here since it will be used
for our own malloc implementations in section 3. Each process has its virtual
memory fragmented into di�erent areas which are used for di�erent purposes.
One of those is the data fragment, which is as the name already implicates
used for data storage. The sbrk interface is used to increase the size of the data
fragment of the current process. It will return the start of the new available
memory space on success.[3]

2.4 Segementation Faults

Due to the fact that only portions of the virtual address space are actually
mapped to physical memory so called Segmentation Faults may occur. Segmen-
tation Faults are caused by access violations, which means the process does not
have the rights to access the requested memory address. This may be due to
the properties of the memory address, like read-only memory areas, or it may
occur because the process doesn't own the memory. This means the requested
address is neither within the processes' data segment nor on its stack. Usually
the memory address 0, the null pointer, is protected by the system. Therefore
the process has no rights to access that address and a Segmentation Fault is
caused when an attempt is made to access it.

2.5 The Heap

The concept of a stack should be known in general. Though this concept allows
fast allocation of memory and a minimum of administrative work we're rather
limited by the fact that we can only free the top of the stack at any given time.
Which leads us to the idea of a heap. The heap shall in contrary to the stack
have the following key features:

5

� Free Allocated Memory at any given time
� Allocate Memory at any given time

By being able to free memory at any given time at any position within the
heap we are free of any restrictions we have within the heap. The loss of those
restrictions though leads to the need of an administration of the memory we're
working with because we have to gather and reuse the memory we have freed so
far to not waste it. If and only if no free memory is available within the memory
currently contained by the heap we request new memory from the operating
system and increase the heap's size. This can be done by the sbrk interface
introduced in section 2.3. A general structure of a heap is shown in �gure 2.
Each memory chunk administrated by the heap has small portion of memory

Figure 2. Basic structure of a heap. [8]

that is called the head and is used to describe the chunk's size and the position
of the next chunk that contains free memory. By linking to the next chunk a
linked-list is formed which is called the free list. The chunks within this list are
ordered by ascending address size. The last chunk points to the �rst one.

Request memory If memory is requested from the heap a chunk of memory
has to be found that is at least as large as the amount requested. If no memory
chunk is big enough, new memory has to be requested from the operating system.

Free memory If memory is freed it has to be returned into the free list. The
malloc implementation has to take care of the ascending order of addresses when
it inserts the memory chunk into the list.[8]

2.6 External fragmentation

External fragmentation is due to the dynamic allocation and deallocation of
memory a problem that arises in heaps. External fragmentation is �a form of
fragmentation that arises when memory is allocated in units of arbitrary size.
When a large amount of memory is released, part of it may be used to meet a
subsequent request, leaving an unused part that is too small to meet any fur-
ther requests�[4]. Methods to reduce external fragmentation will be discussed in
section 3.

6

3 General approaches

Within this section we are going to introduce the basic methods for dynamic
memory allocation. This includes methods for chunk selection within the free
list of the heap. Alternative heap structures as well as methods to decrease
external fragmentation and allocation time under di�erent circumstances.

3.1 Coalescing

One method to decrease external fragmentation drastically is coalescing. Coa-
lescing basically is the merging of two neighbored chunks of free memory. If a
memory chunk is freed and returned to the free list, the freeing algorithm checks
for the position the freed block is in and coalesces under the following conditions

� The freed chunk starts where a free chunk ends.
� The freed chunk starts where a free chunk starts.

If both condition are true, all three blocks are merged into one big memory
chunk.

3.2 First �t

The �rst �t method for selecting memory from the is rather simple. The free
list will be searched from the beginning every time an allocation has to be
made. The �rst block that is big enough to contain the requested size of bytes
will be returned and removed from the free list. If the block is larger than the
requested amount of bytes it is split to �t the requested size and the left free space
is returned to the free list. This approach tends to accumulate small memory
chunks at the beginning of the free list, which leads to longer search times for
larger memory blocks.[9]

3.3 Next �t

The next �t method is very similar the the �st �t method and could rather be
called a tweak of the �rst �t method. Instead of always start searching from the
beginning of the free list the search is continued from the last returned chunk
of memory. By doing this the free chunks of memory are most likely distributed
uniformly in size over the free list which leads to a reduction of search time in
average cases.[9]

3.4 Best �t

Best �t will always return the chunk of memory from the free list which size
is closest to the requested size. To do this every chunk of memory within the
free list has to be checked which leads to high average search times. Though

7

the search time increases this attempt also decreases the the amount of exter-
nal fragmentation. Further more fragmentation can be reduced by specifying a
minimal chunk size. The minimal chunk size speci�es that a block is not split if
the free chunk resulting from that split is smaller than the given minimal chunk
size. The minimal chunk size is not only applicable to the best �t method, it
can also be used for the next �t and �rst �t method and is a trade of between
external fragmentation and memory e�ciency.[9][1]

3.5 Binning

Binning uses a a di�erent heap structure than introduced in 2.5. As you can see
in �gure 3 we have 128 bins each being the head of a free list that contains chunks
of memory that have a speci�c size. Bins 1-64 contain each memory chunks of
exact n ∗ 8 Bytes, where n is the index of the bin. Bins with an index greater
than 64 contain a range of memory chunks. Those bins are sorted by ascending
size within the respective free list. Before 1995 instead of sorting the oldest-�rst
rule was commonly used. Due to the proof that with sorting �the minor time
investment was worth it to avoid observed bad cases�[10] this had changed.

Figure 3. Binning for dynamic memory allocation

3.6 Caching

Caching refers to the fact that small chunks of memory that are freed are not
coalesced immediately. This is rather helpful when working with many small
allocations and deallocations in a small period of time, i.e. when working with
huge trees. Every split of a memory chunk and every merge of a memory chunk
has a �xed cost of time attached to it. Therefore caching can save this time by
skipping those operations and keeping the freed memory chunk as it is. If the
number of cached chunks exceed a given number, they're coalesced again.

8

4 Use case analysis

In this section we are going to analyze how good our self implemented malloc
methods for First-Fit and Next-Fit are compared to malloc implementations
of other libraries commonly used, i.e. the glibcs' malloc [6] implementation or
jemalloc[2].

4.1 Glibc Malloc

The default c library used on Ubuntu systems is provided by glibc and henceforth
the default malloc implementation used by most of the programmers developing
on such systems use the malloc implementation from glibc as well. The malloc
implementation from glibc combines many method introduced in section 3. For
di�erent memory chunk sizes di�erent approaches are used to optimize speed
and memory e�ciency.

� For Chunks less or equal to 64 Bytes a caching allocator is used.
� For Chunks greater than 512 Bytes a simple best-�t allocator is used.
� For everything in between �it does the best it can trying to meet both goals

at once�[5]. Where the goals are time and memory e�ciency.

The implementation describes itself as follow: This is not the fastest, most space-
conserving, most portable, or most tunable malloc ever written. However it is
among the fastest while also being among the most space-conserving, portable
and tunable. Consistent balance across these factors results in a good general-
purpose allocator for malloc-intensive programs.[5].

4.2 Allocation of small memory blocks 8 to 512 Bytes

The following test was conducted on the cluster of the DKRZ. A number of
memory chunks were allocated. Each allocated memory chunk was between 8
and 512 Bytes large and was freed after 1 to 3 seconds. The result of this test
with the di�erent malloc implementations is displayed in �gure 4. As we can see
�rst-�t and next-�t are pretty similar though �rst-�t slightly out performs next-
�t. Better than those to approaches is glibs' malloc implementation with 365, 57
seconds for 300.000 allocations. It is only beaten by the jemalloc implementation
with 256, 89 seconds for 300.000 allocations, which is a huge lead.

4.3 Allocation of larger memory blocks 512 to 8096 Bytes

The following test was conducted on the cluster of the DKRZ. A number of mem-
ory chunks were allocated. Each allocated memory chunk was between 512 and
8096 Bytes large and was freed after 1 to 3 seconds. The result of this test with
the di�erent malloc implementations is displayed in �gure 5. The result is pretty
similar to the one from section 4. �rst-�t and next-�t are even closer together
and glib as well as jemalloc have a huger lead towards the other implementations.

9

0

50

100

150

200

250

300

350

400

450

500

1000 10000 100000 200000 300000

S
e

c
o

n
d

s

Allocation count

First-Fit Next-Fit glib jemalloc

Figure 4. Allocation duration 1-3 seconds. Chunk size 8 - 512 Byte

0

100

200

300

400

500

600

700

1000 10000 100000 200000 300000

S
e

c
o

n
d

s

Allocation count

First-Fit Next-Fit glib jemalloc

Figure 5. Allocation duration 1-3 seconds. Chunk size 512 - 8069 Byte

10

5 Conclusion

Reviewing the results of the testes conducted in section 4 there are some things
to point out. First of all they have to be treated carefully since they're con-
troversially to theory. In theory next-�t should outperform �rst-�t, though the
opposite is shown here. Despite that the results show that one is better o� using
the default implementation or other third party libraries since own implementa-
tion require a lot of optimization to outperform any of the introduced already
present malloc implementations. If one needs fast memory allocators for time
dependent applications it is worth looking into some malloc implementations if
the program is very memory intensive. For example jemalloc is about 200 sec-
onds faster for large memory blocks and 300.000 allocations in the given test
setting. The results may di�er in other cases were less deallocations or a broad
range of memory sizes are required.

11

References

1. Carter Bays. A comparison of next-�t, �rst-�t and best-�t. Communications of

the ACM, 20(3):191�192, March 1977.
2. Canonware. Jemalloc. http://www.canonware.com/jemalloc/. [Accessed on

18.03.2014].
3. Panagiotis Christias. Linux programmer's manual. http://unixhelp.ed.ac.uk/

CGI/man-cgi?sbrk+2. [Accessed on 09.01.2014].
4. JOHN DAINTITH. External fragmentation. http://www.encyclopedia.com/doc/

1O11-externalfragmentation.html. [Accessed on 09.01.2014].
5. GNU. Gllib c malloc header �le. http://code.woboq.org/userspace/glibc/

malloc/malloc.c.html. [Accessed on 09.01.2014].
6. GNU. Linux programmer's manual - malloc. http://man7.org/linux/man-pages/

man3/malloc.3.html. [Accessed on 09.01.2014].
7. M. Tim Jones. User space memory access from the linux kernel. http://www.ibm.

com/developerworks/linux/library/l-kernel-memory-access/index.html,
2011. [Accessed on 09.01.2014].

8. Brian W. Kernighan and Dennis M. Ritchie. The C programming Language.
Prentice-Hall, 2 edition, 1988.

9. Donald E. Knuth. The art of computer programming - Fundamental algorithms,
volume 1. Addison Wesley, 2006.

10. Doug Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.

html. [Accessed on 09.01.2014].
11. Robert Love. Linux Kernel Development. Novell Press, 2 edition, 2005.

http://www.canonware.com/jemalloc/
http://unixhelp.ed.ac.uk/CGI/man-cgi?sbrk+2
http://unixhelp.ed.ac.uk/CGI/man-cgi?sbrk+2
http://www.encyclopedia.com/doc/1O11-externalfragmentation.html
http://www.encyclopedia.com/doc/1O11-externalfragmentation.html
http://code.woboq.org/userspace/glibc/malloc/malloc.c.html
http://code.woboq.org/userspace/glibc/malloc/malloc.c.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://www.ibm.com/developerworks/linux/library/l-kernel-memory-access/index.html
http://www.ibm.com/developerworks/linux/library/l-kernel-memory-access/index.html
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html

	Efficient Programming in C
	Marcel Ellermann(6315155)
	Introduction
	Dynamic Memory Allocation
	Memory Management within the Unix Kernel
	Virtual Memory and Address spaces
	The sbrk interface
	Segementation Faults
	The Heap
	External fragmentation

	General approaches
	Coalescing
	First fit
	Next fit
	Best fit
	Binning
	Caching

	Use case analysis
	Glibc Malloc
	Allocation of small memory blocks 8 to 512 Bytes
	Allocation of larger memory blocks 512 to 8096 Bytes

	Conclusion

