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Abstract
This paper describes the effects on performance and behavior of three programming
keywords in the C programming language: restrict, static and inline.
Restrict is a type qualifier on pointer variables and gives a hint to the compiler. It says,
a variable has no alias in the current scope. With this knowledge, the compiler can save
some unnecessary instruction calls.
The static keyword has two different functions. The first one helps to encapsulate private
functions to provide an access control. The second function aims to keep the state of a
non-global variable between multiple invocations in an arbitrary scope.
The inline keyword can be used on any function and gives a hint to the compiler, that
this function can be embedded where the function call occurs. By using this keyword,
the compiler can save an extra function call, which can lead to better performance.
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1 Introduction
For scientific studies it is often necessary to analyze huge amounts of data, which
nowadays is done by computers. It is important to get the results in an appropriate time,
which requires an efficiently running application. The C programming language has
many possible optimizations, some of which are enabled automatically by the compiler,
others by the application developer. One factor, the developer can make use of, is the
usage of three programming keywords implemented in C, which are restrict, static and
inline. This paper provides an overview of those.

2 The restrict-Keyword
This chapter explains the functionality and effects of the restrict-keyword in the C-
language. The restrict keyword is included in the C-standard since C99 and is a type
qualifier, which can be assigned to pointer variables. The keyword says, that there is no
alias1 for such a variable in the current scope.

2.1 Using the restrict keyword
The restrict-Keyword is a type qualifier on pointer variables. It can be added to any
definition of a pointer variable or function parameter. The restrict keyword must be
inserted after the asterisk and before the variable name. An example definition can be
found in listing 2.1.

Listing 2.1: Example of using the restrict-Keyword
1 int *aPtr;
2 int * restrict aPtr;

It is important, that the restrict keyword is only used, when there is no alias for this
variable. Otherwise, the usage of restrict can lead to an undefined behavior. An example
of what is happening in such case, will be given in chapter 2.3.

1An alias of a variable is another variable, which points to the same address.
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2.2 Functional Principle
With the knowledge that a variable is restricted and has no alias, the compiler doesn’t
need to take care of background changes due to an alias. This helps the compiler to add
further optimization into the program.

Hereinafter, the effect of the restrict keyword will be explained on the example of the
following update()-function. This function takes three integer pointers as parameters,
named a, b and c.

Listing 2.2: update-Function
1 void update(int *a, int *b, int *c)
2 {
3 *a += *c;
4 *b += *c;
5 }

This function adds the value of c to a and b. When you call this function, for example,
with a = 1, b = 2 and c = 3 the new values of the variables are a = 4, b = 5 and
c = 3.

To understand the effect of the restrict keyword, it is necessary to take a closer look
at the assembly level. The (simplified) assembly code of the update-function above can be
seen in listing 2.3. It was generated by compiling the code with
gcc -Wall -std=c99 main.c -O1 -S.

Listing 2.3: The assembler-code to listing 2.2
1 update:
2 movl (% rdx), %eax
3 addl %eax , (% rdi)
4 movl (% rdx), %eax
5 addl %eax , (% rsi)
6 ret

On the assembly level, the three variable names a, b and c are no longer present. Their
values are now stored in the CPU registers %rdi, %rsi and %rdx.
The initial values in the registers can be seen in table 2.1. Since all variables are pointers,
their values are references to other locations in memory. The ∗val columns shows the
actual value behind that pointer.
The additional %rax register buffers a temporary value and has no initial value. This
buffer is needed, as the compiler can’t directly execute an addition between two pointers.
To calculate the sum of a and c, the CPU has to perform two operations. First, it

will copy the referenced value in %rdx into the register %rax. In the next step, the CPU
will calculate the sum of %rax and (%rdi)2. Then the result will be written back into

2When a register is written within brackets, the pointer is dereferenced and its underlying value will

3



Variable Register Value ∗val
a %rdi 0x123 1
b %rsi 0x124 2
c %rdx 0x125 3
- %rax - -

Table 2.1: The initial values in the registers

the referenced location in memory.
To calculate the second addition, the CPU runs the same steps again, just with another

variable: first it loads (%rdx) into %eax and then it calculates %eax plus (%rsi).
The CPU has to reload the variable c in the first step as the referenced value could have
changed in the previous operation due to an alias. With the knowledge that there is no
alias for c, the compiler can save this unnecessary call.
The following chapter explains, how the code will be optimized by using the restrict
keyword.

2.2.1 Optimizing the code with restrict
To optimize the function in listing 2.2 by using the restrict keyword, it only needs a
simple modification: the parameter c needs to be flagged as restricted. The altered
function can be seen in listing 2.4.

Listing 2.4: update-Function with restrict
1 void update_restrict (int *a, int *b, int * restrict c)
2 {
3 *a += *c;
4 *b += *c;
5 }

That this simple modification brings the desired effect can be seen in the assembly
code in listing 2.5: The second loading call (movl) has been removed as the compiler
now knows, that the referenced value in %rdx could not have changed.

Listing 2.5: The assembler-code to listing 2.4
1 update_restrict :
2 movl (% rdx), %eax
3 addl %eax , (% rdi)
4 addl %eax , (% rsi)
5 ret

be used
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2.3 Assigning an aliased variable to a restricted variable
As the compiler removes some instruction calls when the restrict keyword is used, an
incorrect usage can lead to undefined behavior and bugs, that are difficult to find. The
compiler does not verify that a restricted variable has no alias, so it does not throw an
error if the restrict keyword is used wrong.

The following example will demonstrate, what happens when the function in listing 2.4
is called with a as an alias for c.

Listing 2.6: update-Function
1 int main(int argc , char ** argv)
2 {
3 int a = 1;
4 int b = 2;
5
6 update (&a, &b, &a);
7 printf(" Expected Result: %d %d\n", a, b);
8
9 a = 1; b = 2; // reset values
10
11 update_restrict (&a, &b, &a);
12 printf("Actual Result: %d %d\n", a, b);
13 }

In this example, there are just two variables, a and b. The address of a is passed both
as first and last parameter. This has the effect, that within the update function, a is an
alias of c.
The update function calculates in the first step *a = *a + *a = 1 + 1. The variable
a has now the value 2. As the function works with pointers, the second addition uses
the new value of a and calculates *b = *a + *b = 2 + 2. The variable b has now the
value 4. So the expected result is that a has the value 2 and b has the value 4.

When the update_restrict function is called with these parameters, the behavior
is different. As mentioned above, the compiler assumes that the value of *c has not
changed due to the restrict keyword. However, the first calculation alters the value of a,
which is also used in the second addition b (through the alias c).
After the first calculation, a has the same value as above, which is 2. But now the CPU
does not reload the value of c and executes the second addition with 1 as value for a. So
the actual value of b is now 3, but 4 was expected.

In this example, the compiler does not throw any error or give a warning. The developer
has to find the origin of the wrong result by himself, which can be a nearly impossible
thing in more complex situations. In conclusion, it is important to be careful, when
using this keyword.
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2.4 Performance
By comparing the assembly codes of the non-restrict and the restrict version of the code
above, it is easy to see that in the restrict version there is one instruction call less than
the non-restrict version. This let assume, that the optimization with restrict can improve
the performance of an application. To verify this assumption, the following performance
test has been made.

Listing 2.7: Performance-Test
1 void update(int *a, int *b, int *c)
2 {
3 igned long long iterations = 100000000000;
4 for(i = 0; i < iterations ; i++)
5 {
6 *a += *c;
7 *b += *c;
8 }
9 }

The update_performance_test function in listing 2.7 runs the two additions 100
trillion times within a for-loop. To test the performance of the restrict version, the
parameter c has been marked as restrict.
The test has been executed on the server cluster of the German Climate Computing
Center in Hamburg.

The result of the performance test was, that the version without restrict took
249.086421s and with restrict 83.690911s. So in this simple example the restrict version
is 2.98 times faster.

3 The static-Keyword
In C, the static keyword has two different functions. On the one hand, it provides an
access control for functions and global variables. On the other hand, the keyword offers
local variables which keep their state during multiple invocations. In this chapter both
functionalities will be explained.
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3.1 Static functions
On functionality of the static keyword can be applied on functions. To define a function
as static, the static keyword has to be included in the signature of the function. It does
not matter in which position the keyword is mentioned, it can be inserted before or after
the return type and other optional keywords, but must be inserted before the function
name. In listing 3.1 there is an example function, which is declared as static.

Listing 3.1: Definition of a global static variable
1 static void static_function ();

A function defined as static can only be called by functions in the same translation
unit1. This means in general that a static function can only be called from other functions
in the same file. Static functions can not be called from functions in other files.

3.2 Static variables
In C there are two types of static variables which are quite different in their functionality.
Their functionality depends not on different definitions, but on their location in the code.
The static keyword on global variables, which scope is the current translation unit, has
another effect than the static keyword on variables inside an arbitrary block.
As the definitions of static variables always look the same, an example can be found in
listing 3.2.

Listing 3.2: Definition of a global static variable
1 static int a;

Just like the static keyword on static function, the keyword can be positioned every-
where before the variable name.

3.2.1 Global static variables
The static keyword has the same effect on global variables as on functions. It provides
an access control to forbid an access from other translation units, as it is explained in
chapter 3.1 for static functions.

3.2.2 Static variable inside an arbitrary block
In C a variable can only accessed in the same block (or in a nested block of it) where it
was defined. In a subsequent block, previous variables are destroyed2 and are no longer

1A translation unit is a single source file after it has been processed by the preprocessor. Among other
things the preprocessor includes header files, evaluates #ifdef’s and expands macros. Afterwards it
can be compiled by the c compiler

2These variables are not really destroyed as their values can still exist in memory, but the variable can
no longer be used to access its value.
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accessible. A variable becomes initialized every time the processor enters its block to
execute it. This has the effect, that a variable defined inside a loop will be (re-) initialized
in each iteration and loses its previous value.

Listing 3.3: Definition of a global static variable
1 for (int i = 0; i < 3; i++)
2 {
3 int j = 0;
4 printf("%d\n", j);
5 j++
6 }

In listing 3.3 an example of the effect described above can be found. It consists of
a for-loop, in which a variable j is defined with the initial value 0. At the end of the
block, j will be increased by one. As the variable j will be reinitialized in every iteration,
this code snippet will output three times a 0.

To increment the variable j within each iteration, the variable can be defined as static.
In this case, the variable is initialized only once at compile time and keeps its state
during the whole program execution including multiple function invocations. The static
variable now acts similar to a global variable, which keeps its state, but is only visible to
the block in which it was defined.

However, there is one downside of using static variables: static variables are not thread
safe. In case a applications needs to make use of threads, it might be better to avoid
using static variables and to define them in a higher scope.

4 The inline-Keyword
Macros are well known in C. A lesser-known feature, which is similar to macros, is the
inline keyword. It was included in the C-standard with C99 and will be explained in this
chapter.

In many programming languages, it is quite common to cluster the program code into
several functions. This improves the readability of the code and allows an easy reusage
of code snippets. However, one downside of clustering code into multiple functions is,
that each function call takes some extra time: the processor needs to allocate space on
the stack, save the return address and put the parameters onto the stack.

To save the time of an extra function call, the compiler has the opportunity to substi-
tute any function call with the called functions body. As it would be very inefficient to
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substitute every function call, the compiler only substitutes well-chosen functions. In
most cases, this are small and often called functions. If the function is to big, it may
be inefficient to substitute it, as there aren’t enough registers in the CPU to handle all
variables simultaneously.

By using the inline-keyword on a function, the developer gives a hint to the compiler,
to substitute all invocation of this function. As the inline keyword is just a suggestion to
the compiler, the compiler can accept or ignore this hint. Often the compiler looks for
inlinable function itself and comes to similar conclusions as the developer.

In listing 4.1 the two functions add and some_function can be found. The add
function is flagged with the inline keyword and will be called in some_function. If
the compiler comes to the same conclusion and embeds the add function the resulting
some_function function looks like listing 4.2.

Listing 4.1: add is a inlinable function
1 inline static int add(int s1 , int s2)
2 {
3 return s1 + s2;
4 }
5
6 int some_function (int a, int b)
7 {
8 return add(a, b);
9 }

Listing 4.2: The resulting some_function-function after substitution
1 int some_function (int a, int b)
2 {
3 return a + b;
4 }

This effect can also be seen on the assembly level. In listing 4.3 the corresponding
assembly code to listing 4.1 can be found. After substituting the add function, the
assembly code in listing 4.4 matches the the substituted C source code in listing 4.2.

Listing 4.3: Assembly code of listing 4.1
1 add:
2 leal (%rdi ,% rsi), %eax
3 ret
4 some_function :
5 call add_inline
6 rep ret
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Listing 4.4: Assembly code of listing 4.2
1 some_function :
2 leal (%rdi ,% rsi), %eax
3 ret

4.1 Limitations
There are some limitations when an function should be embedded. First, recursive
functions can not be embedded. It is not possible to nest all possible function calls, as
the depth of the stack trace depends on parameters and is unknown at compile time.
As a second limitation, functions with external linkage should not use private variables,
that are only visible in the current translation unit. These variables are no longer
accessible, when the function is embedded in another translation unit. This may not be
a problem with gcc, as the gcc compiler only substitutes functions, that are called in the
same translation unit in which they were defined.

4.2 Forcing the compiler to inline a function
The compiler draws its own conclusions, which function calls are substituted and which
not. It may ignore the developers advice completely. In most cases, the compiler finds
the best solution, but sometimes the developer wants to decide whether a function should
be embedded or not. Most compilers offer some extra keywords, that can be used to
enforce a specific behavior.

The gcc compiler offers the attribute __attribute__(( always_inline)) to force
a substitution and __attribute__((noinline)) to prevent a substitution. The inline
keyword is useless in this case and will be ignored. An exapmle usage can be seen in
listing 4.5.

Listing 4.5: Forcing a specific inline behavior with gcc
1 inline __attribute__ (( always_inline )) int

↪→ inline_function (int a, int b);
2 inline __attribute__ (( noinline )) int no_inline_function (int

↪→ a, int b);

4.3 Performance
As mentioned above, a separate function call takes additional time. This leads to the
assumption, that function call substitution improves the performance of an application.
To validate this assumption, the code in listing 4.6 has been used to do a performance
test. The add function conforms to listing 4.1 and calculates the sum of two variables.
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The following code was executed two times: at the first time the add function call was
substituted, the second time it was not. To force the right behavior, the attributes
explained in chapter 4.2 were used.

Listing 4.6: Performance-Test
1 unsigned long long iterations = 100000000000;
2 for(i = 0; i < iterations ; i++)
3 {
4 a = add(a, b);
5 }

The result of the performance test was, that the execution with a separate function call
took 67.553960s. Executing the test with the add function inlined took only 22.290012s.
In this simple example the version that embeds the function is 3.03 times faster.
This result can’t be overgeneralized, since it is a very simple example. But it shows, that
function substitution can have a large impact on the performance.

5 Summary
The examples in the chapters before have shown, that it can be very easy to improve
the performance of an application by just using the right keywords. This paper has
explained three of these, but the C programming language consists of many more ways
to optimize the performance of an application. To develop efficient applications, it is
important to have a wide understanding of all these features.
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