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Abstract

This document is the literal elaboration accompanying the presentation I have deliv-
ered in the seminar „Effiziente Programmierung in C”.

It will cover a brief introduction to the C preprocessor syntax as well as the pitfalls
that a developer may encounter when programming with the help of preprocessor
statements.

Additionally, the performance gain achieved by inlining code with preprocessor state-
ments is evaluated.

While the preprocessor is not restricted to a programming language, the context in
this document will be limited to the programming language C.
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1 Introduction

A preprocessor is a simple tool supporting a limited set of instructions to manipulate
text. In this case specifically the statements are used to manipulate C code.

As the name suggests, the preprocessor is invoked before the actual code processor (in
our case the C compiler). This is further illustrated in figure 1.

The statements accepted and interpreted by the C preprocessor are not actual C code,
but instead have their own syntax.

Preprocessor→ Compiler→ Assembler→ Linker

Figure 1: Typical order of compilation processes

The C preprocessor as described in this document is part of the ISO C standard [1].

Further documentation as well as the implementation in the GNU compiler collection
of said standard is to be found in the C Preprocessor manual as part of the GCC
documentation. [2]

2 Syntax

2.1 File inclusion

It is possible to include the whole content of a file with a preprocessor statement called
#include.

For instance, the statement #include <stdio.h>would be replaced by the contents of
the file stdio.h located in the include path (as specified by defaults and the -I compiler
flag).

The statement #include "localfile.h" is analog to this, except the search path is
not the include path, but the local directory of the file this statement was written in.

Paths wrapped in smaller/greater than signs instruct the preprocessor to search the
include path, whereas paths wrapped in quotation marks instruct it to search the local
path.
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2.2 Conditional compilation

The C preprocessor supports the interpretation of simple conditions.

An example of a common case is demonstrated in figure 2. It includes sys/socket.h
when compiled for a Linux system and winsock.h when compiled for a Windows
system.

This is useful because Windows and Linux have different socket APIs and therefore
require different headers.

# i f d e f __LINUX__
# include <sys / socket . h>

# e l i f _WIN32
# include <winsock . h>

# else
/ / o t h e r p l a t f o r m s

# endif

Figure 2: Conditional operating system dependent compilation

The identifiers __LINUX__ and _WIN32 are predefined depending on the platform.

Other predefined macros as part of the ISO/ANSI C standard[3, ISO Standard Prede-
fined Macros] are:

• __DATE__: the compilation date (string literal)

• __FILE__: the name of the file compiled (string literal)

• __LINE__: the current line number (integer)

• __TIME__: time of compilation (string literal)

2.3 Compiler instructions

The set of instructions includes statements to manipulate the compilers behavior. This
can be particularly useful when a developer wants to pass information to a compiler
per-file, without changing the build system. Most of these instructions are compiler
specific and not standardized.

The #error instruction (standardized) instructs the compiler to throw an error (figure
3).
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Another use-case could be to turn off optimization for a specific file. When com-
piling with GCC this can be done with #pragma GCC optimize ("-O0") [4, Chapter
6.59.13].

# i f d e f _WIN32
# e r r o r " This �program�does� not �compile�on�Win32 . �

Aborting . "
# endif _WIN32

Figure 3: Instructing the compiler to throw an error when compiled for Windows

2.4 Macro definitions

2.4.1 Object-like macros

An object like macro will be substituted by <replacement> upon every reference. They
are often used to store constants that are referenced multiple times in the code. In
order to replace these constants throughout the whole code, only the macro definition
needs to be changed.

The syntax is defined like this: #define <identifier> <replacement>.

An example is listed below.

/ / d e c l a r e t h e macro o b j e c t FACTOR s e t t o t h e l i t e r a l 5
# define FACTOR 5

i n t func t ion ( ) {
i n t a = 5 ∗ FACTOR;
i n t b = a + 1 0 ;
return b ∗ FACTOR;

}

Figure 4: Macro object as a constant

Most compilers also accept a commandline parameter to declare such a macro. The
switch usually used is -Didentifier=replacement. [4, 3.1 Option Summary]
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2.4.2 Function macro

Figure 5: Syntax to declare a macro function

# define < i d e n t i f i e r >( parameters ) <replacement >

Preprocessor macros can also be used to declare simple functions which even accept
parameters.

References to such a function are replaced by the function body described in <re-
placement>. References to parameters in the function body are substituted by the
expressions passed in the parameters, however such expressions are not evaluated.

For instance, if macro function FOO(param) is called with calc(4, 5) as the parameter
param, every reference to param in the function body would be replaced by calc(4,
5) and not the result of calc(4, 5).

This is very important to remember as it is a source of common error.

2.5 Other Operators

2.5.1 Line break

Macro definitions that are longer than one line have to be declared as such, otherwise
the statements after the first line will not be interpreted by the preprocessor.

This is done by using a backslash (\).

# define PRINTMESSAGE p r i n t f ( " t h i s � i s �a�macro� d e f i n i t i o n � " ) ; \
p r i n t f ( " exceeding � the � length � of �one� l i n e . " )

Figure 6: Writing a macro definition over multiple lines

2.5.2 Stringification

An expression can be stringified, meaning it is converted to a string literal.

In this case the expression passed in cond is converted to a string literal and then
printed, as well as the result of the evaluated expression.
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# define LOG_CONDITION( cond ) \
p r i n t f ( " condi t ion � " #cond " i s �%i \ n" , ( cond ) )

LOG_CONDITION( ( 2 + 4 == 6) )

Figure 7: Converting a macro function parameter to a string literal

2.5.3 Concatenation

To concatenate macro objects with other macro objects or literals two number signs
are used.

In this example the literal 0xwill be prepended to the value passed in v.

# define HEX( v ) (0 x##v )

p r i n t f ( " value : �0x%X \ n" , HEX(DEF) ) ;

Figure 8: Concatenating a literal with a macro object

3 Caveats

3.1 Double Evaluation

3.1.1 Description and Example

Due to the way the preprocessor is designed, parameters are not evaluated before they
are referenced in the body of a preprocessor definition. The preprocessor also does
not replace references to parameters with the result of the expression, but instead will
evaluate the expression passed as the parameter every time.

This can result in undesired behavior, which may not always be that obvious.

The example below demonstrates such a case:
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# include <s t d i o . h>

# define MAX( a , b ) ( a > b ? a : b )

i n t main ( i n t argc , char ∗ argv [ ] ) {
i n t apples = 11 , kiwis = 1 2 ;

p r i n t f ( "Maximum� value �MAX( kiwis=%i , � apples=%i ) : �%i \ n" ,
kiwis , apples , MAX( kiwis , apples ) ) ;

p r i n t f ( "Add�one�more� apple �MAX( kiwis , �++apples ) : �%i \ n"
,

MAX( kiwis , ++apples ) ) ;

p r i n t f ( " Err . . �what?�Kiwis : �%i , �Apples : �%i \ n" ,
kiwis , apples ) ;

return 1 ;
}

Figure 9: Double evaluation

In this example two variables, apples and kiwis, are declared and initialized with 11
and 12 respectively.

The first printf-call prints the maximum of these two variables, which should be
kiwis with 12.

In the second printf-call apples is incremented by one using the prefixed operator.
kiwis and apples should now both be set to 12, however, they are not.

The last printf-call is used to print the two variables one last time.

Execution shows the following behaviour:

% . / double_eval
Maximum value MAX( kiwis =12 , apples =11) : 12
Add one more apple MAX( kiwis , ++apples ) : 13
Err . . what? Kiwis : 12 , Apples : 13

Figure 10: Execution of the „double evaluation” example
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3.1.2 Analysis

As shown in Figure 10 the second printf-call generates a result that might seem
unexpected. It is not, though. As pointed out in the description parameters are not
evaluated before they get referenced. Also, it will be evaluated with every reference.
This is why the result might come as a surprise at first sight.

In our example we have two references to the parameter b, which is set to ++apples
and therefore the reason why apples is incremented twice. This becomes more apparent
in the Figure 11 below.

MAX( kiwis , ++apples ) in MAX( a > b ? a : b )
=> ( kiwis > ++apples ? kiwis : ++apples )

Figure 11: Evaluation of the MAX-call

The condition of that ternary operator is kiwis > ++apples, effectively 12 > 12 (be-
cause apples is to be incremented by one), which is false. This leads to the execution of
the false-statement, again incrementing apples by one.

Another problematic situation occurs when passing function calls as parameters.
Just like in the example above the function call will be executed twice. If such a
function modifies a global statement it will do so with every reference to the parameter,
resulting in comparable behaviour.

3.1.3 Workaround

# define MAX( a , b ) \
( { typeof ( a ) _a = ( a ) ; \

typeof ( b ) _b = ( b ) ; \
_a > _b ? _a : _b ; } )

Figure 12: Instantiation of parameters to avoid „double evaluation”

Figure 12 displays a workaround, which instantiates all the parameters in local vari-
ables. These variables are then referenced instead of the parameter-symbols. That
way the statements passed as the parameters are only executed once.

Note: GCC offers an extension which introduces basic dynamic typing with a typeof-
statement that is used in this example. It is not part of the C standard.
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3.2 Operator Precedence

3.2.1 Description

Operator precedence is another area in which problems can occur due to the way
parameters are handled in macro-functions. Consider the following definition of
CUBE:

# define CUBE( x ) x ∗x ∗x / / a l s o v u l n e r a b l e t o d o u b l e e v a l u a t i o n

Figure 13: CUBEmacro definition

Because the preprocessor only does simple text-substitution, inserting values that are
more complex than a simple integer-literal can cause undesired results. Figure 14
shows two examples in which said problem occurs.

All references to x are simply replaced with the expression specified in the parameter
without evaluating it. This results in a different order of operations than typically
expected by some developers.

CUBE(2 + 2) / / E x p e c t e d : (2+2) ^3 = 64
=> 2 + 2∗2 + 2∗2 + 2 = 12

5∗CUBE(4 − 3) / / E x p e c t e d : 5 ∗ ( ( 4 −3) ^3) = 5
=> 5∗4 − 3 ∗ 4 − 3 ∗ 4 − 3 = −7

Figure 14: Two examples demonstrating problems with operator precedence

3.2.2 Workaround

To avoid such a situation a common workaround is to wrap references to the param-
eters in parentheses. That way the substituted references to the parameters will not
interfere with the rest of the code in the body of a macro-function. This workaround
and its implications are visible in Figure 15 below.
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# define CUBE( x ) ( ( x ) ∗ ( x ) ∗ ( x ) )

CUBE(2 + 2) / / E x p e c t e d : (2+2) ^3 = 64
=> ( ( 2+2 ) ∗ ( 2+2 ) ∗ ( 2+2 ) ) = 64

5∗CUBE(4 − 3) / / E x p e c t e d : 5 ∗ ( ( 4 −3) ^3) = 5
=> 5 ∗ ( ( 4 −3) ∗ (4 −3) ∗ (4 −3) ) = 5

Figure 15: Workaround for operator-precedence related problems

3.3 General Forseeability

3.3.1 Description

In some cases it is not obvious what preprocessor code/definitions will be expanded
to, especially when it comes to the introduction and closure of blocks (e.g. in if-
statements).

Consider the following (Figure 16) example:

# include <s t d i o . h>

# define LOG_NULLPTR( x ) \
i f ( x == NULL) p r i n t f ( " i s �a� n u l l p t r ! \ n" )

i n t main ( i n t argc , char ∗ argv ) {
void ∗ foo = ( void ∗ ) 1 ;

i f ( 1 )
LOG_NULLPTR( foo ) ;

e lse
p r i n t f ( " condi t ion � i s � not � t rue ! \ n" ) ;

}

Figure 16: „Unexpected” macro expansion

The simple macro-function LOG_NULLPTR prints a message if the parameter x is NULL.
However, the usage of if has implications to code where the macro is used, which is
also an if -statement.
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In this example the statement if(1) is always true, which would in turn always result
in the execution of LOG_NULLPTR. The latter then checks whether foo is NULL, which it
is not.

Therefore the program shouldn’t output anything. Also the else-block is expected to
be not executed.

Taking a look at the compiled code (figure 17) the implications of the macro become
apparent.

void ∗ foo = ( void ∗ ) 1 ;
i f ( 1 ) {

i f ( foo == NULL)
p r i n t f ( " i s �a� n u l l p t r " ) ;

e lse
p r i n t f ( " condi t ion � not � t rue ! \ n" )

}

Figure 17: Code of figure 16 after macro expansion

Executing this will always yield the result „condition not true!”. This is because the
else-block is now associated with the if -block from LOG_NULLPTR.

These effects are not immediately visible when looking at the code. It is therefore
recommended to write macros with care so that they can be used without having
effects on the environment they are included it.

3.3.2 Workaround

Below (figure 18) is a workaround to prevent such behaviour.

# define LOG_NULLPTR( x ) \
do { \

i f ( x == NULL) p r i n t f ( " i s �a� n u l l p t r ! \ n" ) ; \
} while ( 0 )

Figure 18: Workaround/safety measures

This is accomplished by enclosing the function-body in a do-while-loop that will only
iterate once. The if -statement inside the loop - and the loop itself - will not affect the
environment they are included in.
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4 Force-Inlining

4.1 Introduction

Preprocessor macro-function calls are substituted by the code that is defined in the
body of the macro-function. Additionally, references to the parameters will be re-
placed by the values passed in the function call.

Effectively, this means that preprocessor function-calls actually are not function calls,
but instead pull in the code of the function-body. Therefore, „calling” a macro-function
does not generate the overhead that a regular function call does. When repeatedly
calling a function this overhead can have a significant effect.

Specifically, the following does not happen1:

• Pushing the parameters on the stack before changing the EIP

• Popping the parameters off the stack in the target function

• Jumping to the target function and back to the caller

• Pushing and popping the return address on/off the stack

Another way of doing this is by using the inline compiler keyword, which is also
part of the C standard (since 1999).

Before that, developers had to rely on the use of macros to inline code. While the
effects of the inline-keyword are similar to the usage of macro functions, they’re
are not entirely the same. To be precise, the inline-keyword is only a suggestion to
the compiler (which it can respect or ignore), whereas the usage of macro-functions
always inlines code, which is why this practice is also called forced inlining.

Since there was a separate talk on compiler keywords such as restricted, static & inline,
the inline-keyword will not be covered any further in this document.

4.2 Example

In figure 19 below is a code example that displays variable behavior depending on
whether it has been compiled with _INLINE defined or not.

With _INLINE defined the code that calculates the length of the vector will be inlined.
If _INLINE is not defined a real function is declared, meaning a call to it will result in
the execution of the function pro- and epilogue.

1It is to be noted that the generated machine code may vary depending on compiler, architecture,
calling convention, etc.
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The program then calculates the length of the vector (150.5, 200.5, 300.0) INT_MAX
times, the maximum value a signed integer can hold, which is set to 2147483647 on
my system.

# include <s t d i o . h>
# include < l i m i t s . h>
# include <math . h>

# ifndef _INLINE
double veclength ( double x , double y , double z )
{

return s q r t ( x ∗x + y ∗y + z ∗ z ) ;
}

# else
# def ine veclength ( x , y , z ) s q r t ( ( x ) ∗ ( x ) + ( y ) ∗ ( y ) + ( z

) ∗ ( z ) )
# endif

i n t main ( i n t argc , char ∗ argv [ ] ) {
i n t i ;
for ( i = 0 ; i < INT_MAX; i ++)

veclength ( 1 5 0 . 5 , 2 0 0 . 5 , 3 0 0 . 0 ) ;
return 1 ;

}

Figure 19: Example to display performance difference between inlined and non-
inlined code

4.3 Performance analysis

% gcc per f . c −lm
% time . / a . out
. / a . out 23 .50 s user 0 . 0 0 s system 99% cpu 23 .513 t o t a l

% gcc per f . c −lm −D_INLINE
% time . / a . out
. / a . out 7 . 9 2 s user 0 . 0 0 s system 99% cpu 7 .931 t o t a l

Figure 20: Runtime of the inlined vs. non-inlined code

The inlined code ran approx. 7.9 seconds whereas the non-inlined code ran approx.
23.5 seconds.
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It becomes apparent that the execution time has reduced considerably. The non-
inlined binary runs around three times longer than the inlined. Repeated tests yielded
the same results.

The reason for this is because the program does a lot of function calls to veclength,
but since the code of veclength is inlined in the binary compiled with -D_INLINE, the
function-call’s pro- and epilogue are not necessary resulting in shorter execution time.

4.4 Review

As demonstrated in the example of figure 19, inlining code can shorten the execution
time and/or improve the performance of a program.

It is, however, important to remember that the case demonstrated is constructed.
Inlining code does not always optimize a program, it can even be destructive.

Another, possibly negative, side effect is that the size of the compiled code can increase,
as the function calls are replaced by the function body.

A disadvantageous situation could arise with large functions that are to be inlined.
In such a case the inlined code exceeds the instruction cache, resulting in cache misses
and ultimately in performance decrease.
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5 Conclusion

The preprocessor (when used correctly) can be a very handy tool to a developer.

By clever usage of macros/text substitution it can simplify work when writing instruc-
tions that are used repeatedly. It is even possible to optimize a program by inlining
code with help of the preprocessor.

External programs can easily manipulate the code, e.g. to include or exclude bits
that are (not) required by specific operating systems and/or architectures. This is
commonly used by the GNU autotools or Makefiles.
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