Alignment in C

Seminar “Effiziente Programmierung in C”
Sven-Hendrik Haase

2014-01-09

Contents

Contents| 2
[1__Introductionl 3
(1.1 Memory Addressing|. 3
(1.2 Alignment 101}.o o 3
(1.3 Consequences of Misalignment|. 5
2 Data Structure Alignment| 5
2.1 Example With Structs| L.)
[2.2 Padding In The Real World| 6
[2.3 Performance Implications|. 7
2.4 SSEl 8
[3 Stack Alignment| 9
4__Conclusion| 10
B References| 10

1 Introduction

Working with memory is currently the most time consuming task in modern
processors. As such, great care has to be taken so that inefficiencies can be kept at
a minimum. This document exists to describe how memory addressing works in a
modern processor and how data structures are aligned for maximum performance
during access.

1.1 Memory Addressing

Computers commonly address their memory in word-sized chunks. A word is a
computer’s natural unit for data. Its size is defined by the computers architecture.
Modern general purpose computers generally have a word-size of either 4 byte (32
bit) or 8 byte (64 bit). Classically, in early computers, memory could only be
addressed in words. This results in only being able to address memory at offsets
which are multiples of the word-size. It should be noted, however, that modern
computers do in fact have multiple word-sizes and can address memory down to
individual bytes as well as up to at least their natural word size. Recent computers
can operate on even larger memory chunks of 16 bytes and even a full cache line at
once (typically 64 bytes) in a single operation using special instructions [IJ.

To find out the natural word-size of a processor running a modern UNIX, one can
isse the following commands:

e getconf WORD_BIT
e getconf LONG_BIT

In the case of a modern x86_ 64 computer, WORD_BIT would return 32 and LONG_BIT
would return 64. In the case of a x86 computer without a 64-bit extension, it would
be 32 in both cases.

1.2 Alignment 101

Computer memory alignment has always been a very important aspect of computing.
As we've already learned, old computers were unable to address improperly aligned
data and more recent computers will experience a severe slowdown doing so. Only
the most recent computers available can load misaligned data as well as aligned
data [2]. The figures below should serve to be a good visualization of how alignment
works.

| 0x00000000 || 0x00000004 || 0x00000008 || 0x00000012 |
NN RN .

Figure 1: Four word-sized memory cells in a 32-bit computer

For instance, saving a 4 byte int [[[[|in our memory will result in the
integer being properly aligned without doing any special work because an int on
this architecture is exactly 4 byte which will fit perfectly into the first slot.

| 0x00000000 || 0x00000004 || 0x00000008 || 0x00000012 |
cr PP e PPl

Figure 2: Our memory with an int in it

If we instead decided to put a char [] [[|, ashort 7] |]and an

int [[| |]into our memory we would get a problem if we did so naively
without worrying for alignment.

0x00000000 || 0x00000004 || 0x00000008 || 0x00000012 |
e e

Figure 3: Misaligned memory

This would need two memory accesses and some bitshifting to fetch the int.
Effectively that means it will take at least two times as long as it would if the data
were properly aligned. For this reason, computer scientists came up with the idea
of adding padding i | [|to data in memory so it would be properly aligned.
In our example, adding padding after the first byte, the char, would ensure that
the last part of the data would be properly aligned in memory:

0x00000000 || 0x00000004 || 0x00000008 || 0x00000012 |
L PP e

Figure 4: Properly aligned memory using padding

The figure above is considered naturally aligned. Compilers will automatically
add correct padding for the target platform unless this feature is deliberately
switched off.

1.3 Consequences of Misalignment

The consequences of data structure misalignment vary widely between architectures.
Some RISC, ARM and MIPS processors will respond with an alignment fault if
an attempt is made to access a misaligned address. Specialized processors such as
DSPs usually don’t support accessing misaligned locations. Most modern general
purpose processors are capable of accessing misaligned addresses, albeit at a steep
performance hit of at least two times the aligned access time. Very modern x86 64
processors are capable of handling misaligned accesses without a performance hit.
SSE requires data structures to be aligned per specification and would result in
undefined behavior if attempted to be used with unaligned data.

2 Data Structure Alignment

This chapter will introduce the reader to the alignment of simple real world structs
in C. It will use a series of examples to do so.

2.1 Example With Structs
The following struct reflects the struct in [Figure 4]

struct Foo {
char x; // 1 byte
short y // 2 bytes
int z; // 4 bytes
s

Listing 1: Example of a struct that needs padding

This struct’s naive would be 1 byte + 2 bytes + 4 bytes = 7 bytes. The keen reader
will know, of course, that it’s actually going to be 8 bytes due to padding.

A struct is always aligned to the largest type’s alignment requirements

As we will see now, this can yield some rather inefficient structures:

struct Foo {
char x; // 1 byte
double y // 8 bytes
char z; // 1 bytes
I

Listing 2: Example of an inefficient struct

The struct’s naive size would be 1 byte + 8 bytes + 1 bytes = 10 bytes. However,
its effective size is 24 byte!
The memory ineffiency can be minimized by reordering the members like so:

struct Foo {
char x; // 1 byte
char z; // 1 bytes
double y // 8 bytes
I

Listing 3: Example of how reordering a struct can make it more memory efficient

Now it’s only 16 bytes which is the best we can do if we want to keep our memory
naturally aligned.

2.2 Padding In The Real World

The previous chapters might lead the reader to believe that a lot of manual care has
to be taken about data structures in C. In reality, however, it should be noted that
just about every modern compiler will automatically use data structure padding
depending on architecture. Some compilers even support the warning flag ~-Wpadded
which generates helpful warnings about structure padding. These warnings help
the programmer take manual care in case a more efficient data structure layout is
desired.

clang -Wpadded -o examplel examplel.c
examplel.c:5:11: warning: padding struct

’struct Foo’ with 1 byte to align ’y’ [-Wpadded]
short y;

1 warning generated.

Listing 4: Example warning generated by clang using -Wpadded

If desired, it’s actually possible to prevent the compiler from padding a struct us-
ing either __attribute__((packed)) after a struct definition, #pragma pack (1)
in front of a struct definition or -fpack-struct as a compiler parameter. It’s
important to note that using either of these will generate an incompatible ABI. We
can use the sizeof operator to check the effective size of a struct and output it
during runtime using printf.

2.3 Performance Implications

As with so many things in the real world where buying faster machines is usually a
lot cheaper than paying programmers, we have to ask ourselves whether worrying
about memory alignment is even worth it and whether we should worry about it
at all. The resolve to that is that it depends, though most likely we’ll not have
to think about it unless in special use cases like kernels, device drivers, extremely
memory limited computers or when using a really, really old compiler that is not
good at generating code for our architecture.

However, we should still know what kind of performance implications we are
looking at before disregarding the problem altogether. So let’s look at the per-
formance impact of misaligned memory. For the benchmark, we’ll be using two
identical structs except for one difference: One of them is aligned while the other
is misaligned.

struct Foo {
char x;
short y;
int z;

}s;
struct Foo foo;

clock_gettime (CLOCK, &start);

for (unsigned long i = 0; i < RUNS; ++i) {
foo.z = 1;
foo.z += 1;

}

clock_gettime (CLOCK, &end);

Listing 5: Aligned struct for the benchmark

struct Bar {
char x;
short y;
int z;
} __attribute__((packed));

struct Bar bar;

clock_gettime(CLOCK, &start);

for (unsigned long i = 0; i < RUNS; ++i) {
bar.z = 1;
bar.z += 1;

}

clock_gettime(CLOCK, &end);

Listing 6: Misaligned struct for the benchmark

The benchmark was compiled with gce (GCC) 4.8.2 20131219 (prerelease) using
gcc -DRUNS=400000000 -DCLOCK=CLOCK_MONOTONIC -std=gnu99 -00 and run on
an Intel Core i7-2670QM CPU on Linux 3.12.5.
aligned runtime: 9.504220399 s
unaligned runtime: | 9.491816620 s

We can immediately see that both runs take about the same time. This behavior
was already hinted at by [2] which was referenced earlier. In modern Intel proces-
sors at least, there is apparently no performance impact on misaligned memory
accesses. Since these results are only true on very modern processors, let’s run this
benchmark again on an older processor.

Results:

Rerunning the same benchmark on a Raspberry Pi with 1—10 the loop length and all
other variables being the same (kernel, compiler, flags) yields the following.
aligned runtime: 12.174631568 s
unaligned runtime: | 26.453561832 s

These results are a lot more on par with our expectations. In fact, the access
times accurately reflect our mind model of what should be happening: two memory
accessess plus some bitshifting to extract the int.

Results:

2.4 SSE

Historically, when using SIMD instructions such as SSE, one was required to make
sure the code was aligned to 16 bytes boundaries per SSE specification. That means
not only data structures needed to be aligned to this boundary but also the stack

itself. This was especially a problem when cross-compiling code for 32-bit platforms
that were unaware of the fact that they should be aligned [3]. In a later section, we
will see what happens if a program making a library call has wrong assumptions
about byte alignment. However, mostly this just leads to crashes. Nowadays with
x86_ 64 being the prevalent architecture for modern computers, this has become
less of an issue since x86_ 64 requires 16-byte alignment per default. This, however,
was not the case on older 32-bit architectures.

Even on 32-bit architectures most modern compilers automatically align to
16-byte boundaries when using SIMD types such as __m128. Even more modern
compilers can automatically vectorize many types of loops and produce these types
(and therefore alignment) by themselves without the programmer explicitly telling
the compiler to do so, nor writing SIMD code for it. Due to that, programs might
sometimes automatically be 16-byte aligned even when there is no obvious reason
for that.

3 Stack Alignment

As hinted at by the previous section,different platforms make different assumptions
about stack alignment. The reader should be informed about the major platforms
in this regard:

e Linux: depends (legacy is 4 byte, modern is 16 byte)
e Windows: 4 byte
e OSX: 16 byte

Knowing this is important because mixing stack alignment is very bad indeed!

Consider this:

void foo() {
struct MyType bar;

This function and its struct look benign, yet what would happen if this were
a function in a library compiled with 16-byte alignment and code that assumed
4-byte alignment called it? It would inevitably lead to stack corruption since the
the stack pointer would either be 12 bytes too far or 12 bytes too short, depending
on who calls whom.

In the real world, this problem very rarely ever happens. If it happens, however, it’s
usually hard to debug, especially if the programmer is not knowledgeable about this
kind of problem. This issue only presents itself if we have cross-architecture calls that
need special tricks such as stack realignment. In gcc and clang, this can be accom-
plished by decorating a functiong with __attribute__((force_align arg pointer))
or using -mstackrealign as a compiler argument to apply the decorator to every
function. The reader should be aware, however, that this has performance implica-
tions as this adds a realignment intro/outro routine to every function to make sure
the stack pointer comes back to where we expect it to be.

4 Conclusion

In conclusion, we’ve seen that modern compilers try to optimize data structures
for maximum performance using padding unless specified otherwise. This comes at
the trade-off of bigger structures in memory but given the abundance of memory
nowadays it seems negligible in comparison to the potential speedups this optimiza-
tion may have. We’ve also seen that even in case code is deliberately misaligned,
modern processors will still not take a hit, though older processors seem to be
greatly affected by memory misalignment.

The only thing the programmer still needs to take manual care of is creating
efficient data structures by ordering members so that memory waste by padding is
minimized.

5 References

[1] http://software.intel.com/en-us/articles/
increasing-memory-throughput-with-intel-streaming-simd-extensions-4-intel-sse4-

[2] http://www.agner.org/optimize/blog/read.php?i=142&v=t

[3] http://www.peterstock.co.uk/games/mingw_sse/

10

http://software.intel.com/en-us/articles/increasing-memory-throughput-with-intel-streaming-simd-extensions-4-intel-sse4-streaming-load
http://software.intel.com/en-us/articles/increasing-memory-throughput-with-intel-streaming-simd-extensions-4-intel-sse4-streaming-load
http://www.agner.org/optimize/blog/read.php?i=142&v=t
http://www.peterstock.co.uk/games/mingw_sse/

	Contents
	Introduction
	Memory Addressing
	Alignment 101
	Consequences of Misalignment

	Data Structure Alignment
	Example With Structs
	Padding In The Real World
	Performance Implications
	SSE

	Stack Alignment
	Conclusion
	References

