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ACPI

Standardized interface for power management

Global states: G0 – G3

Suspend states: S1 – S4

Device states: D0 – D3

CPU idle states: C0 – Cn

CPU performance states: P0 – Pn
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ACPI

• As we have seen in the first presentation (Core Energy
Efficiency) ACPI has defined multiple states for power
management.

• Global states refer to the power state of the entire machine,
i.e on, standby, off.

• Suspend states are different standby states, for example
suspend-to-ram and suspend-to-disk.

• These are usually invoked from userspace and are therefore
not very interesting from a kernel standpoint.

• We are going to talk shortly about the device states and then
focus on the CPU.
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Devices

D0 — on, D3 — off

D1 and D2 are not necessarily available

Most power management happens either in the specific
device driver or in userspace

Power domain hierarchy

Some devices might depend on others for power

Operating system can automatically suspend devices
without held references
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Devices

• Device states can’t account for the variety in needs of
different devices.

• Ultimately, the OS can’t do a lot without knowing the
specifics of the devices.

• What it can do is keeping track of power dependencies and
which devices are actually in use.
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CPU

In a typical system the CPU is the biggest power-draw
(apart from the GPU, depending on workload)

Strategies

During idle:

Removing timer interrupts (sleeping longer)
Choosing the right idle state

Under load:

CPU frequency scaling
Load balance over multiple CPUs
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• Under load, some CPUs might use more than 50% the power
of the entire machine.

• Therefore, we can achieve big gains in power efficiency by
managing the CPU correctly.
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Scheduler and timer

The scheduler allocates CPU time to individual processes

Via interrupts, the CPU is literally interrupted in its
current execution to deal with new workloads

Programmable timer interrupts keep track of future
workload

Barring any hardware interrupts, the CPU has a good
idea of how much work happens in the near future

→ We roughly know how much we can idle

Likelihood of hardware interrupts can be estimated, based
on runtime statistics
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• Before we can understand how CPU power management
works, we have to review a few concepts of operating systems.

• The kernel manages computation time on CPUs in slices.
• When multiple processes run on the same CPU, the scheduler

will let them run each for a short period of time in sequence.
• The scheduler sets a timer interrupt to regain control after

letting a process run.
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Ticks and timers

Traditional system

Periodic tick: Scheduler runs in a constant interval (on
Linux: 100Hz – 1000Hz)

→ constant wakeups

No concerns for energy efficiency

Now

Dynamic tick: Program the next timer interrupt to
happen only when work needs to be done

Deferrable timers: Bundle unimportant timer events with
the next interrupt

Timer migration: Move timer events away from idle CPUs
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Ticks and timers

Ticks and timers

• In the past, no concerns were given to energy efficiency and
the scheduler was simply run in a constant interval.

• This means that the CPU will be woken up every few
milliseconds, even if there is no work to do.

• There are various ways to reduce this overhead.
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CPU idling

Entering/exiting deeper idle states takes more time

→ Trade-off between idle state and CPU latency

Switching idle state takes energy

→ Idling for too little time can cost energy

Deeper idle states will switch off more and more parts of
the CPU

→ Invalidation of cache contents and the subsequently
necessary restore can mean additional performance
impacts
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CPU idling
CPU idling

• CPU idling refers to shutting down the power to the CPU
when it isn’t used, much like any device. It wakes up
automatically when an interrupt occurs.

• Idle states are the C-States in ACPI.
• Idling is not as easy as ”go to idle when there is nothing to

do.”
• There are various trade-offs to keep track of.
• On top of that, deciding on an idle state has to be efficient as

well.
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cpuidle

cpuidle is a Linux kernel subsystem to manage CPU idling

The decision of which idle state to choose is delegated to
one of two governors

ladder
menu

Governors rate themselves on how effective they are on a
given system and the one with the higher rating is chosen

Constraints, like latency requirements, are tracked with a
Quality of Service (QoS) subsystem
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cpuidle

struct cpuidle_state {
exit_latency; [us]
power_usage; [mW]
target_residency; [us]
usage;
time; [us]
enter();

}

ACPI driver

acpi cpuidle halt_idle

Generic CPUIdle Infrastructure

drivers

governors

User level
interfaces

/sys/devices/system/cpu/cpuidle

/sys/devices/system/cpu/cpuX/cpuidle

driver interface

struct cpuidle_driver {
init();
exit();
redetect();
bm_check();

}

data structures
initialization and registration
idle handling
system state change handling

cpuidle core

struct cpuidle_governor {
init();
exit();
scan();
select();
reflect();

}
governor interface

ladder menu

Step wise Latency based

Populate supported
C States

Implement functions
to enter C States

Decide the target
C State

Figure: cpuidle in the Linux kernel

source: Patrick Bellasi, Linux Power Management Architecture,
http://ilinuxkernel.com/Backup/Data/Linux.Power.Management.Architecture.-

.A.review.on.Linux.PM.frameworks.December.2010.pdf



cpuidle

struct cpuidle_state {
exit_latency; [us]
power_usage; [mW]
target_residency; [us]
usage;
time; [us]
enter();

}

ACPI driver

acpi cpuidle halt_idle

Generic CPUIdle Infrastructure

drivers

governors

User level
interfaces

/sys/devices/system/cpu/cpuidle

/sys/devices/system/cpu/cpuX/cpuidle

driver interface

struct cpuidle_driver {
init();
exit();
redetect();
bm_check();

}

data structures
initialization and registration
idle handling
system state change handling

cpuidle core

struct cpuidle_governor {
init();
exit();
scan();
select();
reflect();

}
governor interface

ladder menu

Step wise Latency based

Populate supported
C States

Implement functions
to enter C States

Decide the target
C State

Figure: cpuidle in the Linux kernel

source: Patrick Bellasi, Linux Power Management Architecture,
http://ilinuxkernel.com/Backup/Data/Linux.Power.Management.Architecture.-

.A.review.on.Linux.PM.frameworks.December.2010.pdf

20
15

-0
2-

15
Energy Efficiency in Operating Systems

CPU idling
cpuidle

cpuidle

• This is the structure of cpuidle. I thought it would be quite
interesting to see how something like this is actually
implemented.

• On the right, you can see the data structures that represents
a governor and idle states and are used to communicate
between the different parts of the kernel.

• When the scheduler decides to idle, it will first call cpuidle
(the generic infrastructure in the middle) to decide on the
next idle state. cpuidle then passes this request on to the
correct governor which will eventually return an idle state to
cpuidle and the scheduler.

• Once the scheduler has finished all preparations it will call
cpuidle with the idle state, which will pass the request on to
the cpu driver, which then finally changes the cpu state.
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Ladder governor

Ladder governor

Simple, step-based approach

Works well with periodic tick

i f ( l a t e n c y r e q u i r e m e n t s aren ’ t f u l f i l l e d )
jump to h i g h e r s t a t e

e l s e i f ( l a s t i d l e t ime > up t h r e s h o l d )
s l e e p d e e p e r

e l s e i f ( l a s t i d l e t ime < down t h r e s h o l d )
s l e e p l i g h t e r
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governors
Ladder governor

• The ladder government simply steps through the idle states,
depending on the last idle time.

• This means, if the load changes rapidly, then the state it
chooses will be very often sub-optimal.

• For example, when the last state was the deepest state but
the next few sleep times are very short, it would make sense
to immediately jump into a light sleep state, but instead the
ladder governor will only move slowly towards lighter sleep.

• However, it has the benefit of being very easy to calculate.
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Menu governor

Tries to select the optimal state

Looks at a variety of constraints

Latency requirements
Energy break-even point

Transitioning idle states costs energy
→ Not idling long enough is wasteful

Performance impact

The busier the system, the more conservative our choice
of idle state

Expected sleep time

When is the next timer interrupt and what is the
likelihood of hardware interrupts?
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Menu governor

• Pretty much all modern systems use the menu governor.
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Dynamic Voltage and Frequency Scaling (DVFS)

To reduce energy consumption CPU performance can be
reduced

Race to idle vs. working longer at lower frequency

Rapid frequency switching made it possible to adjust the
frequency dynamically based on workload

Frequency itself is not a big power draw, but to reduce
CPU voltage, the frequency has to be reduced first

Power consumption scales quadratically with CPU voltage

There may be power dependencies between CPUs on the
same socket

13 / 23



Dynamic Voltage and Frequency Scaling (DVFS)

To reduce energy consumption CPU performance can be
reduced

Race to idle vs. working longer at lower frequency

Rapid frequency switching made it possible to adjust the
frequency dynamically based on workload

Frequency itself is not a big power draw, but to reduce
CPU voltage, the frequency has to be reduced first

Power consumption scales quadratically with CPU voltage

There may be power dependencies between CPUs on the
same socket20

15
-0

2-
15

Energy Efficiency in Operating Systems
CPU frequency scaling

DVFS
Dynamic Voltage and Frequency Scaling
(DVFS)

• Frequency scaling refers to reducing the CPU frequency when
the CPU is operational, i.e. not idle.

• These are the P-states in ACPI.
• There is an inherent trade-off between P- and C-states. You

can either use a lot of power over a short time period to get
work done quickly and then idle longer, or use less power over
a longer time period and don’t idle as long.
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cpufreq

cpufreq is a Linux kernel subsystem to manage CPU frequency
states and changes

A policy is a frequency range in which the CPU needs to
stay

The policy is determined through hardware constraints
and explicit setting in userspace

Governors decide which P-state within the current policy
to choose

The active governor decides by itself when to switch
frequency. It is not called by the scheduler
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cpufreq

struct cpufreq_policy {
min_freq; [kHz]
max_freq; [kHz]
transition_latency; [us]
...

}

acpi cpufreq speedstep

ACPI processor
driver

Generic CPUFreq Framework

CPU specific
drivers

In kernel
governors

User level
governors

powersaved cpuspeed

driver interface

struct cpufreq_driver {
init();
exit();
verify();
set_policy();
resume();

}

data structures
initialization and registration
transition handling
policy and transition notifiers

cpufreq core

struct cpufreq_governor {
governor();

}

governor interface

on demand conservative

aggressive battery fair

userspace

Define supported
policy values

Compile frequency
tables

Decide the target
P State

Figure: cpufreq in the Linux kernel

source: Patrick Bellasi, Linux Power Management Architecture,
http://ilinuxkernel.com/Backup/Data/Linux.Power.Management.Architecture.-

.A.review.on.Linux.PM.frameworks.December.2010.pdf
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cpufreq

cpufreq

• This is the structure of cpufreq. It is deliberately designed
similar to cpuidle.

• The main difference to cpuidle is that the scheduler doesn’t
call cpufreq at all. Instead the governors decide themselves
when and how to change the frequency.

• When a governor wants to change the frequency, it first
requests the current policy and available P-states through the
cpufreq framework. When it has made its decision it will tell
cpufreq, which will then handle the transition and call the
driver. Should the policy change, for example because it was
set manually, cpufreq can also request the governor to choose
a frequency at any time.

• The user level governors here are programs that run in
userspace.



Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Simple governors

performance

Keeps the CPU at the highest frequency

powersave

Keeps the CPU at the lowest frequency

userspace

Let’s userspace set the frequency
Programs: powersaved, cpuspeed
Larger overhead
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governors
Simple governors

• The simple governors have been around for a long time.
• They typically aren’t used anymore.
• Userspace governors were used when frequency switching

wasn’t as advanced and the larger overhead wasn’t a problem.
• Certain intel CPUs use a custom intel driver in place of

cpufreq, which exports its governors as ”performance” and
”powersave” as well. But those governors differ from these.
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Ondemand governor

drivers/cpufreq/cpufreq ondemand.c:

Every sampling rate, we check, if current idle time is less
than 20%, then we try to increase frequency. Else we
adjust the frequency proportional to load.

Every frequency increase jumps to 100%

Minimizes performance impact
Utilizes race-to-idle

Sysfs parameters

sampling rate
up threshold
ignore nice load
sampling down factor
powersave bias
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CPU frequency scaling
governors

Ondemand governor

• The ondemand governor is the default governor for most
systems today.

• Finding a good heuristic for frequency scaling is quite
difficult. The algorithm in the ondemand governor has been
tuned over the years since its implementation.

• That’s also why it is changed quite frequently and exports a
lot of parameters.
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Conservative governor

Less aggressive frequency scaling

Is a little more energy-efficient under light load

f o r e v e r y CPU
e v e r y X m i l l i s e c o n d s

i f ( u t i l i z a t i o n s i n c e l a s t check > 80%)
i n c r e a s e f r e q u e n c y by 5%

e v e r y Y m i l l i s e c o n d s
i f ( u t i l i z a t i o n s i n c e l a s t check < 20%)

d e c r e a s e f r e q u e n c y by 5%
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CPU frequency scaling
governors

Conservative governor

• The conservative governor scales the frequency step-by-step
similar to what the ladder governor does for idle states.

• It’s useful for scenarios in which there is a constant, but light,
load on the CPUs.

• Smartphones and tablets running Android don’t use this
governor. They have other governor implementations.



Devices Timer interrupts CPU idling CPU frequency scaling Energy-aware scheduling

Future direction: The energy-aware scheduler

Right now, the scheduler is optimized to get work done as
quickly as possible

In a multicore environment, that means processes are
spread out among CPUs with no consideration to
energy-cost

Idea 1: Consolidate processes on fewer power domains,
whenever possible

Idea 2: Bundle workloads to as few CPUs as possible
without sacrificing performance
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Energy-aware scheduling
Future direction: The energy-aware
scheduler

• If, for example, you have a few light tasks, each using only a
few percent of the CPU, then you could move all of them
onto a single CPU without a performance impact.
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Future direction: The energy-aware scheduler

Problems

Discrimination between ”small tasks” and ”big tasks”

Finding the right distribution between CPUs is difficult
and can be costly

Interaction between scheduler, cpuidle and cpufreq is
complicated and suboptimal

Further complication: non-homogeneous CPU
architectures, e.g. ARM big.LITTLE
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Energy-aware scheduling
Future direction: The energy-aware
scheduler

• Judging how much a task utilizes a CPU is often hard.
• The task may switch from using a lot of processing power to

using only a little, or vice versa, very quickly. Short lived
tasks might be impossible to judge.

• Moving tasks from one CPU to another is also expensive.
• Kernel devs are very wary of possible performance impacts and

further complication of the scheduler. The implementation of
an energy-aware scheduler should be accompanied by a
complete redesign of the power management structure.
However, big changes to the kernel are difficult and take time.
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Conclusion

Modern systems are very efficient at doing nothing or
doing a lot

Energy-efficiency under medium load is complicated

Thank you for listening.
Any questions?
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Conclusion

• Constant loads bring many trade-offs.
• The energy-aware scheduler would be a big improvement.
• There might never be one solution that works well for all

situations.
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Kernel sources and documentation

Documentation/cpuidle/*

Documentation/cpu-freq/*

Documentation/scheduler/*

Documentation/timers/*

drivers/cpufreq/cpufreq*

drivers/cpuidle/cpuidle*

include/linux/cpufreq.h

include/linux/cpuidle.h

kernel/sched/idle.c
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