Core Energy Efficiency

Seminar “Energy-Efficient Programming”
Dr. Manuel Dolz, Michael Kuhn, Dr. Julian Kunkel,
Konstantinos Chasapis, Prof. Dr. Thomas Ludwig

Marcus Soll

UH

iti
n

Universitat Hamburg
Fakultat fir Mathematik,
Informatik und Naturwissenschaften
Department Informatik

2014-11-19

Marcus Soll

Core Energy Efficiency

Introduction

Motivation

» Goal: Computers with one ExaFLOPs
» 10'8 float operations per second
» Important for more accurate simulations and massive data
analysis
» Biotechnology
» Nanotechnology
» Materials science
> Biggest problem: Energy consumption
» Power consumption needs to be around 20 MW maximum

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Introduction

LMotivation

The goal of “high performance computing” is to achieve computers with
one ExaFLOP capacity. This is necessary for advanced simulations and
analysis of massive data amounts, for example in the fields of
biotechnology, nanotechnology or materials science. The biggest
challenge is to reduce the energy to a reasonable amount (max. 20 MW).

Introduction

3000 T

2500

2000

1500

MegaWatts

1000

500

0 MegaWatts for‘1 ExaFLOP ——
2007 2008 2009 2010 2011
YEAR

Figure: Energy needed for one ExaFLOP based on Green 500. Source:
[LPK*13]

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Introduction

Small figure of the theoretical energy consumption needed for 1
ExaFLOP. Although the energy consumption was decreased a lot in the
past few years the 20 MW goal is still far away.

Introduction

» Formula for power consumption: P = C - f - V/?
» But each frequency need a specific minimal voltage
» Reducing voltage also reduces frequency
» Requirement of advanced power management
» This talk will discuss basic principles concerning energy
efficiency
» Basic principles of other methods
» Focus: CPU, Memory
Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Introduction

The power consumption calculates from the capacitance, the frequency
and the square of the voltage. The problem is that the frequency depends
on a minimal voltage, so reducing the voltage also reduces the frequency
(and therefore the speed of the component). To use this reduction
efficient, we need advanced power reduction methods. Therefore this talk
presents the most basic methods for reducing energy consumption. This
are the basic principles of other methods presented in other talks.

Introduction

mcrUs mcrus
H vemory W vemory
dnic dnic
WDisk WOisk

M Rest of system M Rest of system

(a) Idle power consumption, all components are utilized 0%. (b) Load power consumption, all components are utilized
100 %.

Figure: Distribution of energy consumption. Source: [Min09]

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency

L Introduction ‘h : yb

Saurce: [Mind9

This figure illustrates the power consumption. The highest consumption
on a computer is by the CPU and the memory. Therefore we focus on
the CPU and the memory in this talk.

Introduction

Introduction

CPU
General
ACPI
Implementations

Memory
General
Movement of data
Energy reduction

Examples
ACPI
Memory

Conclusion

Marcus Soll

Core Energy Efficiency

CPU

Marcus Soll

Core Energy Efficiency

CPU
®0

General

General information

» The CPU (processor) is the main component of a computer
> It fetches instructions and executes them

» Contains a limited amount of “registers” and gets all other
data from the memory

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
L_cpu
L General
L General information

The CPU is the most important part of a computer. Its purpose is to
fetch some instructions (usually from the memory) and executes them.
For this execution the processor has a limited amount of instructions it
can execute (like add, subtract, multiply, read from memory or write to
memory). To execute commands quickly a (small) set of data is saved
into “registers” which can be reached immediately, everything else has to
be saved into memory.

CPU
oe

General

History

» 1965: Moores Law: Computer performance double every 18
month

» Around 2000: Slower growth on single chip - shift to multi
core

» Today: Physical limits of multi core systems - shift to many
core

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency iz
Lcpu
L General
LHistory

In 1965 an observation associated with Gordon Moore was made on
single core processors: The performance of CPUs will double every 18
month. Around the year 2000 the growth of performance on single core
CPUs was shrinking - therefore the manufacturer decided to build multi
core chips, containing multiply cores on one chip to still match this
observation. As for today, the growth of performance of multi core
processors is shrinking - so we are in another shift to many core systems,
containing multiply chips on one platine.

CPU

®0000000000

ACPI

ACPI

v

Specification defines an interface for power management
First released December 1996

v

v

Each device can be controlled through power states

v

OS is in control of power management

v

Bytecode language (AML)

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency aco
Lcpu
L_ACPI
L ACPI

The ACPI specification defines an interface, through that the operating
system can access the power status of computer components. The
components can be controlled by assigning different “power states”, each
state defining different power consumption and latency. Contrary to prior
solutions (like APM) the operating system is in control of the power
status. This is important as the operating system can do more accurate
decisions than the BIOS. ACPI is defined over a bytecode language which
has to be interpreted (AML = ACPI Machine Language).

CPU

O®@000000000
ACPI
|
I i
| |
| |
| |
T
i ACPI
I Table]
: interace intertnce
|
|
Iy
W®latform Hardware
Motherboard ‘ Chipset ‘ cPu
Figure: Basic ACPI structure. Source: [LSM99]
Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Lcpu
L ACPI

This picture gives a good overview about the basic ACPI structure. You
can see the division into three parts: Operating system, ACPI interface,
Hardware

CPU

00e00000000
ACPI
Legacy
Figure: ACPI power states. Source: [CCCt13]
Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency

L(EU aa:;if_
ACPI e @
e c—"-e

states. Saurce: [CCC

This image represents the basic ACPI interface specification. You can see
the different subsystems as well es their hierarchy. This slide is here to
give a small overview before going into detail.

3

CPU

O00@0000000

ACPI

G-States / S-States

The “global states” (“sleeping states”) define the overall
system state

GO (Working)

G1/S1-S4 (Sleeping)

G2/S5 (Soft off)

G3 (Mechanical off)

Only in GO user application are executed

v

vV vy vy

v

GO offers further customisation
G2 and G3 require restart of OS

v

v

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency St/ S5t
Lcpu
L-AcPI
L G-States / S-States

The g-states (global states) control the overall system state. They are
divided into four different states. The state GO represents the normal
working mode. The state G1 represents the sleeping mode. The system is
still running, but no user threads (application) are executed. G1 is divided
into several “sleeping states”. The state G2 is called “Soft off” (or S4).
The operating system has to reboot from this state. Almost no power is
consumed. The in the state G3 no power is consumed (excluding battery
for real-time clock). It is usually entered via a mechanical switch.

CPU

O000@000000

ACPI

C-States

» The “processor power states” (c-states) can be used to
control the CPU while the system is in GO-state
» The states differ in latency and power consumption

» CO
» C1
» C2... Cn

» In CO the processor executes instructions

> In C1 the processor does not execute instructions. Switching
to CO has almost no latency

» All other states are optional and can be defined by the
manufacturer

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency s
L_cpu
L ACPI
L C-States

The C-states (control states) can be used while the system is in the GO
state to regulate the power consumption of the CPU. The states differ in
power consumption and the time it takes to switch back to C0. In the CO
state the processor executes instructions. In the C1 state the processor
does not execute instructions. However it is specified that from this state
the processor has to switch to CO with almost no latency. The C2 and C3
state are specified but optional. All other states can be defined by the
manufacturer of the CPU and are not specified.

CPU

00000800000

ACPI

Deep Power Down Technology

Available on Mobile Penryn Family Processors

» Flexible C-States to Select Idle Power Level vs. Responsiven(

— New Power
Management
State

Active state

Deep Power Down
technology state

O
=
O
jos

my

kB
-
1

g4

e Core voltage™
— Significantly i
reduces processor [ECETerY
power consumed

o
£}

i PLL _off_ g

idle mode g

L1 caches AiShed AfiShdd g

E :

— Further Extends 12 cache 3
Battery Life

Wakeup time*

_“ I [= EI:IIQ
m Gmme

Idle power*
L Rough approximation

L
(| GEIEE

Figure: C-states of the “Intel Penryn Family” architecture. Source:
[Lin07]
Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Lcpu
L-ACPI

This graphic shows the different c-states in an “Intel Penryn Family”
processor. “Deep Power Down” technology state is also called C6

CPU

0000000000

ACPI

P-States

v

“Performance states” (p-states) enable further control over
CPU (and devices) when in active state (C0/DO0)

Up to 16 states (PO --- P15)

Controls the power and frequency of the processor

v

v

v

Implementation is optional

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency par
L_cpu
L ACPI
L P_States

The p-states offer a way to regulate the CPU (and also other devices, see
D-States below) even further while they are in an active state. The
implementation of p-states is completely optional and a manufacturer
may implement up to 16 states (called PO to P15).

CPU

00000008000
ACPI
24.5 mliem
Power [W]
6 =it
'] ']] '] '] ']
L] L] L L] L] L]
0.956 1.036 1.164 1.276 1.420 1.484
Core Voltage [V]
Figure: P-states of an “Intel Pentium M". Source: [Cor04]
Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Lcpu
L_ACPI

This graph shows the different p-states of an Intel Pentium M processor
together with the power consumed in each state.

CPU

O0000000e00

ACPI

Throttling
» Throttling provides an alternative interface to performance
control
» A throttling-value may be specified
» This value determines how much performance (in percent) the
CPU should run on
» Throttling is ineffective compared to p-states
Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Lcpu
L-AcPI
LThrottling

Throttling

Throttling is an alternative interface to controlling the CPU performance.
Only one (p-state, throttling) can be used at a given time. You can
specify the percent of performance a processor should perform.
Throttling is done by inserting special no-operation instructions to the
CPU execution queue. Because throttling is more expensive than
p-states, we should prefer to use p-states instead of throttling.

CPU

00000000080

ACPI

D-States

> Used to control devices like CD-reader, printer, modems,
drives...

» Four states

DO (full-on)

D1

D2

D3 (off)

» Latency and power saving highly dependent on device

v

vV vVvYyy

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency b5t
L_cpu
L ACPI
L D-States

The D-states are states based around controling different other devices.
This devices include cd-reader, printer, modems, drives and more. Four
states are defined - their meaning (and their latency and power saving)
highly depends on the device. For example, a printer might have a high
latency (seconds) and high power saving where a drive can not afford
those high latency times.

CPU

0000000000 e
ACPI
Legacy
Figure: ACPI power states. Source: [CCCt13]
Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency

L(EU aa:;if_
ACPI e @
e c—"-e

states. Saurce: [CCC

This image represents the basic ACPI interface specification. You can see
the different subsystems as well es their hierarchy. This slide is inserted
here to give a summary about the states.

3

@0

Implementations

Implementation - Linux

» Core ACPI system implementation called “"ACPICA”
» Does not implement policies
» “ACPI drivers” implement policies

» C-states are controlled by "“idle loop”
» P-states are controlled by different “governors”
» Throttling is used on thermal emergencies

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency Ee——
Lcpu
leplementations
Implementation - Linux

The ACPI implementation in Linux is based around a ACPI core
(ACPICA) which manages the ACPI. The policys are implemented by
different drivers: c-states are controlled via the kernel idle loop, p-states
are controlled by different govenors like “ondemand” “power saving”

LT}

“userspace” “performance”, throttling is only used in emergency

situations as it is ineffective compared to p-states

oe

Implementations

Implementation - Windows

v

First implementation in Windows 2000 (1996)
All driver have to register to the ACPI driver
The ACPI driver calls registered methods on ACPI changes

The user can influence the power management by “policies”

v

v

v

v

Applications can disable certain parts of the power
management

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency ottt - Wi
Lcpu
leplementations
Implementation - Windows

The implementation in Windows is based around a ACPI driver. All
device drivers have to register call-back methods to this driver. The
behaviour of the ACPI driver can be controlled by the user (policys) or
certain parts (like screen, sleeping) by applications

Memory

Memory

Marcus Soll

Core Energy Efficiency

Memory
[ele}

General

General

» Second major component in modern PCs
» Cache results of operations

» Goal: Fast, large and cheap

» Can not be done with current technology
» Combination of multiple type of memory

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency eers
Memory
General
L General

The memory is the second major component of a modern PC. In the
memory the results of operation should be cached for later use. Therefore
some attributes would be nice to have: Memory should be fast to access,
keep lots of data and should be cheap to buy. Unfortunately with todays
technology we can not achieve all of this points at once, therefor we need
to combine different types of memory.

Memory
oeo

General

Memory types

» Different memory types build into a hierarchy:
» CPU-register
Cache (L1-cache, L2-cache...)
RAM
Persistent cache (Hard disk drives, magnetic tape...)

v vy

» Different costs and access time

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Memory
General
LMemory types

In modern operating system the memory is usually divided into different
types (registers, cache, drives...). This different memory types build up a
hierarchy where the fastest and most expensive memory is on the top.

Memory
[e]e]]

General

Non-uniform memory access

» Provides a single address space off all memory for all CPUs
» All memory can be accessed via unified instructions

> Access to local memory is faster than remote memory

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency o
Memory
General
L Non-uniform memory access

NUMA is an interface to the system memory where all processors share
the same address space. This leads to a model where each memory can
be accessed via the same instructions. However, the most important
point is that local memory is accessed much faster than remote memory.
We will keep this point in our mind when we look at the cost of moving
data.

Memory

[Je]

Movement of data

Movement of data

» Experimental analysis of data movement costs

» Average energy cost of moving data is 25%
» Peak energy cost around 40%

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Memory
Movement of data
Movement of data

Movement of data

Some experiments show an average energy consumption of 25% for
moving data (with peaks up to 40%)

Memory

oe

Movement of data

[Operation [[Energy Cost (nJ) [A Energy mJ) [Eq. Ops |
NOP 0.48 - -
ADD 0.64 - -
L1->REG 1.11 1.11 1.8 ADD
L2->L1 2.21 1.10 3.5 ADD
L3->L2 9.80 7.59 15.4 ADD
MEM->L3 63.64 53.84 99.7 ADD
stall 143 - -
prefetching 65.08 - -

Figure: Energy spend accessing memory (AMD Interlagos 6227). Source:
[PWnt]

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency

Memory

Movement of data

This table shows experimental results on how much energy access to the
different memory component take. There is also a comparison to an
“ADD"” instruction. E.g. one access to the DRAM equals 99 ADD
operations.

Memory

@0

Energy reduction

Energy reduction - Reduce data movement

» Reduce amount of data movement
» Algorithmic changes

» Keep data redundant on multiple cores
» Calculation of data instead storing

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency o
Memory
Energy reduction
Energy reduction - Reduce data movement

One way of reducing the energy consumption is to reduce the data
movement itself. This requires changes to todays algorithms as well as
caution in designing new algorithms. One example is to calculate parts
redundant instead of moving the data between different cores.

Memory

oe

Energy reduction

Energy reduction- DVFS

» Dynamically scale down frequency and voltage of DRAM

» Experimental data suggest average 2.43% power reduction
(max. 5.15%) [DFG*11]

» Experimental data suggest minimal slowdown of average
0.17% (max. 1.69%) [DFG*11]

» Problem: Data transfers take longer = more energy
consumption

» Problem: No current implementation

» Better results when scaling CPU and DRAM together

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency =
Memory
Energy reduction
LEnergy reduction- DVFS

An other way of reducing power consumption is to scale down DRAM
frequency and voltage (As the frequency depends on a minimal voltage
level). Although giving good results, there are some problems with this
approach: There are currently no implementation of this in the DRAM
(you have to reboot to change frequency), the data transfer takes longer
(this might even increase the power consumption). To address this, you
can scale memory and CPU together.

Examples

Examples

Marcus Soll

Core Energy Efficiency

Examples
[JeJele}

ACPI

Examples - ACPI in Linux

» You can control ACPI in Linux using cpufrequtils

» cpufreq-info shows information about current power
management settings

» cpufreq-set allows changing current power management
behaviour

» cpufreq-aperf measures current power management stats

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Examples
LAcPI
I—Examples - ACPI in Linux

Examples - ACPI in Linux

The tools combined in “cpufrequtils” allow control over ACPI functions.
There are three different tools.

Examples
[e] lele}

ACPI
~ $ cpufreq-info
cpufrequtils 008: cpufreq-info (C) Dominik Brodowski 2004-2009
Bitte melden Sie Fehler an cpufreq@vger.kernel.org.
analysiere CPU O:
Treiber: acpi-cpufreq
Folgende CPUs laufen mit der gleichen Hardware-Taktfrequenz: O
Die Taktfrequenz folgender CPUs werden per Software koordiniert: O
Maximale Dauer eines Taktfrequenzwechsels: 10.0 us.
Hardwarebedingte Grenzen der Taktfrequenz: 933 MHz - 2.53 GHz
mégliche Taktfrequenzen: 2.53 GHz, 2.40 GHz, 2.27 GHz, 2.13 GHz, 2.00 GHz, 1.87 GHz, 1.73 GHz, 1.60 GHz
mogliche Regler: conservative, performance
momentane Taktik: die Frequenz soll innerhalb 933 MHz und 2.53 GHz.
liegen. Der Regler "conservative" kann frei entscheiden,
welche Taktfrequenz innerhalb dieser Grenze verwendet wird.
momentane Taktfrequenz ist 933 MHz.
analysiere CPU 1:
Treiber: acpi-cpufreq
Folgende CPUs laufen mit der gleichen Hardware-Taktfrequenz: 1
Die Taktfrequenz folgender CPUs werden per Software koordiniert: 1
Maximale Dauer eines Taktfrequenzwechsels: 10.0 us.
Hardwarebedingte Grenzen der Taktfrequenz: 933 MHz - 2.53 GHz
mégliche Taktfrequenzen: 2.53 GHz, 2.40 GHz, 2.27 GHz, 2.13 GHz, 2.00 GHz, 1.87 GHz, 1.73 GHz, 1.60 GHz
mégliche Regler: conservative, performance
momentane Taktik: die Frequenz soll innerhalb 933 MHz und 2.53 GHz.
liegen. Der Regler "conservative" kann frei entscheiden,
welche Taktfrequenz innerhalb dieser Grenze verwendet wird.
momentane Taktfrequenz ist 2.53 GHz.
analysiere CPU 2:
Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Examples
LAcPI

Example of letting cpufreqg-info output. Shows basic information for all
CPUs.

Examples

[e]e] o]

ACPI

~ $ cpufreq-info -fmc 0

933 MHz

~ $ cpufreq-info --governor

conservative performance

~ $ sudo cpufreq-set -g performance

Passwort:

~ $ cpufreg-info -fmc 0

2.53 GHz

~ $ sudo cpufreq-set -g conservative

~ $ cpufreg-info -fmc 0

933 MHz
Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Examples
L ACPI

Change the govenor and watch the change in frequency

Examples
[e]e]e]]

ACPI
~ $ sudo cpufreq-aperf
CPU Average freq(KHz) Time in CO Time in Cx CO percentage
000 1063860 00 sec 048 ms 00 sec 951 ms 04
001 1089190 00 sec 061 ms 00 sec 938 ms 06
002 1317160 00 sec 021 ms 00 sec 978 ms 02
003 1266500 00 sec 002 ms 00 sec 997 ms 00
000 1089190 00 sec 016 ms 00 sec 983 ms 01
001 1114520 00 sec 008 ms 00 sec 991 ms 00
002 1418480 00 sec 023 ms 00 sec 976 ms 02
003 1393150 00 sec 002 ms 00 sec 997 ms 00
000 0987870 00 sec 022 ms 00 sec 977 ms 02
001 1215840 00 sec 007 ms 00 sec 992 ms 00
002 1114520 00 sec 011 ms 00 sec 988 ms 01
003 1215840 00 sec 028 ms 00 sec 971 ms 02

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Examples
LAcPI

Shows information about acpi-stats

Examples

[1o}

Memory

Examples - Memory management in Linux

v

Algorithm “Dynamic Memory Switching”

Developed by Prof. Rajat Moona, Sharad Chole, Sanchay
Harneja

v

v

Implemented for Linux 2.6.15

v

Goal: Switch off unused memory

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Examples
Memory
LExamples - Memory management in Linux

We will look at an implementation for energy reduction for memory. This
algorithm is called “Dynamic Memory Switching” and was developed by
Prof. Rajat Moona, Sharad Chole and Sanchay Harneja. It is
implemented for Linux 2.6.15. The primary goal is to switch off unused
memory.

Examples

(o] }

Memory

Dynamic Memory Switching

» New kernel daemon

» Migrates memory pages and frees parts of memory (banks)
» Sets banks to low-power state

Power State/Transition | Power Time Active Components

Active 300mW - Refresh, clock, row, col decoder
Standby 180mW - Refresh, clock, row decoder
Nap 30mW - Refresh, clock

Powerdown 3mwW - Refresh

Standby To Active 240mW +6ns

Nap To Active 160mW +60ns

Powerdown To Active | 150mW +6000ns

Figure: Energy of different memory power states. Source: [MCHO7]

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency
Examples
Memory
LDynamic Memory Switching

This is done by copying used memory together and freeing memory banks
(parts of the memory). This free, unused memory banks could than be
switched to a low energy mode when the memory is not needed. As we
can see in the figure, this can reduce quiet some energy, but increase the
response time if more memory is needed.

Conclusion

Conclusion

» Core method of reducing energy consumption of CPU
» ACPI
» Energy consumption of memory

» Problems
» Possible solutions

Marcus Soll

Core Energy Efficiency

2015-01-28

Core Energy Efficiency Conlson
Conclusion

L Conclusion
We have looked in this talk over the core methods of reducing energy

consumption on CPUs - ACPI. We have also looked on the energy
consumption of memory - the problems and the possible solutions.

[BKL05]

[Bor07]

[CCC*13]

Marcus Soll

Len Brown, Anil Keshavamurthy, David Shaohua Li,
Robert Moore, Venkatesh Pallipadi, and Luming Yu.
ACPI in Linux.

In Ottawa Linux Symposium, 2005.

Shekhar Borkar.

Thousand core chips: a technology perspective.

In Proceedings of the 44th annual Design Automation
Conference, pages 746—749, 2007.

Hewlett-Packard Corporation, Intel Corporation,
Microsoft Corporation, Phoenix Technologies Ltd., and
Toshiba Corporation.

AdvancedConfiguration and Power Interface
Specification, November 2013.

Core Energy Efficiency

[Cor04]

[Cor05]

[Cor07a]

[Cor07b]

Marcus Soll

Intel Corporation.
Enhanced Intel(R) SpeedStep(R) Technology for the
Intel(® Pentium(® M Processor, March 2004.

Intel Corporation.

Excerpts from A Conversation with Gordon Moore:
Moore's Law.

2005.

Microsoft Corporation.
ACPI Driver Interface in Windows Vista, April 2007.

Microsoft Corporation.
Processor Power Management in Windows Vista and
Windows Server 2008, November 2007.

Core Energy Efficiency

[Cor09] Microsoft Corporation.
Power Availability Requests, June 2009.

[DFGT11] Howard David, Chris Fallin, Eugene Gorbatov, UIf R.
Hanebutte, and Onur Mutlu.
Memory power management via dynamic
voltage/frequency scaling.
In Proceedings of the 8th ACM international
conference on Autonomic computing, pages 31-40,
June 2011.

Marcus Soll

Core Energy Efficiency

[DMB*12] Qingyuan Deng, David Meisner, Abhishek
Bhattacharjee, Thomas F. Wenisch, and Ricardo
Bianchini.
CoScale: Coordinating CPU and Memory System
DVFS in Server Systems.
In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages
143-154. IEEE, December 2012.

[Gee05] David Geer.
Chip makers turn to multicore processors.

In Computer, volume 38, issue: 5, pages 11-13. IEEE,
May 2005.

Marcus Soll

Core Energy Efficiency

[GGJ'13] Hormozd Gahvari, William Gropp, Kirk E. Jordan,
Martin Schulz, and Ulrike Meier Yang.
Systematic Reduction of Data MovementAlgebraic
Multigrid Solvers, 2013.

[Gro10] Andrew Grover.
Modern System Power Management.
Queue - Power Management, Volume 1(Issue 7):66,
January 2010.

Marcus Soll

Core Energy Efficiency

[KGKH13] Gokcen Kestor, Roberto Gioiosa, Darren J. Kerbyson,
and Adolfy Hoisie.
Quantifying the Energy Cost of Data Movement in
Scientific Applications.
In 2013 IEEE International Symposium on Workload
Characterization (IISWC), pages 56—65. |IEEE,
September 2013.

[LT14] Robert Lucas et al.
Top Ten Exascale Research Challanges.
U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing Research, February
2014.

Marcus Soll

Core Energy Efficiency

[Lin07] David Lin.
Intel Penryn & Nehalem Information.
http://www.phoronix.com /scan.php?page=article&item=672
March 2007.
Accessed: 2014-11-02 12:42.

[LPKT13] James H. Laros, Ill, Kevin Pedretti, Suzanne M. Kelly,
Wei Shu, Kurt Ferreira, John Van Dyke, and
Courtenay Vaughan.
Energy-Efficient High Performance Computing.
Springer, 2013.

Marcus Soll

Core Energy Efficiency

[LSM99] Yung-Hsiang Lu, Tajana Simunic, and Giovanni De
Micheli.
Software Controlled Power Management.
Technical report, Computer System Laboratory,
Stanford University, 1999.

[MCHO7] Prof. Rajat Moona, Sharad Chole, and Sanchay
Harneja.
Memory Management using Dynamic Memory
Switching, May 2007.

Marcus Soll

Core Energy Efficiency

[Min09] Timo Minartz.
Model and simulation of power consumption and power
saving potential of energy efficient cluster hardware.

Master's thesis, Ruprecht-Karls-Universitat Heidelberg,
August 2009.

[Min13] Timo Minartz.
Design and Evaluation of Tool Extensions for Power
Consumption Measurement in Parallel Systems.
PhD thesis, Universitat Hamburg, March 2013.

Marcus Soll

Core Energy Efficiency

[PWnt]

[Sim09]

[Tan09]

Marcus Soll

Dhinakaran Pandiyan and Carole-Jean Wau.
Quantifying the Energy Cost of Data Movement for
Emerging Smart Phone Workloads on Mobile
Platforms.

In 2014 IEEE International Symposium on Workload
Characterization, pre-print.

Dario Simone.
Power Management in a Manycore Operating System.
Master's thesis, ETH Zurich, August 2009.

Andrew S. Tanenbaum.
Modern Operating Systems.
Pearson Education, Inc., third edition, 2009.

Core Energy Efficiency

	Introduction
	CPU
	General
	ACPI
	Implementations

	Memory
	General
	Movement of data
	Energy reduction

	Examples
	ACPI
	Memory

	Conclusion

