Energy Efficiency in Virtualized Systems

Segoy Thiel

MIN Faculty Department of Informatics University of Hamburg

10. December 2014

1 Introduction

- 2 Virtualization in Data Centers
 - Architecture
 - Simulation

- 2 Virtualization in Data Centers
 - Architecture
 - Simulation
- 3 Consequences for Providers and Users

- 2 Virtualization in Data Centers
 - Architecture
 - Simulation
- 3 Consequences for Providers and Users

4 Conclusion

Motivation

- Data Centers consume large amounts of energy
 - 56% rise from 2005-2010
 - 2010 about 1.3% of total energy use
 - estimated to 2% of CO₂ emissions
- Virtualization allows to create several Virtaul Machines (VMs) on a physical server to reduce amount of hardware in use
- VMs can be moved between physical hosts
- Resource usage can be adjusted to current requirements

Focus

- Live migration of VMs to dynamically reallocate VMs to current resource requirements
- Idle physical nodes can be switched off
- Provide reliable Quality of Service (QoS) defined in Service Level Agreements (SLA) characteristics:
 - maximal throughput
 - minimal response time
 - or latency delivered by deployed system
- Thermal Optimization temperature of physical nodes is considered in reallocation decisions
 - reducing workload of overheated nodes
 - decrease cooling system load

Challenges

How to:

- **1** Solve trade-off: energy savings vs. delivered performance
- 2 Determine when which and where to migrate VMs in order to:
 - minimize energy consumption
 - minimize migration overhead
 - ensuring SLA
- **3** Develop efficient decentralized and scalable algorithms for resource allocation
- Develop comprehensive solution by combining several allocation policies with different objectives

Architecture

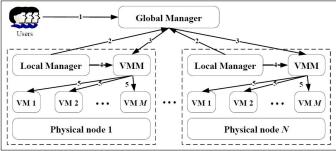
Infrastructure for large-scale Cloud data center

- Comprises physical nodes charackterized by:
 - CPU: perfomance defined by MIPS
 - RAM
 - network bandwidth
- Users submit requests for provisioning VMs requiring resources from nodes
- SLA violation occurs when a VM cannot get requested amount of resources
- Tiered comprising: global and local managers

Architecture

Local and Global Managers

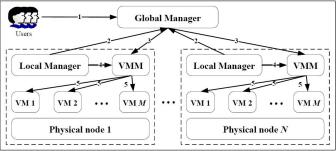
Local managers:


- Reside on nodes as part of VMM
- Choose VMs to be migrated in cases:
 - utilization of resource is close to 100% risk of SLA Violation
 - utilization is low all VMs reallocated to another node
 - VMs have intensive network communication allocated to different hosts
 - temp exceeds limit VMs are migrated to cool node down
- Send information and VMs to migrate to global manager
- Issue VM resizing, applicate DVFS, turn on/off idle nodes

Global manager:

Attached to set of nodes and process data from local managers

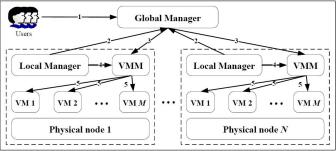
Architecture


The System Model

Architecture

The System Model

http://beloglazov.info/thesis.pdf Figure 4.1



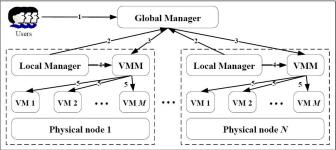
1 New requests for VM provisioning

Architecture

The System Model

http://beloglazov.info/thesis.pdf Figure 4.1

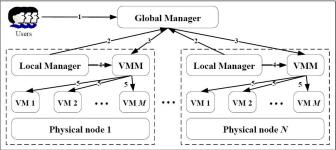
New requests for VM provisioning


Data about utilization of resources and VMs chosen to migrate

1

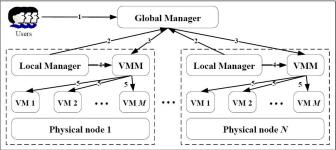
2

Architecture


The System Model

- 1 New requests for VM provisioning
- 2 Data about utilization of resources and VMs chosen to migrate
- 3 Migration commands

Architecture


The System Model

- 1 New requests for VM provisioning
- 2 Data about utilization of resources and VMs chosen to migrate
- 3 Migration commands
- 4 Commands for VM resizing and adjusting of power states

Architecture

The System Model

- 1 New requests for VM provisioning
- 2 Data about utilization of resources and VMs chosen to migrate
- 3 Migration commands
- 4 Commands for VM resizing and adjusting of power states
- 5 VM resizing, scheduling and migration actions

Three stages of VM placement optimization

- Reallocation according current utilization of multiple system resources
 - Main idea: set upper and lower utilization thresholds and keep utilization of CPU created by VMs sharing node inbetween
- 2 Optimization of virtual network topologies established between VMs
 - place communicating VMs in a way to minimize overhead of data transfer over network
- **3** VM reallocation considering thermal state of resources
 - monitor nodes thermal states, reallocate workload from overheated nodes to allow natural cooling

Allocation Policies

Algorithms have to meet following requirements:

- Decentralization and parallelism
- High performance
- Guaranteed QoS
- Independence of the workload type
- VM reallocation problem can be devided in two:
 - 1 Selection of VMs to migrate
 - has to be considered separately for each stage
 - 2 determining new placement of these on physical hosts
 - solved by heuristic for multidimensional bin-packing

Simulation

Example Simulation of a Data Center

- Data Center consists of 100 heterogeneous physical nodes
- Each node have one CPU core, perfomance: 1000, 2000 or 3000 MIPS, 8Gb RAM, 1TB storage
- Users submit requests for provisioning 290 heterogenous VMs that fill full capacity of Data Center
- Simulated policies:
 - Non Power Aware (NPA)
 - DVFS
 - Single Threshold(ST)
 - Two-threshold policy aimed at Minimazation of Migrations (MM)

	Virtualization in Data Centers
	0000
-	

Conclusion

Simulation

Example Simulation Results

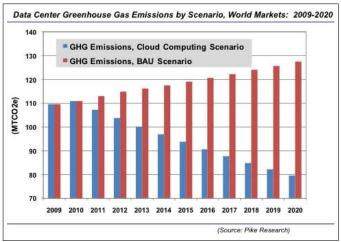
Policy	Energy	SLA	Migr.	Avg. SLA
NPA	9.15 KWh		-	-
DVFS	4.40 KWh	8 <u>1</u> 8	8 4	<u>1</u> 1
ST 50%	2.03 KWh	5.41%	35 226	81%
ST 60%	1.50 KWh	9.04%	34 231	89%
MM 30-70%	1.48 KWh	1.11%	3 359	56%
MM 40-80%	1.27 KWh	2.75%	3 241	65%
MM 50-90%	1.14 KWh	6.69%	3 120	76%

http://seelab.ucsd.edu/virtualefficiency/related_papers/26_4039a826.pdf

Simulation

Cloud Computing & Virtualiztion

Cloud Computing leverage virtualization


- Provides ability to provision resources on demand
- Organizations can outsource computation needs
- Eliminate necessity to maintain computing infrastructure

Cloud Computing leads to energy efficiency providing following charakteristics:

- Economy of scale and elimination of redundancies
- Increased utilization of computing resources
- Location independence
- Scaling up/down and in/out

	Virtualization in Data Centers	Consequences for Providers and Users	
	00000 000 0 0		
Simulation			

Emissions

http://www.environmentalleader.com/2010/12/08/cloud-computing-could-cut-data-center-energy-use-38-by-2020/

	Virtualization in Data Centers	Consequences for Providers and Users	
	00000		
Simulation			

Xen Hypervisor

- P- and C-states
- Supports offline and live migration of VMs

Kernel-based Virtual Machine (KVM

- Open source as module for Linux kernel
- Linux as hypervisor

VM-Ware

 Similar to Xen, supports host-level power management via DVFS

Data Centers

- Data Center goals:
 - Save energy to reduce costs
 - Provide reliable Qos for heterogenous workloads
- Mostly achieved by DVFS
- Different Virtualization techniques achieve better results by:
 - swithcing off idle nodes
 - reallocate workload to provide better utilization of resources
- Provided Fault and perfomance isolation between VMs
- Problems handle arbitary workloads with reliable QoS

Virtualization for Providers

- VM migration causes performance and energy overhead
- Provider is not aware of workloads
 - QoS must be defined workload independent
- Oversubscribe system resources (CPU)
 - most benefits from dynamic VM consolidation
 - risky from QoS perspective: perfomance degradation
- Eliminiation of single points of failure
 - if a compute or controller node fails system stays operable

Users

Average Users

- Create low amount of traffic
- Have little loss of perfomance when put on VM
- Can save much energy for providers when virtualized

Highperformance Users

- Create high amount of traffic
- Utilize big parts of machines
- Virtualization overhead can decrease perfomance significantly
- Decrease of perfomance when charing CPU

Consequences for Users

For average users:

- disadvantages are overseeable
- unsignificant decrease of perfomance
- good virtualization techniques no difference will be noticed
- note: maybe interesting: security of data when migrated to multiple servers
- For high performance users:
 - dependend on how much perfomance is needed
 - migration should be avoided
 - sharing physical host can be critical
 - virtualization overhead can decrease perfomance

Conclusion

- For saving energy on data centers virtualization usefull
- Benefits from cloud computing
- Through modern virtualization techniques
 - overhead and perfomance loss are reduced
 - becomes efficicient and applicable
- Problems with high performance users
- Optiminzation Algorithms long runtime not live applicable

Anton Beloglazov

Energy-Efficient Management of Virtual Machines in Data Centers for Cloud Computing The University of Melbourne, 2013 http://beloglazov.info/thesis.pdf

Anton Beloglazov Energy Efficient Resource Management in Virtualized Cloud Data Centers The University of Melbourne, 2010 http://seelab.ucsd.edu/virtualefficiency/related_papers/26_4039a826.

http://www.environmentalleader.com

http://www.environmentalleader.com/2010/12/08/cloud-computing-could-cut-data-center-energy-use-38-by-2020/ on December 9th 2014