University of Hamburg Praktikum ,, Kernel Programming“

Department of Informatics in WiSe 2014/2015
Group of Scientific Computing Assignment 0
K. Chasapis, Dr. J. Kunkel, Dr. M. Dolz, M. Wiedemann Deadline: 29.11.2014

1 Exercise: Link lists

Link lists is one of the fundamental data structures in computer science. In this exercise we
require you to implement a generic link list of your preference (singly, doubly, circular). Your
implementation must include at least the following functions:

create(), destroy(), insert(), delete(), next(), previous().

The functionality offered by the link list should be exported as an abstract data type. First,
you should design a clean interface that will define the methods that you will use to manipulate
the link list. Formulate this interface in a C header file. You should not export the definition
of the link list structure at the header file. For this reason you can use a type definition as the
one below:

typedef struct link_list link list_t;
Function prototype example:
int insert(link list_t head, void *value);

Implement the interface in a C file (.c). In a separate C file implement the main() function
that you will use to test the link list. Create a Makefile that you will use to compile your code.
For more information on link lists you can visit:

http://en.wikipedia.org/wiki/Linked _list.

2 Exercise: Free lists

In this exercise you will implement your own memory allocator. Allocators uses free lists to keep
track of the available space. Your memory allocation should implement the following functions:

init(), destroy(), allocate(), free(), print().

Whereas for the first four functions the semantics are obvious for the print function we require
to print the free list of the memory allocator.

There are several memory allocation strategies. In this exercise you are required to implement
the first fit and the best fit. In the first strategy the allocator returns the first free block that
will meet the size requirements. In the best fit strategy the allocator searches in the available
blocks and returns the smaller block which fits the requested size.

Allocation function prototypes examples:

void * allocate_first_fit(size_t size);

void * allocate_best_fit(size_t size);

As in the first exercise define the allocator’s interface in a header file and implement it in a C
file. You should also deliver the Makefile and a main() function to test the allocator.

More information on the allocation strategies visit:

http://courses.cs.vt.edu/ csonline/OS/Lessons/MemoryAllocation/index.html.

http://en.wikipedia.org/wiki/Linked_list
http://courses.cs.vt.edu/~csonline/OS/Lessons/MemoryAllocation/index.html

Submission

You should submit the solution of the two exercises in a single tar file named after your last
name and the assignment number (e.g chasapis_0.tar). You should include main functions and
also test programs.

Submit the solution of your exercise by email to your corresponding supervisor.

More details will be given in the lecture time.

	Exercise: Link lists
	Exercise: Free lists

