Building, Running and Monitoring the Linux kernel

Praktikum Kernel Programming University of Hamburg Scientific Computing Winter semester 2014/2015

Outline

- The Linux kernel source tree
- Configure, compile, install the Linux kernel
- Linux kernel boot and initialization
- Monitoring
- Summary

Where can I find it

Download from http://www.kernel.org

- Mainline, Stable, long term
- git clone url dir_name
- Tree navigation
 - Web browser view lxr
 - <u>http://lxr.sourceforge.com</u>
 - <u>http://lxr.free-electrons.com</u>
 - Symbolic database from all files, cscope
 - <u>http://cscope.sourceforge.net</u>

• arch

- contains all of the architecture specific kernel code. It has further subdirectories, one per supported architecture, for example i386 and alpha.
- block
 - contains the implementation of the block I/O layer

• crypto

 implements cipher operations and the cryptography API

Documentation

- kernel source documentation
- drivers
 - all of the system's device drivers live in this directory. They are further sub-divided into classes of device driver, for example block

• firmware

device firmware that is needed to use certain drivers

- fs
 - file system code. This is further sub-divided into directories, one per supported file system
- include
 - contains most of the include files needed to build the kernel code. It too has further subdirectories including one for every architecture supported
- init
 - contains the initialization code for the kernel and it is a very good place to start looking at how the kernel works

• ipc

 contains the kernels Inter-Process Communication (IPC) mechanism such as message queues, semaphores, shared memory.

• kernel

- core subsystems, for example the scheduler. The architecture specific kernel code is in arch/*/kernel.
- lib
 - this directory contains the kernel's library code.
 The architecture specific library code can be found in arch/*

• mm

contains all of the memory management code.
 The architecture specific memory management code lives down in arch/*/mm/

• modules

directory used to hold built modules

• net

• the kernel's networking code, (ethernet, ipv4)

samples

demonstrative code

• scripts

- contains the scripts (for example awk and tk scripts) that are used when the kernel is configured
- security
 - Linux security module, including SELinux

• sound

Advance Linux Sound Architecture (ALSA), sound card drivers.

• usr

- user-space interaction (initramfs)
- tools
 - kernel and user development tools, mostly used for performance counting
- virt
 - the virtualization infrastructure

Outline

• The Linux kernel source tree

- ➤ Configure, compile, install the Linux kernel
 - Linux kernel boot and initialization
 - Monitoring
 - Summary

Configuration

- Typical kernel has >> 1000 configuration options
- Default configuration part of the board support package (BSP)
- Configuration file .config
- Configuration options are typically Booleans or Tristate
 - Yes
 - **No**
 - Module
- Examples
 - CONFIG_SMP, enables or disables SMP supports
 - CONFIG_LOCK_STAT, enables or disables lock statistics

Tweak configuration using make, targets

config

- interactive for each option
- menuconfig
 - ncurses text menu
- xconfig
 - graphical menus using Qt
- gconfig
 - graphical menus using Gtk+
- defconfig
 - default configuration based on the architecture

Tweak configuration using make, targets

• oldconfig

- validate and update the configuration
- randconfig
 - random answer to all options

allmodconfig

selecting modules when possible

allyesconfig

all options are accepted with yes

allnoconfig

all options are answered with no

Naming the new Kernel

Edit the top level Makefile
 VERSION = 3
 PATCHLEVEL = 6
 SUBLEVEL = 35
 EXTRAVERSION = -rc2
 NAME = my kernel

Compile

- Required packages
 - development tools, make, gcc, gzip, etc.
- Several distributions offer packages
- Cross compile
 - export ARCH=...
 - export CROSS_COMPILE=...

Compile make targets

• default

builds kernel + modules

bzlmage

- builds kernel
- generates: arch/arm/boot/bzImage

modules

- builds loadable modules
- generates: lib/modules/<kernel.versio-name>

Compile make targets

• -j<n> e.g. -j2

- spawn multiple build jobs
- clean
 - generated files
- mrproper
 - generated files+config+backup files

distclean

• all the above+patch files

Install

make install

copy kernel image to the proper directory /boot

make module_install

- install build modules in the correct home under /lib/modules
- Update the boot loader
 - LILO or grub configuration file
 - add the new entry for the newly build kernel

Kernel command line

- Kernel behaviour set by boot "command line"
- see Documentation/kernel-parameters.txt
- Examples
 - console: device to send kernel messages to
 - e.g. console=ttyS0,115200
 - root: set device to load root file system from,
 - e.g. root=/dev/sda1
 - quiet: output fewer console messages
 - debug: output all console messages
 - maxcpus: control the active CPU
- Can be set in Bootloader, e.g. GRUB

The root file system

- Mounted by the kernel during boot
 - Provides additional kernel modules that are needed
- specified the root kernel command line parameter
- Loaded from:
 - memory (ram disk / initramfs)
 - storage device
 - o network
- The "module" that provides access must be embedded in the kernel or it cannot mount..

Initramfs

- initial ram file system
 - successor of initrd
- cpio archive of the initial file system
 - o cpio
 - file archive and file format
 - copy in and out
- gets loaded into memory during startup
- contains device drivers and tools needed to mount the real file system

Outline

- The Linux kernel source tree
- Configure, compile, install the Linux kernel
- Linux kernel boot and initialization
 - Monitoring
 - Summary

Boot process of the kernel

- BIOS loads Master Boot Record (MBR) from the boot device
- Code that exist in the MBR reads the partition table of the boot device and reads the bootloader (GRUB, LILO) from the boot partition
- The bootloader reads the compressed kernel image
 - Passes the control to it using the command line options
- The kernel un-compresses itself

Boot process of the kernel

- Proceeds to "real" mode where the first level initializations are done
 - In read mode, it can access only the first 1MB of memory
- Startup is performed in the "protected" mode and begins initializing the CPU subsystem
 - In "protected" mode you can use many advance feature of the processor such as paging
- It follows the memory and the process managements subsystems
- Peripheral buses, I/O buses are stated next

Init process

- At last the kernel invokes the init program that is the parent of all Linux processes
- First program to be run /sbin/init
 - Begins by reading /etc/inittab
- Run levels (system states) for System V init
 - 0 is halt
 - 1 is single user
 - 2-5 are multi-user
 - o 6 reboot
- Starts initialisation scripts
 - Fount at /ect/init.d

Outline

- The Linux kernel source tree
- Configure, compile, install the Linux kernel
- Linux kernel boot and initialization

> Monitoring

- Metrics
- Tools
- Summary

CPU metrics /proc/stat

Utilization

- overall utilization per processor
- User time
 - percentage spent on user processes
- System time
 - percentage spent on kernel operations

• Waiting

time spent waiting for I/O operations

• Idle time

system was idle waiting tasks

CPU metrics /proc/stat

• Nice time

○ time spent on re-nicing processes

Runnable processes

- processes ready to run
- Blocked
 - processes blocked by I/O operations
- Context switch
 - number of context switches

• Interrupts

number of hard and soft interrupts

Memory metrics

• Free memory

- o amount of free memory in the system
- Swap usage
 - amount of swap used
- Buffer and cache
 - memory allocated for I/O

Slabs

- kernel usage of memory
- Active VS. inactive memory
 - Inactive memory is a candidate to be swapped

Network interface metrics

- Packets sent/received
- Bytes sent/received
- Collisions per second
 - Sustained values indicate network infrastructure bottlenecks
- Packets dropped
 - \circ $\,$ Can be caused by the firewall or limited buffers
- Overruns
 - how many times runned out of buffers
- Errors
 - count the packets that are marked faulty

Block device metrics

• Iowait

• the time CPU spends waiting for I/O to complete

• Average queue length

- amount of outstanding I/O requests
- high value indicate I/O bottleneck

Average wait

average time in ms that takes for an I/O operation to complete

• Transfer per second

• how many I/O operations are performed

Block device metrics

- Blocks read/write per second
 - number of blocks that were read or written (usually each block is 1024 Bytes)
- Kilobytes read/write per second
 - number of blocks that were read or written in KBytes

Block device metrics

- Blocks read/write per second
 - number of blocks that were read or written (usually each block is 1024 Bytes)
- Kilobytes read/write per second
 - number of blocks that were read or written in KBytes

Outline

- The Linux kernel source tree
- Configure, compile, install the Linux kernel
- Linux kernel boot and initialization

Monitoring

- Metrics
- ≻ Tools
- Summary

Generic admin tools

• dmesg

- Prints the message buffer of the kernel
- strace
 - Monitor interaction between user and kernel

• oprofile

• System-wide statistical profiling tool

CPU Tools

- top
 - Process activity
- ps, pstree
 - Display the running processes
- kill
 - Sends the SIGTERM signal to the process
- mpstat
 - Displays activities for each available processor
- numastat
 - NUMA-related statistics
- pmap
 - Process memory usage

I/O Tools

• vmstat

- Report virtual memory statistics
- free
 - \circ Display the amount of free and used memory

iostat

- Report block device statistics
- Isblk
 - List block devices
- Isof
 - List open files

Network Tools

• ping

- \circ check if a server responds
- traceroute
 - display the route path
- nslookup
 - get domain name or IP address
- netstat
 - displays network stats
- tcpdump
 - dump traffic on a network

Proc files

/proc/stat

- o cpu
- /proc/diskstats
 - \circ disk
- /proc/meminfo
 - o memo

Outline

- The Linux kernel source tree
- Configure, compile, install the Linux kernel
- Linux kernel boot and initialization
- Monitoring
- Summary

Summary

- Which are the main directories in the Linux kernel source tree
- How to configure and built the Linux kernel
- Which is the start up process of the Linux system
- Which tools are used to monitor the Linux kernel