Writing your first

Linux kernel module

Praktikum Kernel Programming
University of Hamburg
Scientific Computing
Winter semester 2014/2015

Before you start

Hello world module

Compile, load and unload

User space VS. kernel space programing
Summary

Before you start

e Define your module’s goal
e Define your module behaviour
e Know your hardware specifications
o If you are building a device driver you should have
the manual

e Documentation

o Jusr/src/linux/Documentation
o make { htmldocs | psdocs | pdfdocks | rtfdocks }
o Jusr/src/linux/Documentation/DocBook

Role of the device driver

e Software layer between application and device

“black boxes”
o Offer abstraction
m Make hardware available to users
o Hide complexity
m User does not need to know their implementation

e Provide mechanism not policy
o Mechanism
m Providing the flexibility and the ability the device
supports
o Policy
m Controlling how these capabilities are being used

Role of the device driver

e Policy-free characteristics
o Synchronous and asynchronous operations
o Exploit the full capabilities of the hardware
o Often a client library is provided as well

m Provides capabilities that do not need to be
Implemented inside the module

Hello world module

Compile, load and unload

User space VS. kernel space programing
Summary

Hello world module

/* header files */
#include <linux/module.h>
#include <linux/init.h>

/* the shutdown function */

static void __exit hello_exit(void) {
printk("Goodbye,\n");

}

/* the initialization function */

static int __init hello_init(void) {
printk("Hello world \n");
return O; /* success */

}

/* declares which function will be
invoked when the module is
removed ¥/

module exit(hello_exit);

/* declares which function will be
invoked when the module is loaded
Y/

module_init(hello_init);

Initialization function

e Each module must use one

e Declared as static static int __init hello_init(void) {

° init <name> printk("Hello world \n");
- e return O; /* success */
o Use only at initialization @

e initdata
o Mark initialization data
e Does not accept parameters
e Returns error code
e Kernel drops init function and data

o Makes the memory available to the system

module_init(hello_init);

Shutdown function

e Only if you need to unload the module

e Declared as static static void __exit hello_exit(void) {
° exit <name> printk("Goodbye,\n");
- }
o only at shutdown

e module_exit(<name>) module_exit(hello_exit);
e If not defined

o Modules can not be unloaded
e The build in modules do not require shutdown

e Similar to printf but:
o Prints to the kernel log file
o Does not support all the formatting parameters

e \ery expensive operation

o Lots of printk’s can significantly slow down the
system

e Accepts loglevels

o A hint to the kernel to decide if it should print the

string to the log file
o Default KERN_WARNING

printk - loglevels

KERN_EMER

o An emergency condition
KERN_ALERT,

o requires immediate attention
KERN CRIT

KERN ERR

KERN_ WARNING

KERN_ NOTICE

KERN INFO

KERN DEBUG

Module parameters

e Pass parameters to the module through
o Insmod
o modprobe

e modprobe reads parameters thought
o [etc/modprobe

e Read parameter value while module is loaded
o cat sys/module/<mod_na>/parameters/<param_na>

Module parameters

e Parameter declaration
o module_param(name, type, permission)
m Permissions modes are as file access modes

m Parameters types:
e bool, inbool (inverted bool)
e charp, string
e int, long, short
e uint, ulong, ushort

e Also accepts arrays parameters
o module param_array(name, type, nump, perm)

Error handling

e Failure may occur during initialization phase
o memory allocation
o device is busy

e continue or drop?

o |f we drop
m undo any registration activities performed before

m in case we fail to unregister the kernel goes into
unstable mode

e Recovery is usually handle with the goto
statement

Error handling

e Error number definitions at <linux/errno.h>
O Return negative values -error code;

#define EPERM 1 [* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define EIO) [* 1/O error */

#define ENOEXEC 8 [* Exec format error */
#define EAGAIN 11 [* Try again */

#define ENOMEM 12 /* Out of memory */

#define EACCES 13 [* Permission denied */

#define ENOSYS 38 /* Function not implemented */
#define ENOTEMPTY 39 /* Directory not empty */

e Compile, load and unload
e User space VS. kernel space programing
e Summary

Compile

e kbuild

o the system that is used to compile kernel modules
o /Documentation/kbuild/

e You must have a pre-build kernel with
configuration and header files
e Many distributions have packages for the

required files and tools
o kernel-devel package for CentOS

Compile command

e make -C $KDIR M=$PWD [target]
o $KDIR
B the directory where the kernel source is located.

m make will change the directory for the compile
and will return after the compile
o M=$PWD
m Informs kbuild that an external module is being
build.
m [he value of M is the absolute path the directory
that contains the source code of the module

make command targets

e modules
o The default target that can be ignored

e modules install
o |nstalls the external modules

o The default location is
/lib/modules/<kernel release>/extra/

e clean
o remove all generated files in the module directory
only

e help

o list the available target for the external modules

e Contains the name of the module(s) being

built, along with the requisite source files
o obj-m :=<m_name>.0
m kbuild will build <m_name>.o from <m_name>.c

o Then it will link it and will result in the kernel module
<m_name>.ko
o An additional line is needed to add more files
m <module name>-y := <src1>.0 <src2>.0
o Include files and directories
m standard files using #include <file>
m ccflags-y := -linclude path

Module.symvers file

e Module versioning is enabled by the
CONFIG_MODVERSIONS tag

e |tis used as a simple Application Binary

nterface (ABI) consistency check

e [t contains a list of all exported symbols from
a kernel build

e /proc/kallsyms

insmod (insert module)

e |oad the module into the kernel
e triggers the execution of the
module _init function
e Similar to the Id in user space
e |oad the module code and data into the
kernel memory
e Links any unresolved symbol in the
module to the symbol table of the kernel
e Accepts command line arguments
e Parameters to the kernel module
e Add an entry at /proc/modules
e For more details check kernel/module.c

rmmod (remove module)

Removes/unloads the module from the
kernel

Must free memory and release recourse
In case of failure the kernel still believes
that the module is in use

In case that rmmod fails the reboot
process is required to clean the systems
state

More tools

e Ismod (list modules)
o List of the current loaded modules
e modprobe (similar to insmod)
o Search for symbols that are not currently defined in the
kernel
o In case that there are then search for in kernel modules
to find modules that contain these symbols
o It loads these modules into the kernel
e depmod
o Creates a dependency file
o Used by modprobe
e modinfo
o Shows information about a Linux Kernel module

Version dependency

e Modules have to be recompiled for each version
o data structures and function prototypes can changes
from version to version
o during compilation the module is linked against a file
named vermagic.o

o This file contains target kernel version, compiler
version etc.
e |n case that the module is compile against different
kernel version
o insmod: Invalid module format

Version dependency (cont.)

e Macros to define kernel version during compilation
found in /linux/version.h
o UTS_ RELEASE, the version of this kernel tree
o LINUX VERSION_ CODE, binary representation of
the kernel version
o KERNEL_VERSION(major, minor, release), build
an inter version code

Kernel Symbol Table

e Kernel has already exported symbols

e Loaded modules can export new symbols
o offer their functionality to other modules
e Stack modules on top of other modules
o Reduce complexity of the modules
o Add flexibility to choose modules depending on the
specific hardware
e Macros to export new symbols
o EXPORT_SYMBOL(name);
o EXPORT _SYMBOL_GPL(make);
e Expand into specific variable declarations stored in

the module executable file

e Dynamic Kernel Module Support

o Framework that enables generating Linux kernel

modules whose sources generally reside outside the
kernel source tree

o Used to automatically rebuilt modules when a new

kernel is installed
o |tis included in many distributions

e User space VS. kernel space programing
e Summary

User VS. Kernel programming

e kernel module programming
o similar to event driven programming

e init function

o says: hey | am here, | will serve your requests from
now and on

e exit function

o says: | am going to leave you.. don't bother trying to
find me anymore
e Unload

o should release any resource that the module had
acquired

User VS. Kernel programming

e kernel module runs in kernel space
o Core of the operating system
o Privileged operating system functions
o Full access to all memory and machine hardware
o Kernel address space

e User programs run in user space
o It restricts user programs so they can't mess resources

owned by other programs or by the OS kernel
o Limited ability to do bad things like crashing the machine

User VS. Kernel programming

e System calls Switch between user and kernel

e Memory handling
o malloc is C library call - NOT a system call
m Use brk system call
o Kernel allocates virtual memory area for the
application
o Lacks of memory protection
e Portability,
o Kernel modules work with specific version and
distribution of the kernel and might be platform-
specific

User VS. Kernel programming

e Kernel does not have standard headers
o Is not linked against the standard C library
o However, many functions are implemented inside the
Linux kernel
e Cannot execute easily floating point operations
o Floating point operations are architecture dependent
o Usually, implemented with traps, (trigger integer to
floating point mode transition)
o In the kernel space it requires saving and restoring the
floating point operations manually
e Small fixed size stack
o Configurable at compile time (4KB or 8KB)

e Summary

Summary

® Role of the Device Driver
o Mechanism VS. Policy
e How to write a dummy kernel module
o initialization, exit function
o Makefile
e Tools to handle kernel modules
o insmod, rmmod, Ismod, modprobe
e Differences between User and Kernel programming

Music album as LKM

e Band releases album as Linux kernel module
o http://www.networkworld.
com/article/2226788/software/band-releases-
album-as-linux-kernel-module.html

http://www.networkworld.com/article/2226788/software/band-releases-album-as-linux-kernel-module.html
http://www.networkworld.com/article/2226788/software/band-releases-album-as-linux-kernel-module.html
http://www.networkworld.com/article/2226788/software/band-releases-album-as-linux-kernel-module.html
http://www.networkworld.com/article/2226788/software/band-releases-album-as-linux-kernel-module.html

