
Databases and Data Warehouses

Lecture BigData Analytics

Julian M. Kunkel

julian.kunkel@googlemail.com

University of Hamburg / German Climate Computing Center (DKRZ)

23-10-2015

julian.kunkel@googlemail.com

Relational Model Accessing Databases with SQL Data Warehouses Summary

Outline

1 Relational Model

2 Accessing Databases with SQL

3 Data Warehouses

4 Summary

Julian M. Kunkel Lecture BigData Analytics, 2015 2 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

1 Relational Model
Overview
ER Diagrams
Keys
Normalization

2 Accessing Databases with SQL

3 Data Warehouses

4 Summary

Julian M. Kunkel Lecture BigData Analytics, 2015 3 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Relational Model [10]

Database model based on first-order predicate logic
Theoretic foundations: relational algebra and calculus

Data is represented as tuples

Relation/Table: groups similar tuples
Table consists of rows and named columns (attributes)
No duplicates of complete rows allowed

No support for collections in tuples

Schema: specify structure of tables
Datatypes (domain of attributes)
Organization and optimizations
Consistency via constraints

Figure: Source: Relational model concepts [11]

Julian M. Kunkel Lecture BigData Analytics, 2015 4 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Example Schema for our Students Data

Description

Database for information about students and lectures

Relational model

Matrikel Name Birthday
242 Hans 22.04.1955
245 Fritz 24.05.1995

Table: Student table

ID Name
1 Big Data Analytics
2 Hochleistungsrechnen

Table: Lecture table

Matrikel LectureID
242 1
242 2
245 2

Table: Attends table representing a relation

Julian M. Kunkel Lecture BigData Analytics, 2015 5 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Relationships

Model relationships between data entities

Cardinality defines how many entities are related

Relevant relationships are

One-to-many: One entity of type A with many entities of type B
Many-to-many: One-to-many in both directions
One-to-one: One entity of type A with at most one entity of type B

Relationships can be expressed with additional columns

Packing data of entities together in the table
Alternatively: provide a “reference” to other tables

Matrikel Name Birthday Lecture ID Lecture Name
242 Hans 22.04.1955 1 Big Data Analytics
242 Hans 22.04.1955 2 Hochleistungsrechnen
245 Fritz 24.05.1995 2 Hochleistungsrechnen

Table: Student table with attended lecture information embedded

Julian M. Kunkel Lecture BigData Analytics, 2015 6 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Entity Relationship Diagrams

Illustrate the relational model and partly the database schema

Elements: Entity, relations, attributes

Additional information about them e.g. cardinality, data types

Student Lecture
* *

attends

NameMatrikel Birthday NameID

Figure: A student/lecture example in modified Chen notation, * is the cardinality and
means any number is fine

Julian M. Kunkel Lecture BigData Analytics, 2015 7 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Keys [16, 17, 18]

A Superkey1 allows addressing specific tuples in a table

Superkey: Set of attributes that identify each tuple in a table

There is at most one tuple for each possible key value
A superkey does not have to be minimal

e.g. all columns of a table are a Superkey
After removing an attribute it can still be a key

Simple key: key is only one attribute
Compound key: consists of at least two attributes

Candidate key: a minimal key i.e. no attribute can be removed

Primary key: the selected candidate key for a table

Foreign key: inherited key of another table

Natural key: key that naturally is unique, e.g. matrikel

Surrogate key: artificial key, e.g. numeric ID for a row

1Often it is just called key

Julian M. Kunkel Lecture BigData Analytics, 2015 8 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Example Keys
Table: Student table

Matrikel Name Birthday ...
242 Hans 22.04.1955
245 Fritz 24.05.1995

Table: Lecture table

ID Name Semester
1 Big Data Analytics SS15
2 Hochleistungsrechnen WS1516

Table: Attends table representing a relation
Matrikel LectureID
242 1
242 2
245 2

Student table

Candidate keys: Matrikel, (name, birthday, city), social insurance
Primary key: Matrikel (also a natural key)

Lecture table

Candidate keys: ID, (Name, Semester)
Primary key: ID (also a Surrogate Key)

Attends table

Candidate key: (Matrikel, Lecture ID)
Primary key: (Matrikel, Lecture ID)

Julian M. Kunkel Lecture BigData Analytics, 2015 9 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Normalization: My Simplified Perspective [10]

Normalization is the process of organizing the columns and tables to
minimize redundancy [19]

Reduces dependencies
Prevents inconsistency across replicated information
Normally, reduces required storage space and speeds up updates

There are different normal forms with increasing requirements
1NF: It follows our notion of a table.

No collections in the table. A primary key exists.

2NF: No redundancy of data

I.e. entities of many-to-many relations are stored in separate tables
Every column must depend on each candidate key and not a subset

3NF: Columns are not functional dependent to sth. else than a candidate key
4NF: Do not store multiple relationships in one table
4NF is a good choice2

2It has been shown that 4NF can always be achieved for relational data

Julian M. Kunkel Lecture BigData Analytics, 2015 10 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Example for Unnormalized Data

Matrikel Name Birthday Name
242 Hans 22.04.1955 [Big Data Analytics, Hochleistungsrechnen]

245 Fritz 24.05.1995 Hochleistungsrechnen

Table: Not normalized Student and lecture table/relation, contains identical column
names and collections

Matrikel Name Birthday Lecture Name
242 Hans 22.04.1955 Big Data Analytics
242 Hans 22.04.1955 Hochleistungsrechnen
245 Fritz 24.05.1995 Hochleistungsrechnen

Table: Student and lecture table/relation in 1NF, it contains a many-to-many relation.
Changing lecture name requires to touch multiple rows

Julian M. Kunkel Lecture BigData Analytics, 2015 11 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Example for Unnormalized Data

Matrikel Name Birthday Age
242 Hans 22.04.1955 40
245 Fritz 24.05.1995 20

Table: In 2NF but not 3NF: Age is functional depending on birthday

Matrikel Attended lecture Attended seminar
242 BDA SIW
242 HR SIW
242 BDA NTH
242 HR NTH

Table: In 3NF but not 4NF: Candidate key depends on all three columns

Julian M. Kunkel Lecture BigData Analytics, 2015 12 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

1 Relational Model

2 Accessing Databases with SQL
Databases
Overview
Schemas
Queries
Joins
Useful Features for Big Data Analytics
Mutating Tables
Performance Aspects

3 Data Warehouses

4 Summary

Julian M. Kunkel Lecture BigData Analytics, 2015 13 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Databases [29]

Database: an organized collection of data

Includes layout (schemes), queries, views
Database models: Relational, graph, document, ...

Database management system (DBMS): software application that
interacts with the user, other applications and the database itself to
capture and analyze data [29]

Definition, creation, update, querying and administration of databases

DBMS functions for managing databases

Data definition: Creation, modification of definitions for data organization

Update: Insertion, modification and deletion of data

Query/Retrieval: retrieving stored and computing derived data

Administration: user management, security, monitoring, data integrity,
recovery

Julian M. Kunkel Lecture BigData Analytics, 2015 14 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Structured Query Language (SQL) [20]

Declarative language: specify what to achieve and not how

Evolving standard that includes more and more features

Language elements

Query: retrieve (and compute) data based on criteria

Statement: instructions to perform, terminate by ;

Clause: components of statements

Predicates: conditions limiting the affected rows/columns

Expressions: produce scalar values or tables

Operators: compare values, change column names

Functions: transform/compute values

Julian M. Kunkel Lecture BigData Analytics, 2015 15 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

PostgreSQL [10]
A popular database implementation

Semantics: ACID support for transactions

A transaction is a batch of operations
It either fails or succeeds

Implements majority of SQL:2011 standard

Note that syntax may differ from the standard

Typically databases offer extensions to the standard

Interactive shell via psql

Excerpt of features

Materialized views (create virtual tables from logical tables)

Fulltext search

Regular expression

Statistics and histograms

User defined objects (functions, operators)

Triggers: events upon insert or update statements; may invoke functions

New versions support semi-structed data in arrays, XML, JSON3

3See http://www.postgresql.org/docs/9.4/static/arrays.html and
http://www.postgresql.org/docs/9.4/static/functions-json.html

Julian M. Kunkel Lecture BigData Analytics, 2015 16 / 47

http://www.postgresql.org/docs/9.4/static/arrays.html
http://www.postgresql.org/docs/9.4/static/functions-json.html

Relational Model Accessing Databases with SQL Data Warehouses Summary

Schemas (in Postgres)

Creation of our database and table

1 CREATE ROLE "bigdata" NOSUPERUSER LOGIN PASSWORD ’mybigdata’;
2 CREATE DATABASE bigdata OWNER "bigdata";

To connect to the database use psql -W -U BigData bd

Create our tables
1 CREATE TABLE students (matrikel INT, name VARCHAR, birthday DATE, PRIMARY KEY(matrikel));
2 CREATE TABLE lectures (id SERIAL, name VARCHAR, PRIMARY KEY(id));
3 CREATE TABLE attends (matrikel INT, lid INT,
4 FOREIGN KEY (matrikel) REFERENCES students(matrikel),
5 FOREIGN KEY (lid) REFERENCES lectures(id));
6 --\d <TABLE> prints the schema

Additional constraints
1 -- minimum length of the name shall be 5
2 ALTER TABLE students ADD CONSTRAINT length CHECK (char_length(name) > 3);
3 -- to remove the constraint later: ALTER TABLE students DROP CONSTRAINT length ;
4 -- minimum age of students should be 10 years
5 ALTER TABLE students ADD CONSTRAINT age CHECK (extract(’year’ from age(birthday)) > 10);
6 -- disallow NULL values in students
7 ALTER TABLE students ALTER COLUMN birthday SET NOT NULL; -- during CREATE with "birthday DATE NOT NULL"
8 ALTER TABLE students ALTER COLUMN name SET NOT NULL;

Julian M. Kunkel Lecture BigData Analytics, 2015 17 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Populating the Tables

1 -- Explicit specification of columns, not defined values are NULL
2 INSERT INTO students (matrikel, name, birthday)
3 VALUES (242, ’Hans’, ’22.04.1955’);
4 -- This should be prevented using a constraint
5 INSERT INTO students (matrikel, name) VALUES (246, ’Hans’);
6 -- Order is expected to match the columns in the table
7 INSERT INTO students VALUES (245, ’Fritz’, ’24.05.1995’);
8 INSERT INTO lectures VALUES (1, ’Big Data Analytics’);
9 INSERT INTO lectures VALUES (2, ’Hochleistungsrechnen’);

10

11 -- Populate relation
12 INSERT into attends VALUES(242, 1);
13 INSERT into attends VALUES(242, 2);
14 INSERT into attends VALUES(245, 2);
15

16 -- Insertations that will fail due to table constraints:
17 INSERT INTO students (matrikel, name) VALUES (250, ’Hans’);
18 -- ERROR: null value in column "birthday" violates not-null constraint
19 INSERT INTO students VALUES (250, ’Hans’, ’22.04.2009’);
20 -- ERROR: new row for relation "students" violates check constraint "age"
21 INSERT INTO students VALUES (245, ’Fritz’, ’24.05.1995’);
22 -- ERROR: duplicate key value violates unique constraint "students_pkey"
23 -- DETAIL: Key (matrikel)=(245) already exists.

Julian M. Kunkel Lecture BigData Analytics, 2015 18 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Queries [20]

A query retrieves/computes a (sub)table from tables
It does not change/mutate any content of existing tables
Statement: SELECT < column1 >,< column2 >, ...

Subqueries: nesting of queries is possible

Supported clauses

FROM: specify the table(s) to retrieve data

WHERE: filter rows returned

GROUP BY: group rows together that match conditions

HAVING: filters grouped rows

ORDER BY: sort the columns

1 SELECT Matrikel, Name FROM students
2 WHERE Birthday=’22.04.1955’;
3 -- Returns a table with one row:
4 -- matrikel | name
5 -- ----------+------
6 -- 242 | Hans

Julian M. Kunkel Lecture BigData Analytics, 2015 19 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

More Queries

Ordering of tables

1 -- Example comment, alternatively /* */
2 select * from students
3 where (name != ’fritz’ and name != ’nena’) -- two constraints
4 order by name desc; -- descending sorting order

Aggregation functions

1 -- There are several aggregate functions such as max, min, sum, avg
2 select max(birthday) from students;
3 -- 1995-05-24
4

5 -- It is not valid to combine reductions with non-reduced columns e.g.
6 select matrikel, max(birthday) from students; -- ERROR!

Counting the number of students

1 -- Number of students in the table and rename the column to number
2 SELECT count(*) AS number FROM students;
3 -- number
4 -- 2

Julian M. Kunkel Lecture BigData Analytics, 2015 20 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Subqueries

A subquery creates a new (virtual) named table to be accessed

Identify the average age

1 -- Identify the min, max and average age, therefore, we create a new table and convert
↪→ the date

2 select min(age), avg(age), max(age) from
3 -- Here we create the virtual table with the name ageTbl
4 (SELECT age(birthday) as age from students) as ageTbl;
5 -- min | avg | max
6 -- 20 years 3 mons 30 days | 40 years 4 mons 15 days 12:00:00 | 60 years ...

Identify students which are not attending any course

1 -- We use a subquery and comparison with the set
2 select matrikel from students
3 where matrikel not in -- compare a value with entries in a column
4 (select matrikel from attends);

Subquery expressions: exists, in, some, all, (operators, e.g. <) 4

4See http://www.postgresql.org/docs/9.4/static/functions-subquery.html

Julian M. Kunkel Lecture BigData Analytics, 2015 21 / 47

http://www.postgresql.org/docs/9.4/static/functions-subquery.html

Relational Model Accessing Databases with SQL Data Warehouses Summary

Grouping of Data

Data can be grouped by one or multiple (virtual) columns. It is not valid to
include non-grouped or non-reduced values

Identify students with the same name and birthday, count them

1 select name, birthday, count(*) from students group by name, birthday;
2 -- name | max | count
3 ---------+------------+-------
4 -- Fritz | 1995-05-24 | 1
5 -- Hans | 1955-04-22 | 1

Figure out the number of people starting with the same letter

1 select upper(substr(name,1,1)) as firstletter, count(*) from students
2 group by firstletter;
3 -- firstletter | count
4 ---------------+------------
5 -- F | 1
6 -- H | 1

Julian M. Kunkel Lecture BigData Analytics, 2015 22 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Filtering Groups of Data

With the HAVING clause, groups can be filtered

ORDER BY is the last clause and can be applied to aggregates

Identify students with the same name and birthday, and return the total
number of non-“duplicates”

1 select sum(mcount) from
2 (select count(*) as mcount from students
3 group by name, birthday having count(*) = 1 order by count(*)) as groupCount;
4 -- sum
5 -- 2
6

7 -- Alternatively in a subquery you can use:
8 select sum(count) from
9 (select count(*) as count from students

10 group by name, birthday) as groupCount
11 where count = 1;

Julian M. Kunkel Lecture BigData Analytics, 2015 23 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Joins [10]

A join combines records from multiple tables

Usually filtering tuples according to a condition

Used to resolve relations of entities in normalized schemes

Types of joins

CROSS JOIN: Cartesian product of two tables

NATURAL JOIN: All combinations that are equal on their common
attributes

INNER JOIN: Return all rows that have matching records based on a
condition

OUTER JOIN: Return all rows of both tables even if they are not matching
the condition

LEFT OUTER JOIN: Return all combinations and all tuples from the left table
RIGHT OUTER JOIN: ... from the right table
FULL OUTER JOIN: Return all combinations

Julian M. Kunkel Lecture BigData Analytics, 2015 24 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Example Joins

1 select * from students as s1 CROSS JOIN students as s2;
2 -- matrikel | name | birthday | matrikel | name | birthday
3 ------------+-------+------------+----------+-------+------------
4 -- 242 | Hans | 1955-04-22 | 242 | Hans | 1955-04-22
5 -- 242 | Hans | 1955-04-22 | 245 | Fritz | 1995-05-24
6 -- 245 | Fritz | 1995-05-24 | 242 | Hans | 1955-04-22
7 -- 245 | Fritz | 1995-05-24 | 245 | Fritz | 1995-05-24
8

9 select * from students NATURAL JOIN attends;
10 -- matrikel | name | birthday | lid
11 -- ----------+-------+------------+-----
12 -- 242 | Hans | 1955-04-22 | 1
13 -- 242 | Hans | 1955-04-22 | 2
14 -- 245 | Fritz | 1995-05-24 | 2
15

16 select * from students INNER JOIN attends ON students.matrikel = attends.matrikel;
17 -- matrikel | name | birthday | matrikel | lid
18 ------------+-------+------------+----------+-----
19 -- 242 | Hans | 1955-04-22 | 242 | 1
20 -- 242 | Hans | 1955-04-22 | 242 | 2
21 -- 245 | Fritz | 1995-05-24 | 245 | 2

Julian M. Kunkel Lecture BigData Analytics, 2015 25 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Example Joins
1 -- This join returns NULL values for Fritz as he has not the selected matrikel
2 select * from students LEFT OUTER JOIN attends ON students.matrikel = 242;
3 -- matrikel | name | birthday | matrikel | lid
4 ----------+-------+------------+----------+-----
5 -- 242 | Hans | 1955-04-22 | 242 | 1
6 -- 242 | Hans | 1955-04-22 | 242 | 2
7 -- 242 | Hans | 1955-04-22 | 245 | 2
8 -- 245 | Fritz | 1995-05-24 | |
9

10 select * from students as s FULL OUTER JOIN attends as a ON s.matrikel = a.lid;
11 -- matrikel | name | birthday | matrikel | lid
12 ------------+-------+------------+----------+-----
13 -- | | | 242 | 1
14 -- | | | 242 | 2
15 -- | | | 245 | 2
16 -- 242 | Hans | 1955-04-22 | |
17 -- 245 | Fritz | 1995-05-24 | |
18

19 -- Now identify all lectures attended by Hans
20 select s.name, l.name from students as s INNER JOIN attends as a ON s.matrikel

↪→ = a.matrikel INNER JOIN lectures as l ON a.lid=l.id;
21 -- name | name
22 ---------+----------------------
23 -- Hans | Big Data Analytics
24 -- Hans | Hochleistungsrechnen
25 -- Fritz | Hochleistungsrechnen

Julian M. Kunkel Lecture BigData Analytics, 2015 26 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Views
View: virtual table based on a query

Can be used to re-compute complex dependencies/apply joins
The query is evaluated at runtime, which may be costly

Materialized view: copies data when it is created/updated5

Better performance for complex queries
Suitable for data analytics of data analysts
Export views with permissions and reduce knowledge of schema

1 CREATE VIEW studentsView AS
2 SELECT s.matrikel, s.name as studentName, l.name as lectureName, age(birthday) as age

↪→ from students as s INNER JOIN attends as a ON s.matrikel = a.matrikel INNER
↪→ JOIN lectures as l ON a.lid=l.id;

3

4 select * from studentsView;
5 -- matrikel | studentname | lecturename | age
6 ------------+-------------+----------------------+-------------------------
7 -- 242 | Hans | Big Data Analytics | 60 years 5 mons 1 day
8 -- 242 | Hans | Hochleistungsrechnen | 60 years 5 mons 1 day
9 -- 245 | Fritz | Hochleistungsrechnen | 20 years 3 mons 30 days

10 -- To replace the data with new data
11 REFRESH MATERIALIZED VIEW studentsView;

5www.postgresql.org/docs/9.4/static/sql-creatematerializedview.html

Julian M. Kunkel Lecture BigData Analytics, 2015 27 / 47

www.postgresql.org/docs/9.4/static/sql-creatematerializedview.html

Relational Model Accessing Databases with SQL Data Warehouses Summary

Regular Expressions

PostgreSQL supports several styles of regular expressions6

We will look at POSIX regular expressions (regex)
Operator: ~for matching and ~* for not matching
regexp_matches(string, pattern) returns text array with all matches

Examples

1 -- Any lecture which name contains Data
2 select name from lectures where name~*’data’;
3 -- Big Data Analytics
4

5 -- Lectures starting with Big
6 select name from lectures where name~’^Big.*$’;
7 -- Big Data Analytics
8

9 -- Students whose name contain at least two vocals
10 select name from students where name~’(i|a|o|u).*(a|i|o|u)’;
11

12 -- Students whose name contain at least one vacal and at most three
13 select name from students where name~’^([^auiu]*(i|a|o|u)[^aiou]*){1,3}$’;
14

15 -- Retrieve all lower case letters in the names
16 select regexp_matches(name, ’[a-z]’, ’g’) as letter from students;
17 -- {a}, {n} ...

6See http://www.postgresql.org/docs/9.4/static/functions-matching.html

Julian M. Kunkel Lecture BigData Analytics, 2015 28 / 47

http://www.postgresql.org/docs/9.4/static/functions-matching.html

Relational Model Accessing Databases with SQL Data Warehouses Summary

Array Operations

Operations allow manipulation of multidimensional arrays7

Useful operators: unnest, array_agg, array_length

JSON support in new postgres version (not discussed here)

1 -- Alternative schema for our student/lecture example using an array for the attends relationship
2 CREATE TABLE studentsA (matrikel INT, name VARCHAR, birthday DATE, attends INT[], PRIMARY KEY(matrikel));
3 CREATE TABLE lectures (id SERIAL, name VARCHAR, PRIMARY KEY(id));
4
5 INSERT INTO studentsA VALUES (242, ’Hans’, ’22.04.1955’, ’{1,2}’);
6 INSERT INTO studentsA VALUES (245, ’Fritz’, ’24.05.1995’, ’{2}’);
7
8 -- Addressing array elements: first lecture attended by each student
9 SELECT attends[1] from studentsA;
10 -- Slicing is supported: First three lectures
11 SELECT attends[1:3] from studentsA;
12
13 -- Retrieve the lecture name attended for each student
14 SELECT s.name, l.name from studentsA AS s INNER JOIN lectures AS l ON l.id = ANY(s.attends);
15 -- Hans | Big Data Analytics
16 -- Hans | Hochleistungsrechnen
17 -- Fritz | Hochleistungsrechnen
18
19 -- Now retrieve the lectures in an array per person
20 SELECT s.name, array_agg(l.name) from studentsA AS s INNER JOIN lectures AS l ON l.id = ANY(s.attends) GROUP by s.matrikel;
21 -- Hans | {"Big Data Analytics",Hochleistungsrechnen}
22 -- Fritz | {Hochleistungsrechnen}

7See http://www.postgresql.org/docs/9.4/static/arrays.html

Julian M. Kunkel Lecture BigData Analytics, 2015 29 / 47

http://www.postgresql.org/docs/9.4/static/arrays.html

Relational Model Accessing Databases with SQL Data Warehouses Summary

Updating Rows

UPDATE statement allows changes values

DELETE statement removes rows

Each individual operation follows the ACID semantics8

Transactions allow to batch operations together

1 -- Change the name of Fritz
2 UPDATE students SET name=’Fritzchen’ WHERE matrikel=245;
3

4 -- Remove Fritzchens attendance in Hochleistungsrechnen
5 DELETE FROM attends WHERE matrikel=242 and lid=2;
6

7 -- Subqueries can be used to select rows that are updated/deleted
8 -- Remove Fritzchen attendence with the name
9 DELETE from attends WHERE matrikel=242 and lid = (SELECT id from lectures where name =

↪→ ’Hochleistungsrechnen’);

8In fact, when AUTOCOMMIT is enabled, every statement is wrapped in a transaction. To change this
behavior on the shell, invoke: SET AUTOCOMMIT [OFF|ON]

Julian M. Kunkel Lecture BigData Analytics, 2015 30 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Transactions

Transaction: A sequence of operations executed with ACID semantics

It either succeeds and becomes visible and durable; or it fails
Note: Complex data dependencies of concurrent operations may create a
unresolvable state that require restart

All queries access data in the version when it started

The isolation level can be relaxed, e.g. see committed or uncommited
changes

Internally, complex locking schemes ensure conflict detection

Example: Atomic money transfer between bank accounts

1 START TRANSACTION;
2 UPDATE account SET balance=balance-1000.40 WHERE account=4711;
3 UPDATE account SET balance=balance+1000.40 WHERE account=5522;
4

5 -- if anything failed, revert to the original state
6 IF ERRORS=0 COMMIT; -- make the changes durable
7 IF ERRORS!=0 ROLLBACK; -- revert

Julian M. Kunkel Lecture BigData Analytics, 2015 31 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Performance Aspects

Indexes

Full scan: when searching for a variable with a condition e.g. x=y, the
table data needs to be read completely

Index allows lookup of rows for which a condition (likely) holds

Postgres supports B-tree, hash, GiST, SP-GiST and GIN indexes9

1 CREATE INDEX ON students (name);

Optimizing the execution of operations (query plan)

Postgres uses several methods to optimize the query plan

The query planer utilizes statistics about access costs

Knowing how values are distributed helps optimizing access

ANALYZE statement triggers collection of statistics

Alternatively: automatically collect statistics

EXPLAIN statement: describes the query plan

9See http://www.postgresql.org/docs/9.4/static/sql-createindex.html

Julian M. Kunkel Lecture BigData Analytics, 2015 32 / 47

http://www.postgresql.org/docs/9.4/static/sql-createindex.html

Relational Model Accessing Databases with SQL Data Warehouses Summary

Performance Aspects (2) [22]

Bulk Loads/Restores

Combine several INSERTS into one transaction

Perform periodic commits

Create indexes/foreign key/constraints after data was inserted

Vacuuming: Cleaning empty space

When changing or inserting rows additional space is needed

It is expensive to identify empty rows and compact them

⇒ Just append new data
Mark data e.g. in a bitmap as outdated

Periodically space is reclaimed and data structures are cleaned

VACCUUM statement also triggers cleanup

ANALYZE also estimates the amount of garbage to optimize queries

Julian M. Kunkel Lecture BigData Analytics, 2015 33 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

1 Relational Model

2 Accessing Databases with SQL

3 Data Warehouses
Data Warehouses vs. Databases vs. BigData
Typical OLAP Operations
Alternative Schemas

4 Summary

Julian M. Kunkel Lecture BigData Analytics, 2015 34 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Data Warehouse

“A data warehouse (DW or DWH), also known as an enterprise data
warehouse (EDW), is a system used for reporting and data analysis.” [27]

Central repository

Integrates data from multiple inhomogeneous sources

Provides tools for the business analyst in descriptive analysis

Many queries are executed periodically and used in reports

May provide some tools for predictive analysis

Data analysts use a simplified data model: a multidimensional data cube

Julian M. Kunkel Lecture BigData Analytics, 2015 35 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Databases vs. Big Data

Database management systems (DBMS)

Standardized systems and methods to process structured data

Use the relational model for data representation

Use SQL for processing

Online Transaction Processing (OLTP)

Real-time processing

Offer ACID qualities

Relies on normalized schemes (avoid redundant information)

Online Analytical Processing (OLAP)

Systems and methods to analyze large quantities of data

Utilizes data warehouses with non-normalized schemes

Extract, Transform and Load (ETL): import data from OLTP

Julian M. Kunkel Lecture BigData Analytics, 2015 36 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

OLAP

Online analytical process with large quantities of business data

Utilizes denormalized dimensional model to avoid costly joins

Technology alternatives:

MOLAP (Multidimensional OLAP): problem-specific solution
With relational databases (ROLAP)

Star schema
Snowflake schema

Dimensional modeling: design techniques and concepts [26]

1 Choose the business process e.g. sales situation
2 Declare the grain: what does the model focus on e.g. item purchased
3 Identify the dimensions
4 Identify the facts

Julian M. Kunkel Lecture BigData Analytics, 2015 37 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

The OLAP Cube: Typical Operations [27]

Slice: Fix one value to reduce the dimension by one

Dice: Pick specific values of multiple operations

Roll-up: Summarize data along a dimension

Formulas can be applied, e.g. profit = income - expense

Pivot: Rotate the cube to see the faces

Julian M. Kunkel Lecture BigData Analytics, 2015 38 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

The OLAP Cube: Slice [27]

Slice: Fix one value to reduce the dimension by one

Figure: Source: Infopedian, OLAP Slicing [27]

Julian M. Kunkel Lecture BigData Analytics, 2015 39 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

The OLAP Cube: Dice [27]

Dice: Pick specific values of multiple operations

Figure: Source: Infopedian, OLAP dicing [27]

Julian M. Kunkel Lecture BigData Analytics, 2015 40 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

The OLAP Cube: Drill Down/Up [27]

Drill Down/Up: Navigate the aggregation level

Drill down increases the detail level

Figure: Source: Infopedian, OLAP Drill-up and drill-down [27]

Julian M. Kunkel Lecture BigData Analytics, 2015 41 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Star (and Snowflake) Schemas [23]

Implement the OLAP cube in relational databases

Data model

Fact table: records measurements/metrics for a specific event

Center of the star
Transaction table: records a specific event e.g. sale
Snapshot table: record facts at a given point in time e.g. account
balance at the end of the month
Accumulating table: aggregate facts for a timespan e.g.
month-to-date sales for a product

⇒ A fact table retains information at a low granularity and can be huge

Dimension tables: describe the facts in one dimension

Contains e.g. time, geography, product (hierarchy), employee, range
The fact table contains a FOREIGN KEY to all dimension tables

⇒ Comparably small table

Snowflake schema normalizes dimensions to reduce storage costs

Julian M. Kunkel Lecture BigData Analytics, 2015 42 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Star Schema Example Model

Customer
Date
Geography
Product

Fact table

ID
Name
Age
City ...

Customer

ID
Hour
Day
Month
Year

Date

ID
Store
Region
Country

Geography

ID
Name
Category
Description

Product
Price
Units_Sold

Figure: Star schema

Julian M. Kunkel Lecture BigData Analytics, 2015 43 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Star Schema: Example Query

Analyze the sales of TVs per country and brand [23]

1 SELECT P.Brand, S.Country AS Countries,
2 SUM(F.Units_Sold)
3 FROM Fact_Sales F
4 INNER JOIN Date D ON (F.Date_Id = D.Id)
5 INNER JOIN Store S ON (F.Store_Id = S.Id)
6 INNER JOIN Product P ON (F.Product_Id = P.Id)
7

8 WHERE D.Year = 1997 AND P.Product_Category = ’tv’
9

10 GROUP BY
11 P.Brand,
12 S.Country

Julian M. Kunkel Lecture BigData Analytics, 2015 44 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Star Schema [23]

Advantages

Simplification of queries and performance gains

Emulates OLAP cubes

Disadvantages

Data integrity is not guaranteed

No natural support for many-to-many relations

Julian M. Kunkel Lecture BigData Analytics, 2015 45 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Snowflake Schema Example Model

Customer
Date
Geography
Product

Fact table

ID
Name
Age
City ...

Customer

ID
Hour
Day

Date

ID
Store
City

Geography
ID
Name
Category
Description

Product

Price
Amount

City
Country

Country
Region

Day
Month

Month
Year

Category
ParentCat

Figure: Snowflake schema

Julian M. Kunkel Lecture BigData Analytics, 2015 46 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Summary

ER-diagrams visualize the relational data model

Keys allow addressing of tuples (rows)

Normalization reduces dependencies

Avoids redundancy, prevents inconsistency

SQL combines data retrieval/modification and computation

Insert, Select, Update, Delete
Joins combine records

Transactions executes a sequence of operations with ACID semantics

A database optimizes the execution of the queries (query planer)

Semi-structured data analysis is possible within JSON and XML

OLAP (Cube) deals with multidimensional business data

Data warehouses store facts along their dimensions

Star-schema implements OLAP in a relational schema

Julian M. Kunkel Lecture BigData Analytics, 2015 47 / 47

Relational Model Accessing Databases with SQL Data Warehouses Summary

Bibliography

10 Wikipedia

11 https://en.wikipedia.org/wiki/Relational_model

16 https://en.wikipedia.org/wiki/Superkey

17 https://en.wikipedia.org/wiki/Candidate_key

18 https://en.wikipedia.org/wiki/Unique_key

19 https://en.wikipedia.org/wiki/Database_normalization

20 https://en.wikipedia.org/wiki/SQL

21 PostgreSQL Documentation http://www.postgresql.org/docs/9.4/static/

22 https://wiki.postgresql.org/wiki/Performance_Optimization

23 https://en.wikipedia.org/wiki/Star_schema

24 https://en.wikipedia.org/wiki/Data_mart

25 https://en.wikipedia.org/wiki/Snowflake_schema

26 https://en.wikipedia.org/wiki/Dimensional_modeling

27 https://en.wikipedia.org/wiki/OLAP_cube

28 https://en.wikipedia.org/wiki/Data_warehouse

29 https://en.wikipedia.org/wiki/Database

Julian M. Kunkel Lecture BigData Analytics, 2015 48 / 47

https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Superkey
https://en.wikipedia.org/wiki/Candidate_key
https://en.wikipedia.org/wiki/Unique_key
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/SQL
http://www.postgresql.org/docs/9.4/static/
https://wiki.postgresql.org/wiki/Performance_Optimization
https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Data_mart
https://en.wikipedia.org/wiki/Snowflake_schema
https://en.wikipedia.org/wiki/Dimensional_modeling
https://en.wikipedia.org/wiki/OLAP_cube
https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Database

	Relational Model
	Overview
	ER Diagrams
	Keys
	Normalization

	Accessing Databases with SQL
	Databases
	Overview
	Schemas
	Queries
	Joins
	Useful Features for Big Data Analytics
	Mutating Tables
	Performance Aspects

	Data Warehouses
	Data Warehouses vs. Databases vs. BigData
	Typical OLAP Operations
	Alternative Schemas

	Summary

