
Introduc)on	to	the	
	Linux	Kernel	

Prak)kum	Kernel	Programming	
University	of	Hamburg	
Scien)fic	Compu)ng	

Winter	semester	2015/2016	
	

Konstan)nos	Chasapis	
Konstan)nos.chasapis@informa)k.uni-hamburg.de	

	

Outline	

•  Introduc)on	(story,	licence,	versioning)	
•  Main	parts	
•  Loadable	Kernel	Modules		
•  System	Calls		
•  Security		

4/11/15 Linux Kernel Intro. 1

Introduc)on	
•  Developed	by	Linus	Torvalds	(1991)	

–  Just	for	Fun:	The	Story	of	an	Accidental		
					Revolu)onary	by	Linus	Torvalds	

•  Based	on	Unix	
•  1st	version	supported	Intel	80386	
•  Currently	various	pla\orms	are	supported	
•  Implemented	in	GNU	C	
•  Several	Distribu)ons	(distro)	

–  RedHat,	CentOS,	Ubuntu,	SUSE,	Debian,	Arch	
–  Different	package	system,	configura)on	etc.	
–  Apply	different	patches	

4/11/15 Linux Kernel Intro. 2

Introduc)on	(cont.)	
•  X-Server	is	not	implemented	within	the	Kernel	
•  Everything	run	in	“Kernel	mode”	

–  Privileged	access	to	hardware	
•  Monolithic	but	boasts	modular	design	

–  Kernel	preemp)on	(under	certain	condi)ons)	
•  The	scheduler	is	permieed	to	forcibly	perform	a	

context	switch	
–  Supports	kernel	threads	
–  Dynamic	load	and	unload	binaries	(kernel	modules)		
–  Reentrant,	several	processes	can	be	in	kernel	mode	

simultaneously	

4/11/15 Linux Kernel Intro. 3

Introduc)on	(cont.)	
•  License	Terms	

–  is	licensed	under	the	Version	2	of	the	GNU	General	Public	
License	(GPL)	

–  Allows	anybody	to	redistribute	and	even	sell	a	product	
covered	by	GPL	as	long	as	the	recipient	has	access	to	the	
source	and	is	able	to	exercise	the	same	rights	

–  Any	sogware	derived	by	a	product	covered	by	GPL	must	be	
released	under	the	GPL	

•  Democra)ze,	everyone	can	contribute	
–  If	you	want	your	code	to	go	into	the	mainline	or	you	have	

modified	the	kernel	then	you	have	to	use	GPL-compa)ble	
license	

4/11/15 Linux Kernel Intro. 4

Introduc)on	(cont.)	
•  Use	of	binary	Blobs	(Modules,	firmware)	

–  The	source	is	not	given	
–  May	contain	part	of	the	driver	from	another	file	system	
–  If	the	code	has	been	ported	from	another	opera)ng	system	

is	legal	
–  If	a	company	wants	to	keep	the	source	private	
–  Using	such	sogware	is	discourage	

•  Versioning	
–  $uname	–a	

3 . 17 . 1

major . minor . revision
4/11/15 Linux Kernel Intro. 5

Outline	

•  Introduc)on	(story,	licence,	versioning)	
•  Main	parts	
•  Loadable	Kernel	Modules		
•  System	Calls		
•  Security		

4/11/15 Linux Kernel Intro. 6

 Αpplications

Linux	system	overview	

 Shell

Kernel

Hardware

4/11/15 Linux Kernel Intro. 7

Privileged mode

Request	flow	

Applications

Shell

Kernel Hardware

4/11/15 Linux Kernel Intro. 8

Main	parts	

Process
Management (PM)

Memory
Management (MM)

Network
Stack

Virtual File
System (VFS)

Device Drivers
(DD) Arch

System Call Interface

4/11/15 Linux Kernel Intro. 9

Main	parts	(cont.)	
•  System	call	interface	(SCI)	

–  A	thin	layer	that	provides	a	method	to	interact	from	user	space	
to	kernel	space	

•  Process	Management	(PM)	
–  Create,	destroy	processes		
–  Communica)on	between	different	processes	(kernel	threads)	
–  CPU	scheduling	

•  Memory	Management	(MM)	
–  Physical	to	virtual	memory	management	
–  Memory	alloca)on	
–  Swapping,	from	memory	to	hard		disk	

4/11/15 Linux Kernel Intro. 10

Main	parts	--	I/O	Path	
•  Virtual	File	System	(VFS)	

–  Eports	the	common	file	interface	
–  Abstract	file	system	func)onality	from	

implementa)on	

•  File	Systems	
–  Implementa)on	of	FS	func)onality	

•  Buffer	Cache	
–  A	set	of	func)ons	to	manipulate	main	

memory	designed	for	FS	
•  Device	Driver	
•  Physical	Device	

–  Where	data	live	

 VFS

ext4 /proc XFS

 Buffer Cache

 Device Drivers

Physical Devices
4/11/15 Linux Kernel Intro. 11

Main	parts	(cont.)	
•  Network	Stack	

–  Implement	the	network	protocols	
–  Deliver	packets	across	programs	and	network	interfaces			

•  Device	Drivers	(DD)	
–  Interact	with	the	hardware	
–  Extract	an	abstrac)on	of	the	device	func)onali)es	

•  Arch	
–  Architecture	dependent	code		

4/11/15 Linux Kernel Intro. 12

Outline	

•  Introduc)on	(story,	licence,	versioning)	
•  Main	parts	
•  Loadable	Kernel	Modules		
•  System	Calls		
•  Security		

4/11/15 Linux Kernel Intro. 13

LKMs	
•  LKMs	(Loadable	Kernel	Modules)		
•  Pre-compiled	binary	pieces	
•  Each	piece	is	called	“module”	
•  Can	be	loaded	at	run)me		
•  Extend	the	func)onality	of	the	system		
•  Enforce	modularity	

–  Easy	to	develop,	debug	and	maintain	
–  No	need	to	rebuild	the	kernel	

•  Can	save	memory	(load	only	the	necessary)	

4/11/15 Linux Kernel Intro. 14

What	are	LKMs	used	for	
•  Everything	that	is	not	required	in	the	core		
•  6	main	categories		

–  Device	drivers	
–  File	system	drivers	

•  Implementa)on	of	a	specific	file	system	
–  System	calls	
–  Network	stack	

•  Interprets	a	network	protocol	
–  TTY	line	disciplines	
–  Executable	interpreters	for	the	supported	formats	

4/11/15 Linux Kernel Intro. 15

Character	Device	Driver	

•  Read	or	Write	a	byte	at	a)me	
•  Accessed	by	a	stream	of	bytes	
•  Usually	permit	only	sequen)al	access	
•  Implement:	open,	close,	read,	write	
•  Similar	to	regular	files	

– /dev/console	
– /dev/eyS0	

4/11/15 Linux Kernel Intro. 16

Block	Device	Driver	

•  Read	or	Write	block-size	mul)ples	
•  Permit	random	access	
•  	Accessed	in	the	/dev/	
•  File	systems	can	be	mount	on	top	
•  Handle	I/O	opera)ons	
•  Differ	with	the	char	module	in	the	way	the	
manage	data	inside	the	kernel	

•  Different	interface	to	the	kernel	than	char	
modules	

4/11/15 Linux Kernel Intro. 17

Network	Drivers		
•  Handle	any	network	transac)on	made	
•  Transfer	packets	of	data		
•  Independent	of	a	specific	protocol	
•  Recep)on	and	Transmission	instead	of	Read/Write	
•  Usually	the	interface	is	a	hardware	device	but	it	can	also	be	

sogware	like	the	loopback	
–  loopback	is	used	to	communicate	with	the	servers	that	

run	in	the	same	node,	debugging	etc.		
•  They	are	not	mapped	to	the	file	system;	they	are	iden)fied	

by	a	name	

4/11/15 Linux Kernel Intro. 18

Outline	

•  Introduc)on	(story,	licence,	versioning)	
•  Main	parts	
•  Loadable	Kernel	Modules		
•  System	Calls		
•  Security		

4/11/15 Linux Kernel Intro. 19

System	calls	
•  A	syscall	causes	a	programmed	excep)on	(trap)	on	the	CPU	

–  syscall(number,	arguments)	
•  Within	the	kernel	you	cannot	access	user	space	buffers	

directly	

Syscall
Table

User Space

Kernel Space

write(fd, ptr, sz)

syscall(WRITE, fd, ptr,sz)

sys_write(f, up, sz)

vfs_write(f, p, sz) etx4_write(f, p, sz)

copy_from/to_user
(to,from,sz)

4/11/15 Linux Kernel Intro. 20

Outline	

•  Introduc)on	(story,	licence,	versioning)	
•  Main	parts	
•  Loadable	Kernel	Modules		
•  System	Calls		
•  Security		

4/11/15 Linux Kernel Intro. 21

Security	considera)ons	
•  Security	check	is	enforced	by	the	kernel		
•  If	the	Kernel	has	„holes“										System	has	holes	
•  Avoid	introducing	typical	programming	bugs	

– Module	parameters	
–  Buffer	overrun	
–  Memory	corrup)on		

•  Zero	or	ini)alize	memory	given	to	user	
•  Run	precompiled	kernels	found	in	your	distro	
•  In	official	distros	only	the	superuser	can	load	and	unload	

modules	

4/11/15 Linux Kernel Intro. 22

Kernel programming is vital for
as long as new hardware is being

designed and produced or
old-obsolete hardware is maintained.

