Introduction to the

Linux Kernel

Praktikum Kernel Programming
University of Hamburg
Scientific Computing
Winter semester 2015/2016

Konstantinos Chasapis
Konstantinos.chasapis@informatik.uni-hamburg.de

* Introduction (story, licence, versioning)
* Main parts

* Loadable Kernel Modules

e System Calls

* Security

Introduction

Developed by Linus Torvalds (1991)
— Just for Fun: The Story of an Accidental
Revolutionary by Linus Torvalds
Based on Unix
1st version supported Intel 80386
Currently various platforms are supported
Implemented in GNU C

Several Distributions (distro)
— RedHat, CentOS, Ubuntu, SUSE, Debian, Arch
— Different package system, configuration etc.

— Apply different patches

— S W
U -

—

ﬁ/?/(-

L
n

- {

Introduction (cont.)

e X-Server is not implemented within the Kernel

Everything run in “Kernel mode”
— Privileged access to hardware

Monolithic but boasts modular design
— Kernel preemption (under certain conditions)

* The scheduler is permitted to forcibly perform a
context switch

— Supports kernel threads
— Dynamic load and unload binaries (kernel modules)

— Reentrant, several processes can be in kernel mode
simultaneously

Introduction (cont.)

* License Terms
— is licensed under the Version 2 of the GNU General Public

License (GPL)

— Allows anybody to redistribute and even sell a product
covered by GPL as long as the recipient has access to the
source and is able to exercise the same rights

— Any software derived by a product covered by GPL must be
released under the GPL

 Democratize, everyone can contribute
— If you want your code to go into the mainline or you have

modified the kernel then you have to use GPL-compatible
license

Introduction (cont.)

Use of binary Blobs (Modules, firmware)

The source is not given

May contain part of the driver from another file system

If the code has been ported from another operating system
is legal

If a company wants to keep the source private
Using such software is discourage

Versioning

Suname —a

3.17 .1
P N

major . minor . revision

Main parts

Loadable Kernel Modules
System Calls

Security

Linux system overview

Hardware

Applications

.. Privileged mode
Applications 2

—

Shell

Hardware

4/11/15

Main parts

 Sencalmere

Process Virtual File
Management (PM) System (VFS)

Memory Network
Management (MM) Stack

Device Drivers

(DD) J

Linux Kernel Intro.

Main parts (cont.)

e System call interface (SCl)

— A thin layer that provides a method to interact from user space
to kernel space

* Process Management (PM)
— Create, destroy processes
— Communication between different processes (kernel threads)
— CPU scheduling
e Memory Management (MM)
— Physical to virtual memory management
— Memory allocation

— Swapping, from memory to hard disk

Main parts -- 1/O Path

e Virtual File System (VFS)
— Eports the common file interface VES

— Abstract file system functionality from
implementation

+ File Systems ext4 || XFS ||/proc

— Implementation of FS functionality
« Buffer Cache Buffer Cache

— A set of functions to manipulate main
memory designed for FS

Device Drivers

e Device Driver

* Physical Device [Physical Devices]

— Where data live

Main parts (cont.)

 Network Stack

— Implement the network protocols

— Deliver packets across programs and network interfaces
* Device Drivers (DD)

— Interact with the hardware

— Extract an abstraction of the device functionalities

 Arch
— Architecture dependent code

e Loadable Kernel Modules
e System Calls
* Security

LKMs

LKMs (Loadable Kernel Modules)
Pre-compiled binary pieces

Each piece is called “module”

Can be loaded at runtime

Extend the functionality of the system
Enforce modularity

— Easy to develop, debug and maintain

— No need to rebuild the kernel

Can save memory (load only the necessary)

What are LKMs used for

* Everything that is not required in the core
* 6 main categories
— Device drivers
— File system drivers
* |mplementation of a specific file system
— System calls
— Network stack
* Interprets a network protocol
— TTY line disciplines

— Executable interpreters for the supported formats

Character Device Driver

Read or Write a byte at a time
Accessed by a stream of bytes
Usually permit only sequential access
Implement: open, close, read, write
Similar to regular files

— /dev/console
— /dev/ttySO

Block Device Driver

Read or Write block-size multiples
Permit random access
Accessed in the /dev/
File systems can be mount on top
Handle I/O operations

Differ with the char module in the way the
manage data inside the kernel

Different interface to the kernel than char
modules

Network Drivers

Handle any network transaction made
Transfer packets of data
Independent of a specific protocol
Reception and Transmission instead of Read/Write
Usually the interface is a hardware device but it can also be
software like the loopback
— loopback is used to communicate with the servers that
run in the same node, debugging etc.
They are not mapped to the file system; they are identified

by a name

e System Calls
* Security

System calls

* A syscall causes a programmed exception (trap) on the CPU
— syscall(number, arguments)
* Within the kernel you cannot access user space buffers

directly
| write(fdi ptr, sz) |
User Space [syscal(WRITE, fd, ptr,sz) |
//
Syscall copy_from/to_user
T opie [LSys write(f, up, sz) | (to,fr?m,sz)

Kernel Space [vfs write(f. p, sz) —"{ etx4 write(f, p, s7) |

* Security

Security considerations

Security check is enforced by the kernel

If the Kernel has , holes” IZ> System has holes
Avoid introducing typical programming bugs

— Module parameters

— Buffer overrun
— Memory corruption

Zero or initialize memory given to user

Run precompiled kernels found in your distro

In official distros only the superuser can load and unload
modules

Kernel programming is vital for
as long as new hardware is being

designed and produced or
old-obsolete hardware is maintained.

