
Introduction to energy-efficient
resource management with SLURM

and plugin development

Seminar and project report

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik

Fakultät für Mathematik, Informatik und Naturwissenschaften
Universität Hamburg

Vorgelegt von: Tobias Weßeler
E-Mail-Adresse: tobias.wesseler@posteo.de
Matrikelnummer: 6536232
Studiengang: B.Sc. Informatik

Erstgutachter: M. Reza Heidari
Zweitgutachter: Dr. Julian Kunkel

Betreuer: M. Reza Heidari

Hamburg, den 01.01.2015

mailto:tobias.wesseler@posteo.de

Abstract
This report is serving two purposes. Firstly, it is an introduction to slurm, plugins and
energy profiling. Secondly it documents the efforts to solve a problem, that prevents
users of slurm 14.11 from profiling multiple metrics at once. The steps undertaken to
resolving this issue include installation of a test environment, compiling and installing
slurm from source, configuring and running slurm and modifying slurm plugin source
code to profile dummy data to eliminate potential error sources. The results show that
there have been big changes to the source code of plugins between versions 14.11 and
15.08 of slurm, especially regarding the hdf5 plugin. In version 15 the issue was fixed,
but it is not apparent as to how this was achieved. As of writing this report the next
viable step to solve this issue would be to backport the hdf5 plugin from slurm 15 to
slurm 14.

Contents
1. Foreword 5

2. Introduction - Part 1 / Seminar 6

3. Terminology 7
3.1. Resource management . 7
3.2. Job scheduling . 7
3.3. SLURM . 8
3.4. Plugin . 8

4. Architecture of slurm 9
4.1. Daemons of slurm . 9
4.2. Slurm plugin architecture . 10

5. Energy-efficient resource management 11
5.1. Motivation . 11
5.2. Measuring energy . 11
5.3. Profiling energy . 12
5.4. Plugins for slurm . 12

5.4.1. IPMI . 12
5.4.2. RAPL . 12
5.4.3. HDEEM (in development) . 13
5.4.4. HDF5 - storing the collected data 13

5.5. Outlook . 13

6. Conclusion - Part 1 / Seminar 14

7. Introduction - Part 2 / Project 15

8. Setting up the test environment 16
8.1. Installing the operating system . 16
8.2. Installing slurm . 17

8.2.1. Prerequisites . 17
8.2.2. Downloading . 18
8.2.3. Compiling and installing . 18

8.3. Configuring slurm . 19
8.4. Running slurm . 20

3

9. Profiling data 21
9.1. The problem . 21
9.2. The approach . 21
9.3. Modification of plugins . 21
9.4. Results of profiling dummy data . 22

10.Conclusion - Part 2 / Project 24

Bibliography 25

Appendices 26

A. Test Environment Access Information 27

B. Scheduling example 29

C. Modification of plugins 31

D. Corrupted hdf5-dump example 36

E. hdf5-dumps of slurm 14 compared to slurm 15 40

List of Figures 49

List of Listings 50

List of Tables 51

4

1. Foreword
In this chapter, an overview of the contents of this report will be given. It is very likely
that, if you read this you will not be interested in the whole range of information available
in this report. Instead you should read the following introduction. It will help you to
select which sections of this report might be of interest to you.

This report is a combined report of the results of my seminar with the topic Resource
management with Slurm and documentation of my project Slurm plugin development.
So the first half of the report elaborates on the topic resource management and energy
efficiency, while the second half focuses on setting up slurm, configuring and running
it and also on modifying it, trying to debug an issue with the profiling plugin and the
results thereof.

The content of first half consists mostly of my research in the course of the Seminar
Newest Trends in HPC during the winter semester 15/16. If you are very new to the
field of HPC (High Performance Computing) and do not know what slurm is, or if the
words resource management and energy-efficiency have little meaning to you or if you
want to grasp the concept of plugins, then i recommend to read the first part of this report.

The second half of this report, can be seen as the documentation of my part of the
project Evaluation of parallel computers at the DKRZ. The ultimate goal of the project
was the development of an energy profiling plugin for slurm, which was later reduced to
debugging some related issues in slurm 14.

If you already have some background, if you have ever successfully used a console or
terminal and if you are interested in setting up a minimal installation of slurm and or to
undertake first steps of plugin development, then the second part is right for you. Also
those of you interested in the issue of profiling multiple metrics in slurm version 14.11
should definitely take a look at the latter part.

5

2. Introduction - Part 1 / Seminar
This first part of the report will elaborate on my findings during the seminar NTHR1516.
The overall task was to report on new trends in HPC. I choose ’energy-efficient resource
management’ as sub-topic. Because a lot of the participants of the seminar, including
myself, are rather new to the field of HPC - some of them have never heard about slurm
and other things, a big section of this first part explains basic concepts. Among these
are for example resource management and plugins and energy measuring. All of these
topics are very relevant to HPC, as modern systems grow bigger and consume more
energy. Thus HPC is having a large economical and ecological impact. The primary
motivation for using the resources as energy-efficient as possible is the money. Without
funding there is no research and funding is always limited. In the end there will be a
brief outlook on new functionality that will be introduced with slurm version 16.05. This
version is planned to be released in may 2016 and brings some new features that could
be used for more efficient resource management.

6

3. Terminology
In this chapter the terms resource manager and job scheduler will be explained. Also the
reader will be given a brief overview of slurm as an example implementation for these
tasks. Finally the concept of plugins is introduced. There are many different definitions
and explanations of the following terms out there. The ones in the next section depict
my understanding of the concepts.

3.1. Resource management
Resource management is usually implemented as a piece of software that handles several
tasks:

• Monitoring resources (nodes, cpu, ram, ...)
The resource manager has to keep track of which nodes in the cluster are being
used and to what extend. That means he also keeps track of the resources within
a node. He knows how many processors are being used and how much ram has
been reserved. Also he has oversight of all available resources.

• monitoring power consumption
Monitoring power consumption is different from the aforementionend resources
because the power is not directly part of the system. The other resources are
dedicated pieces of hardware. Power is the rate at which energy is consumed to
operate this hardware. To monitor power consumption we need special means,
which we will discuss in the next chapter.

• handling resources
Turning unused nodes off or switching them to standby, to save energy, as well as
the allocation of all other resources is an important aspect of resource management
software. Handling resources means all the active parts of resource management,
as opposed to the rather passive monitoring.

3.2. Job scheduling
A HPC-system is usually used by many users simultaneously. Thus a lot of jobs are
sent to the system, requesting resources for their execution. Often more resources are
requested than there are available. That is why some jobs have to wait. To bring the
jobs in an order which uses resources as efficient as possible while not letting users wait

7

for to long takes an algorithm. The simplest implementation of such an algorithm would
be to just serve the requests in the order in which they arrive. That would mean using a
naive fifo-queue (fifo = first in, first out). This is not very efficient. Appendix B has
some graphics that illustrate unusable resources in this case and how a simple backfill
algorithm, can ensure more efficient use of resource. In short, a backfill algorithm allows
jobs that arrive later, to jump ahead in the queue, if they are not delaying jobs that
arrived earlier. See appendix B for a graphical demonstration.
The job scheduling algorithm usually needs information provided by the resource manager
(not in the inefficient, naive case).

3.3. SLURM
The Simple Linux Utility for Resource Management is widely used in HPC software
stacks to handle the tasks of resource management and job scheduling. The software
is open source and free, while mainly being developed by the company schedmd which
offers commercial, professional support. Slurm supports the use of plugins and has many
features beyond resource management and job scheduling.
While SLURM is just one example, there are other pieces of software available that
incorparate the tasks of job scheduler, resource manager or both. But SLURM is the
one used in the DKRZ and "As of the June 2015 Top 500 computer list, Slurm was
performing workload management on six of the ten most powerful computers in the
world including the number 1 system, Tianhe-2 with 3,120,000 computing cores." [Sche]

3.4. Plugin
The word plugin describes a modular piece of software. Something that can extend an
existing program with additional functionality or change it’s behavior. Plugins usually
cannot be used by themselves and depend on the software they were created for. They
need to be plugged into software. To do so, the software the plugin is written for also
needs to be designed to accept plugins. Therefore, software that supports plugins must
define an interface to the programmers.
An easily understandable example for a plugin would be the comparison plugin for the
text editor Notepad++. It was written to enable highlighting the differences between to
text documents, directly within the editor.
Of course embedding an interface for plugins when designing a software enlarges the
surface that can be attacked. It creates new vulnerabilities, because some people might
try to write and distribute plugins with unwanted side-effects. One must always consider
that plugins can be written by someone else entirely, than the original author of the
software.w

8

4. Architecture of slurm
In this chapter, we will go into the design of slurm itself. Even though slurm has
been designed to be lightweight, as to not consume to much resources, it offers a wide
range of functionalities and thus has an extensive code base. So in a manner slurm
is also a very large program. Large, but light-weight. Because of this, slurm consists
of multiple programs that take care of different tasks. These programs are the slurm
daemons. Daemons in linux are what services are for windows. They are processes that,
once launched, are running quietly in the background, carrying out tasks or awaiting
instructions. The can communicate with each other or take input from the user.

4.1. Daemons of slurm
The following daemons constitute the substance of the slurm:
The d at the end of the names, denotes that we deal with daemons.)

• slurmd
The slurm daemon is the main daemon that is running on every node. It requires
root privileges, because it needs to execute the (parallel) programs on behalf of
the user.

• slurmctld
The slurm control daemon is the daemon which the typical user interacts with
mostly. It offers lot of user commands. Some of these are:
– sbatch - schedule a job via script

– srun - run a job interactively

– squeue - show a list of waiting jobs

– scancel - cancel a job

– and more...

9

The other daemons also offer some user commands and some commands require
more than one daemon running.
It is possible to have more than one slurm control daemon running at the same
time. This way one can have a redundancy. The daemon was designed so that, if
configured properly, the redundant daemon will act as an automatic fail over in
case the first daemon becomes available.

• slurmdbd
The slurm database daemon is an optional daemon. It manages the database which
can hold configuration settings and accounting data. It can also be extended with
a redundant daemon on a different machine which acts as an automatic fail over if
properly configured.
Another feature of the database daemon is, that it can attend multiple clusters,
i.e. the slurm control daemons of entirely different clusters can have a shared
database daemon. This is very interesting from an administrative perspective in a
multi-cluster data facility.

• slurmstepd
The slurm step daemon is kind of a special case, because unlike the other daemons,
it is not always running. Instead it is spawned by the slurm daemon at the
beginning of a step of a job and destroyed at the end.
Among things it manages the Input and Output for job steps.

4.2. Slurm plugin architecture
Slurm supports plugins in different ways. One way is SPANK, the Slurm Plug-in
Architecture for Node and job (K)control. Plugins written for SPANK (or just Spank-
Plugins) work very similar to the above definition of plugin and to what one usually
expects. But spank plugins were introduced to slurm later. In the context of this
document, when we talk about plugins for slurm we are talking about a different kind of
plugin.
These classic slurm plugins differ a little bit from plugins in the usual sense, because
to develop them one needs part of the slurm source code to compile them. Also, more
importantly, in some cases the slurm source code must be changed to accept and deal
with these plugins. Therefore our plugins are not really separable pieces of software, but
optional parts that can easily be turned on or off, when starting the daemons.
There are about 26 different categories for slurm plugins. Each category has its own
interface that the developer of a plugin has to use [Schb]. The interfaces consist of sets
of functions that need to be implemented by programmer. If we decide not to use a
plugin for some categories in slurm, then we are acutally using a ’none’ plugin. Those
none plugins are skeleton plugins without functionality. Due to the strong entanglement
of the plugin source code and the slurm source code, they are a necessity.

10

5. Energy-efficient resource
management

This chapter deals with the topic of energy efficiency. It explain why it is a matter to be
considered, introduces some basic concepts of energy measuring and takes a look at what
means slurm provides to achieve energy-efficiency and where it can be improved.

5.1. Motivation
As computers get faster and clusters get bigger we are facing an obstacle - money.
Computers require energy and energy costs money. Furthermore, consuming energy
means consuming resources, which might have an environmental impact.
Modern high performance computing systems are consuming enormous amounts of energy.
The average four person household is consuming 5200 kWh of electricity a year [Ene].
The DKRZ needs 17GWh. That is roughly 3000 times more. In 2011 the DKRZ had an
electricity bill of nearly two million euros [DKR].
These two reasons should be more than enough motivation to try and optimise the
energy-efficiency of our cluster and programs.

5.2. Measuring energy
Before we talk about measuring energy, i will list the measuring sizes and units that are
being used.

Power - watts
The rate at which energy is consumed. It is measured in watts.
1 Watt = 1 VA (Volt × Ampere).

Energy - watt-hours
Energy is the product of power and time. If we are constantly consuming 1000
Watts over 1 hour, then we have consumed 1 kilowatthour of energy.

If we want to optimise, we need to analyse first. But before we can analyse our energy
consumption we need a means of measuring how much energy we consume. A basic
approach how to do that is described in the following:

11

We can use specialized hardware to measure the energy consumed by our computers.
The simple way to do that, would be to have an analog power meters connected to
the power cycle right before or behind the power supply units of our machines. Then
we would need an analog-to-digital-converter as well as a physical connection to our
hardware and an interface or api which we can read the data off of. For an conceptual
illustration see figure ...

5.3. Profiling energy
What is profiling? It means to collect data and to analyse and interpret it, to gain
additional information.

When we are doing an energy profile of running a certain program, we measure and
record how fast energy is consumed at different points in time and try to match these
points to the according passages in the source code as closely as possible. As a result we
get an overview of how much certain parts of our software influence energy consumption.
With the help of this data, we can then try and optimise our programs in terms of
energy-efficiency. Another benefit is the ability to better plan ahead, when working
together with power companies.

5.4. Plugins for slurm
Slurm already comes with a couple of plugins for collecting energy data, provided we have
the required hardware and drivers installed. A third plugin is currently in development
by (who/where again?) and the DKRZ.

5.4.1. IPMI
IPMI is short for Intelligent Platform Management Interface, a standardized Interface
for remote monitoring and controlling computers. It is not to be confused with the
IPMI-plugin for slurm. The slurm accounting and gathering energy plugin just adapted
this abbreviation, even though it just utilizes part of the IPMI. In more detail: The
IPMI-plugin retrieves power data from the BMC (Baseboard Management Controller)
by utilizing the IPMI [Schf].

5.4.2. RAPL
RAPL is short for Running Average Power Limit. The name becomes clearer when
we look at how RAPL works. "RAPL is not an analog power meter, but rather uses a
software power model." [Zer] This quote alone gives some ideas on what is happening here.
Short version is this: Hardware performance counters provide information at set intervals
that is combined with I/O models to produce an estimation of consumed energy in the

12

time period in between. Test by the Intel Corporation have shown that the estimates
are close to real values.

5.4.3. HDEEM (in development)
HDEEM is short for High Definition Energy Efficiecy Monitoring. The new hdeem-plugin
will be using the HDEEM infrastructure to provide highly improved energy profiling
capabilities.
At the moment, all available plugins for profiling the energy use, have a glaring limitation
- the sampling frequency. In the slurm configuration files, the smallest possible interval
for sampling energy consumption is one second. The problem with this interval is
that millions of operations are processed by computers within this one second. So the
resolution we have for sampling the energy is much lower than what we could use for
profiling our software.
The HDEEM architecture promises to be able to give up to 1000 samples per second.
That is still a low number compared to the operations per second but far better than
what we have now. [?]

5.4.4. HDF5 - storing the collected data
This plugin is of a different category than those above. While the other plugins deal
with gathering the actual data from sensors, the HDF5-plugin handles the storage of this
data during profiling. It is currently the only profiling plugin, that comes with slurm.
HDF5 is a very efficient file format which supports parallel I/O as well as storing custom
datatypes. It is optimised to store large amounts of complex data and is thus well suited
for HPC. [?]

5.5. Outlook
HDEEM seems a promising concept in the field of energy profiling and more methods
and techniques will follow. Furthermore in the upcoming version 16.05 of slurm there
will be additional means provided that can be used to optimise resource usage.
Most notably are support for asymmetric resource allocation and MPMD programming.
Asymmetric resource allocation allows the user to specify what kinds of hardware need to
be allocated for his job in more detail than a certain number of nodes. It will be possible
to specify the required amount CPUs, GPUs, RAM and more per node. It is unclear how
well the MPMD approach will be recepted, but the fact that they are developing it itself,
shows that there must be some interest. MPMD mean Multiple-Program-Multiple-Data.
So we can run different executables that communicate with each other, contrary to the
common SPMD-approach (Single-Program-Multiple-Data) where only one program is
written. In SPMD conditional structures are usually used in conjuncture with ranks to
determine which cpus or nodes are handling which tasks.
Figure ... shows a conceptual illustration of the mpmd-approach.

13

6. Conclusion - Part 1 / Seminar
It seems that slurm will be a good choice for the HPC software stack for the near future.
Apart from the already acquired expertise of the DKRZ personnel the software is widely
used and recognized by top HPC centers and actively being developed. New promising
features are introduced with each version. In the future the will be more possibilities in
assigning resources to programs and jobs and with the hdeem plugin energy profiling
will yield better results.
It is important that the people working with the software read up on the available
features, try to keep their software up-to-date and to utilize the offered features to
encounter the financial and environmental challenges of high energy-consumption.

14

7. Introduction - Part 2 / Project
This second part of the report is the report of my bachelor’s project here at the dkrz. It
started out with the goal of helping to implement the HDEEM plugin. Soon it became
clear that this goal was to vague and also some issues came up, that needed to be dealt
with first.
One of these issues is, that in slurm version 14.11, the version currently being used on
mistral, data recorded into hdf5-files is corrupted. So the new target became to tackle
this issue and to eliminate possible error sources.
Thus, this part describes and documents my efforts in helping with this issue. Because
i had nearly no experience with linux beforehand, the resulting documentation, also
contains a quick tutorial to setting up debian and a minimal installation of slurm.

The configuration data of the test machine can be found in appendix A.

15

8. Setting up the test environment
In this chapter, I will demonstrate the steps i had to undertake to install debian jessie
(debian 8.3) which served as the operating system under which i conducted all the following
experiments.
Afterwards i will describe how to acquire, compile, install, configure and run slurm.

8.1. Installing the operating system
Installing the operating system is very straightforward. Modern installation routines
offer simple, graphical user interfaces with acceptable default options already set. The
steps i used to install debian jessie were the following:

• Download Debian
There are several options to download and install slurm. My setup was the
following: The bare machine to install debian on, with a working ethernet, internet
connection, as well as my notebook with an installation of MS Windows. I used
my notebook to download a small installation image of debian jessie from
https://www.debian.org/distrib/ [Deb] using the link labeled "64-bit PC netinst
iso".

• Download Win32 Disk Imager
Because i was working with windows, i had to find a means to create a bootable
device with the image downloaded during the first step, to deploy my linux
environment. I choose to download the utility named Win32 Disk Imager from
https://sourceforge.net/projects/win32diskimager/ [Sou], because it does exactly
that, in a very simple way. The user interface is absolutely self explanatory.

• Creating the image and installing Debian
The following was just a matter of clicking and waiting. Firstly, i used the tool to
put the image on a flash drive and make it bootable at the same time. Secondly,
i plugged it into my bare machine, on bootup i pressed the appropriate key to
choose the boot medium (F2 in this case, the key is shown at the startup screen of
the motherboard manufacturer) and selected the usb drive. Once the installation
routine opened up, i choose the Automated GUI Installation. For user name and
password of the test machine, please see appendix a.

16

8.2. Installing slurm
Once the operating system was set up, i continued with the installation of slurm. The
next few subsections document that process.

8.2.1. Prerequisites
Before we deal with the installation of slurm itself, we need to make sure we have all the
prerequistes or dependencies.

sudo - optional, recommended

For a lot of the installation process we need root priviliges. The options are twofold: 1.
we could just use the root account, or 2. we install the sudo command which enables our
non-root users to be added to the sudo group and to execute certain commands with
elevated privileges, when needed. I recommend the second method.

Munge

Slurm has one major dependency which is the need of an authentication plugin. The
default case is that munge is being used for that. Munge in turn has a dependency on
Libgcrypt or OpenSSL. Since we have a bare system, we need to install all of it. Just
run the following commands, and hopefully, you should be fine:

• sudo apt-get install libgcrypt11-dev

or

• sudo apt-get install libgcrypt libgcrypt-devel gcc-c++

and

• sudo apt-get install libmunge-dev

• sudo apt-get install munge
Also one should secure the munge installation as described in the offical guide
[mun].

• Create a secret key
$ dd if=/dev/random bs=1 count=1024 >/etc/munge/munge.key

• Startup the munge daemon (some errors that can be encountered, might be
overridden by the argument –force)
$ /usr/sbin/munged –force

17

autotools - optional

Installing the autotoolchain is useful when adding new kinds of plugins to the source
code, because it makes the difficult process of amending the makefiles of the slurm source
code very easy by allowing you to generate them through the autogen.sh-script.
The steps required can be found here http://slurm.schedmd.com/add.html [Scha].
Later i reverted to just changing existing plugins, because it saved a lot of time and the
existing plugins weren’t needed for my experiments.

8.2.2. Downloading
The current stable version of slurm can be downloaded here:
http://www.schedmd.com/#repos [Schc]
Older Versions are available on a subpage:
http://www.schedmd.com/#archives [Schd]
To install either of the versions, first download the source code and then extract it to
an appropriate directory where you will manage it. It is recommended to use some
versioning system when modifying the source, so think about where to put your source
code and consider initialising a git repository in said directory.

8.2.3. Compiling and installing
Once you are set with your source code, before you can install slurm you need to compile
the source to create the binaries. The installation process just copies the compiled
binaries to appropriate folders on the operating system to integrate the software. To
compile and install execute the following commands:

• $ cd /...path.to.source.../

• $ sudo ./configure –prefix=/usr/local –sysconfdir=/usr/local/etc –enable-debug
You might want to change these, if you are planning to install multiple versions of
slurm simultaneously. The prefix directory is where the binaries will be placed and
the sysconfdir is where you will put your slurm config files. I just like having the
option to debug as much as possible, which is why i added the 3rd parameter.

• $ sudo make

• $ sudo make install

• If you are getting any errors or warnings, or something does not work, the config.log
(generated by ./configure ...) is always a good place to start looking. Check it with
for example with:
cat config.log | grep error

18

8.3. Configuring slurm
Now that we have actually installed slurm on our system, we will not be able to run
it just yet. First we have to add a slurm.conf to the sysconfdir. Thankfully, the slurm
developers have provided an html-template that will generate such a file for us, with
very little information needed on our part.
Navigate to the slurm source code directory and open one of the follwing files with your
browser:

• $ firefox doc/html/configurator.html

or

• $ firefox doc/html/configurator.easy.html

The second choice will query much less parameters and use more default values. It is the
one i used. The config values i used, are the following:

• ControlMachine: [name.of.my.machine] //you can get that with the hostname
command

• ControlAddr: 127.0.0.1

• NodeName: [name.of.my.machine]

• NodeAddr: 127.0.0.1

• CPUs, Sockets, CoresPerSocket, ThreadsPerCode //got that from the command
lscpu

• For the rest i just left default values for now. I later edited the config files manually
when setting up the profiling.

After exporting the config file, you will need to move it to the sysconfdir specified during
the installation of slurm. Default is: /usr/local/etc/. Also look into the file and check
the two or three bottom lines with the configuration of the node. Since for now we are
having a minimal cluster with only one node, we only need to check this file. Make sure
the machine name is there and not followed by an unnecessary index. You might also
need to edit the default location of your mail program. Otherwise the slurm daemons
might throw some errors. But you can just leave it for now, and take care of it, when it
happens. It really depends on your operating system.

19

8.4. Running slurm
Now that we have set everything up, we need to startup all the daemons. Afterwards we
can test our installation by running a simple interactive job.

1. Start out by ensuring that the munge daemon is running. You can use the command
munge -n to do so. If the output is a hex-key, then munge is working fine - if not,
use system commands to see whether the daemon is running or not. If not try
starting it by calling the executable munged. When encountering error, check if all
the directory permissions were set correctly, or - for the sake of testing - just use
the -f parameter. It will force munge to treat some errors just as warnings.

2. Next start up the slurmd and slurmctld daemons, by calling those executables.
You can also use the -D parameter, to have them running in the foreground and
up to 3 or 4 -v parameters to set the level of verbosity. The -c parameter can be
used to make a clean start of the daemons in case it gets stuck or something.

3. Once you have all the daemons up and running use the srun command to schedule
an interactive job.
Just try: srun hostname for instance. It should take a second and then the name
of your machine should be shown on the console. If it does, it means the command
was successfully scheduled and run by slurm - Congratulations. If not - do not
despair. Instead start the slurm daemons with -Dvvvvc and use the information
given to figure out whats wrong.
Again - another good place to look is the config.log in your slurm source directories.
Occasionally it happens that some dependencies are missing, when compiling the
source code.

20

9. Profiling data
In this chapter we will talk about how to use the profiling plugins that come with slurm
and how to modify them to write dummy data, in case we do not have the required
hardware. We will also deal with the issue encountered at the DKRZ which is closely
related to profiling data.

9.1. The problem
The data that we want to collect needs to be stored somewhere. For that purpose,
a plugin with the name hdf exists, that constitutes the interface between slurm and
hdf-data-files. Unfortunately, the installation of slurm 14.11. on the cluster Mistral at the
DKRZ does not seem to be working correct in this manner. When we configure slurm (via
the config file) to gather energy data or other data, then only the first sample is written
into the hdf-file. For all subsequent samples there are null-, zero- or uninstantiated values.
See Appendix D for some corrupted example files. Another problem, which was not
confirmed yet, is that in slurm 15.08 the lustre/filesystem data is missing, when using
the option –profile=all. While not being confirmed, we do have a suspicion towards the
cause of this. Refer to the section Results of profiling dummy data for more information.

9.2. The approach
So before we could approach the implementation of the HDEEM plugin, we have to
solve the issue regarding the hdf5-plugin. Our approach was the following: Modify some
existing plugins, by taking out the interfaces to hardware and drivers and replacing them
with hardcoded dummy data. This way we can find out wether the problem lies with
the hdf5 plugin. If it does not, we would at least have ruled out some potential causes
for the errors. By using dummy data we can see wether the hdf plugins writes, what it
is supposed to.

9.3. Modification of plugins
For profiling dummy data, we needed at least two plugins that were also used in the
production environment, to be able to analyse the different cases:

• profile data from a single plugin

21

• profile data from multiple plugins, listed one by one (–profile=energy,lustre)

• profile data from all (configured) plugins (–profile=all)

9.4. Results of profiling dummy data
The modification i made to the plugins, so that they would write dummy data, are
shown in appendix C. The config files for the runs of the follwing table are also listed in
appendix C. There results of the profiling are as follows:

Slurm 14.11 Slurm 15.08

Production machine

#sbatch –profile=energy data: corrupted ???

#sbatch –profile=network data: corrupted ???

#sbatch –profile=energy,network data: corrupted ???

Test machine

#srun –profile=energy,lustre sleep 181 data: corrupted data: ok

#srun –profile=all sleep 181 data: corrupted data: ok

#srun –profile=energy sleep 181 data: ok data: ok

#srun –profile=lustre sleep 181 data: ok data: ok

So when i tried to collect data of multiple metrics simultaneuously in Slurm version 14.11
the collected data became corrupted on its way to the hdf-file. This suggests a bug in the
hdf-plugin or in hdf5 itself. The next step would be to confirm or rule out, wether the
problem lies with the plugin. This can be done by debugging the hdf-plugin or by trying
to backport the hdf-plugin from slurm version 15.11 where the problem does not appear.

Trying to figure out the issue with the hdf-plugin, i also had a look at some of the
source files and noticed some changes, when comparing the slurm 14 with the slurm 15
files. The listed files (plus the according header-files) might be worth taking a look at,

22

when trying to debug the issue or backporting the plugin.

Also worth noting: In slurm 15 the multiple metrics are recorded correctly even with
different sampling frequencies.

src/common/slurm_acct_gather_profile.c
Some changes regarding the handling of datasets.

src/common/slurm_jobacct_gather.c
Some changes; not sure if important to profiling or only accounting

src/plugins/acct_gather_profile/hdf5/hdf5_api.c
Much shorter (62kB → 6kB) and more generic approach to handling the storage
of data samples in an hdf5 file. Makes adding new metrics to the plugin-code easier
and results in more space efficient, and clearer hdf5-files.

src/plugins/acct_gather_profile/hdf5/acct_gather_profile_hdf5.c
Some changes to account for the changes in hdf5_api.c

There are probably more files that need to be modified for a successful backport of the
hdf5-plugin from slurm 15 to slurm 14, but these are the ones i identiefied so far, that i
think are crucial to the process.
While studying the source code i also stumbled upon the following semantical bug:

src/plugins/acct_gather_filesystem/lustre/acct_gather_filesystem_lus-
tre.c
In line 308 the dataset NETWORK is created where it should actually be named
FILESYSTEM or LUSTRE. This could cause some irritation when studying the
hdf5-dumps while looking for the data set. Also it might cause problems when
trying to profile filesystem data as well as network data, when the plugin tries to
put the same label on both data sets, although i have not confirmed this, yet.
Furthermore i noted that there is an inconsistency in the naming. Each plugin is
activated by its category name (e.g. rapl-plugin is an energy-plugin, thus being
used by –profile=energy), except for the filesystem plugin lustre (i.e. the plugin
lustre is a filesystem-plugin and should be made available via –profile=filesystem,
not as it is the case via –profile=lustre).

23

10. Conclusion - Part 2 / Project
The development of the HDEEM plugin is hindered by the issues regarding the hdf5-
plugin, which need to be resolved first. This second part of the report documented the
setup of the testmachine, that was used to eliminate some potential error sources and
laid the ground work for additional research.
It has been shown that there are some bugs in the source code of slurm version 14.11
and some semantical bugs that were carried over to slurm 15.11 which might also turn
out to be real bugs. Maintaining a code base as large as the one of slurm is not a light
task, therefore it is no surprise that bugs are being found.
Still the biggest part of the software is structured clearly and the more one delves into
the source code, the easier it gets to find the right files and to understand how things
are done.
It would probably pay off to add some more documentation to some of the source files.
Regarding the plugin, there is hope that the hdf5 issue can be resolved in the future and
that the hdeem plugin can be implemented.

24

Bibliography
[Deb] Debian. https://www.debian.org/distrib/. Accessed: 2016-04-18.

[DKR] Steigerung der energie-effizienz am dkrz. https://www.dkrz.de/about/
kontakt/presse/aktuell/archiv-2013/energieeffizienz. Accessed: 2016-
04-14.

[Ene] Energieheld.de. http://www.energieheld.de/blog/
energieverbrauch-eines-wohnhauses/. Accessed: 2016-04-14.

[mun] Munge github. https://github.com/dun/munge/wiki/Installation-Guide.
Accessed: 2016-04-18.

[Scha] Adding files or plugins to slurm. http://slurm.schedmd.com/add.html. Ac-
cessed: 2016-04-18.

[Schb] Documentation of version 15.08. http://slurm.schedmd.com/documentation.
html. Accessed: 2016-04-14.

[Schc] Download the latest stable version of slurm. http://www.schedmd.com/#repos.
Accessed: 2016-04-18.

[Schd] Here is a list of past versions of slurm. http://www.schedmd.com/#archives.
Accessed: 2016-04-18.

[Sche] Slurm commercial support and development. http://www.schedmd.com/#index.
Accessed: 2016-04-14.

[Schf] Slurm energy accounting plugin api. http://slurm.schedmd.com/acct_
gather_energy_plugins.html. Accessed: 2016-04-14.

[Sou] Sourceforge. https://sourceforge.net/projects/win32diskimager/. Ac-
cessed: 2016-04-18.

[Zer] Rapl use cases. https://01.org/blogs/tlcounts/2014/
running-average-power-limit-%E2%80%93-rapl. Accessed: 2016-04-14.

25

https://www.debian.org/distrib/
https://www.dkrz.de/about/kontakt/presse/aktuell/archiv-2013/energieeffizienz
https://www.dkrz.de/about/kontakt/presse/aktuell/archiv-2013/energieeffizienz
http://www.energieheld.de/blog/energieverbrauch-eines-wohnhauses/
http://www.energieheld.de/blog/energieverbrauch-eines-wohnhauses/
https://github.com/dun/munge/wiki/Installation-Guide
http://slurm.schedmd.com/add.html
http://slurm.schedmd.com/documentation.html
http://slurm.schedmd.com/documentation.html
http://www.schedmd.com/#repos
http://www.schedmd.com/#archives
http://www.schedmd.com/#index
http://slurm.schedmd.com/acct_gather_energy_plugins.html
http://slurm.schedmd.com/acct_gather_energy_plugins.html
https://sourceforge.net/projects/win32diskimager/
https://01.org/blogs/tlcounts/2014/running-average-power-limit-%E2%80%93-rapl
https://01.org/blogs/tlcounts/2014/running-average-power-limit-%E2%80%93-rapl

Appendices

26

A. Test Environment Access
Information

Test machine login information for debian operating system:
username - password
root - bapple
overlord - bapple

Slurm config files:
slurm.conf

1 # slurm.conf file generated by configurator easy.html.
2 # Put this file on all nodes of your cluster .
3 # See the slurm.conf man page for more information .
4
5 ControlMachine =nerge - desktop
6
7 MailProg =/ usr/bin/mail
8 MpiDefault =none
9 #MpiParams =ports =#-#
10 ProctrackType = proctrack /pgid
11 ReturnToService =1
12 SlurmctldPidFile =/ var/run/ slurmctld14 .pid
13 SlurmctldPort =1417
14 SlurmdPidFile =/ var/run/ slurmd14 .pid
15 SlurmdPort =1418
16 SlurmdSpoolDir =/ home/ overlord /slurm -14/ slurmd
17 SlurmUser = overlord
18 StateSaveLocation =/ home/ overlord /slurm -14/ slurmctld
19 SwitchType =switch/none
20 TaskPlugin =task/none
21
22 # SCHEDULING
23 FastSchedule =1
24 SchedulerType =sched/ backfill
25 SelectType =select/linear
26
27 ClusterName = cluster14

27

28
29 JobAcctGatherFrequency =energy =30, task =30, network =30, filesystem =30

↪→ #set desired accounting frequencies
30 AcctGatherFilesystemType = acct_gather_filesystem /lustre

↪→ # comment this line out if desired
31 AcctGatherEnergyType = acct_gather_energy /rapl #or ipmi

↪→ # comment this line out if desired
32 AcctGatherNodeFreq =30
33 AcctGatherProfileType = acct_gather_profile /hdf5
34
35 # COMPUTE NODES
36 NodeName =nerge - desktop CPUs =1 Sockets =1 CoresPerSocket =4

↪→ ThreadsPerCore =2 State= UNKNOWN
37 PartitionName =debug Nodes=nerge - desktop Default =YES

↪→ MaxTime = INFINITE State=UP

acct_gather.conf
1 ProfileHDF5Dir =/ home/ overlord /slurm -14/ profile_data / #path

↪→ where the profiled data is recorded , needs to be on a
↪→ shared directory accessible to all nodes

2 ProfileHDF5Default =None

28

B. Scheduling example
Naive FIFO-scheduling

Allowed backfill operation

Invalid backfill operation

29

30

C. Modification of plugins
src/plugins/acct_gather_energy/rapl/acct_gather_energy_rapl.c

1 static int counter = 1; //added this for dummy data
↪→ generation

2
3 extern int fini(void)
4 {
5 int i;
6
7 if (! _run_in_daemon ())
8 return SLURM_SUCCESS ;
9
10 //for (i = 0; i < nb_pkg; i++) {
11 // if (pkg_fd[i] != -1) {
12 // close(pkg_fd[i]);
13 // pkg_fd[i] = -1;
14 // }
15 //}
16
17 acct_gather_energy_destroy (local_energy);
18 local_energy = NULL;
19 return SLURM_SUCCESS ;
20 }
21
22 extern void acct_gather_energy_p_conf_set (s_p_hashtbl_t

↪→ *tbl)
23 {
24 int i;
25 uint64_t result;
26 if (! _run_in_daemon ())
27 return;
28 // _hardware ();
29 //for (i = 0; i < nb_pkg; i++)
30 // pkg_fd[i] = _open_msr(pkg2cpu[i]);
31 local_energy = acct_gather_energy_alloc ();
32 result = 42;// _read_msr(pkg_fd [0], MSR_RAPL_POWER_UNIT);
33 if (result == 0)

31

34 local_energy -> current_watts = NO_VAL;
35 debug("%s loaded", plugin_name);
36 return;
37 }
38
39 static void _get_joules_task (acct_gather_energy_t *energy)
40 {
41 int i;
42 double energy_units ;
43 uint64_t result;
44 double ret;
45
46 ret = counter ;
47 if (energy -> consumed_energy) {
48 uint16_t node_freq ;
49 //MAKE UP SOME DUMMY DATA THAT IS RECOGNIZABLE
50 energy -> consumed_energy =
51 (uint64_t)ret - energy -> base_consumed_energy ;
52 energy -> current_watts =
53 (uint32_t)ret -

↪→ energy -> previous_consumed_energy ;
54 node_freq = 0;//(double)1000;// + 100 *

↪→ (random ()%5+1);
55 if (node_freq) /* Prevent divide by zero */
56 energy -> current_watts /= (float) node_freq ;
57 } else {
58 energy -> consumed_energy = 1;
59 energy -> base_consumed_energy = (uint64_t)ret;
60 }
61 energy -> previous_consumed_energy = (uint64_t)ret;
62 counter *= 2;
63 energy -> consumed_energy = (uint64_t)ret;
64 energy -> current_watts = (uint64_t)ret *10;
65 energy -> poll_time = time(NULL);
66 return;
67 //...
68 }

src/plugins/acct_gather_energy/rapl/acct_gather_filesystem_rapl.c
1 static int _read_lustre_counters (void)
2 {
3 static bool first2 = true;
4 if (first2) {
5 first2 = false;

32

6 lustre_se . all_lustre_write_bytes = 0;
7 lustre_se . all_lustre_read_bytes = 0;
8 lustre_se . all_lustre_nb_writes = 0;
9 lustre_se . all_lustre_nb_reads = 0;
10 }else{
11 lustre_se . all_lustre_write_bytes += 101; //DUMMY

↪→ DATA
12 lustre_se . all_lustre_read_bytes += 2002;
13 lustre_se . all_lustre_nb_writes += 30003;
14 lustre_se . all_lustre_nb_reads += 400004;
15 debug3("%s: all_lustre_write_bytes %"PRIu64" "
16 " all_lustre_read_bytes %"PRIu64"",
17 __func__ , lustre_se . all_lustre_write_bytes ,
18 lustre_se . all_lustre_read_bytes);
19 debug3("%s: all_lustre_nb_writes %"PRIu64" "
20 " all_lustre_nb_reads %"PRIu64"",
21 __func__ , lustre_se . all_lustre_nb_writes ,
22 lustre_se . all_lustre_nb_reads);
23 }
24 lustre_se . last_update_time = lustre_se . update_time ;
25 lustre_se . update_time = time(NULL);
26 return SLURM_SUCCESS ;
27 }
28
29 static int _update_node_filesystem (void)
30 {
31 static acct_filesystem_data_t fls;
32 static acct_filesystem_data_t current ;
33 static acct_filesystem_data_t previous ;
34 static bool first = true;
35 int cc;
36
37 slurm_mutex_lock (& lustre_lock);
38 cc = _read_lustre_counters ();
39 if (cc != SLURM_SUCCESS) {
40 error("%s: Cannot read lustre counters ", __func__);
41 slurm_mutex_unlock (& lustre_lock);
42 return SLURM_FAILURE ;
43 }
44 if (first) {
45 /* First time initialize the counters and return.
46 */
47 previous .reads = lustre_se . all_lustre_nb_reads ;
48 previous .writes = lustre_se . all_lustre_nb_writes ;

33

49 previous . read_size
50 = (double) lustre_se . all_lustre_read_bytes ;
51 previous . write_size
52 = (double) lustre_se . all_lustre_write_bytes ;
53
54 first = false;
55 memset (& lustre_se , 0, sizeof(lustre_sens_t));
56 slurm_mutex_unlock (& lustre_lock);
57
58 return SLURM_SUCCESS ;
59 }
60
61 /* Compute the current values read from all lustre -xxxx
62 * directories
63 */
64 current .reads = lustre_se . all_lustre_nb_reads ;
65 current .writes = lustre_se . all_lustre_nb_writes ;
66 current . read_size =

↪→ (double) lustre_se . all_lustre_read_bytes ;
67 current . write_size =

↪→ (double) lustre_se . all_lustre_write_bytes ;
68
69 /* record sample */
70 fls.reads = current .reads - previous .reads;
71 fls.writes = (current . read_size -

↪→ previous . read_size);// / (1 << 20);
72 fls. read_size = current .writes - previous .writes;
73 fls. write_size = (current . write_size -

↪→ previous . write_size);// / (1 << 20);
74
75 acct_gather_profile_g_add_sample_data (ACCT_GATHER_PROFILE_LUSTRE ,

↪→ &fls);
76 /* Save current as previous and clean up the working
77 * data structure.
78 */
79 memcpy (& previous , ¤t ,

↪→ sizeof(acct_filesystem_data_t));
80 // memset (&lustre_se , 0, sizeof(lustre_sens_t));
81 info("%s: num reads %"PRIu64" nums write %"PRIu64" "
82 "read %f MB wrote %f MB",
83 __func__ , fls.reads , fls.writes , fls.read_size ,

↪→ fls. write_size);
84 slurm_mutex_unlock (& lustre_lock);
85 return SLURM_SUCCESS ;

34

86 }
87 extern int acct_gather_filesystem_p_node_update (void)
88 {
89 //if (_run_in_daemon () && (_check_lustre_fs () ==

↪→ SLURM_SUCCESS)) //No real lustre calls wanted
90 _update_node_filesystem ();
91 return SLURM_SUCCESS ;
92 }
93
94
95 extern void acct_gather_filesystem_p_conf_set (s_p_hashtbl_t

↪→ *tbl)
96 {
97 //if (! _run_in_daemon ())
98 // return;
99 debug("%s loaded", plugin_name);
100 }

35

D. Corrupted hdf5-dump example
Provided by Hendryk Bockelmann. This excerpt is the result of a batch job in slurm
14.11 on mistral. Only the first sample in each profiling-file contains data. Only four
samples are taken from the file, because otherwise it would clog this document.

435 GROUP " Energy_0000000001 " {
436 ATTRIBUTE "Data Type" {
437 DATATYPE H5T_STRING {
438 STRSIZE 6;
439 STRPAD H5T_STR_NULLTERM ;
440 CSET H5T_CSET_ASCII ;
441 CTYPE H5T_C_S1 ;
442 }
443 DATASPACE SIMPLE { (1) / (1) }
444 DATA {
445 (0): "Energy"
446 }
447 }
448 ATTRIBUTE " Subdata Type" {
449 DATATYPE H5T_STRING {
450 STRSIZE 6;
451 STRPAD H5T_STR_NULLTERM ;
452 CSET H5T_CSET_ASCII ;
453 CTYPE H5T_C_S1 ;
454 }
455 DATASPACE SIMPLE { (1) / (1) }
456 DATA {
457 (0): "Sample"
458 }
459 }
460 DATASET " Energy_0000000001 Data" {
461 DATATYPE H5T_COMPOUND {
462 H5T_STRING {
463 STRSIZE 24;
464 STRPAD H5T_STR_NULLTERM ;
465 CSET H5T_CSET_ASCII ;
466 CTYPE H5T_C_S1 ;

36

467 } " Date_Time ";
468 H5T_STD_U64LE "Time";
469 H5T_STD_U64LE "Power";
470 H5T_STD_U64LE " CPU_Frequency ";
471 }
472 DATASPACE SIMPLE { (1) / (1) }
473 DATA {
474 (0): {
475 "",
476 1455807780 ,
477 158,
478 1
479 }
480 }
481 }
482 }
483 GROUP " Energy_0000000004 " {
484 ATTRIBUTE "Data Type" {
485 DATATYPE H5T_STRING {
486 STRSIZE 6;
487 STRPAD H5T_STR_NULLTERM ;
488 CSET H5T_CSET_ASCII ;
489 CTYPE H5T_C_S1 ;
490 }
491 DATASPACE SIMPLE { (1) / (1) }
492 DATA {
493 (0): "Energy"
494 }
495 }
496 ATTRIBUTE " Subdata Type" {
497 DATATYPE H5T_STRING {
498 STRSIZE 6;
499 STRPAD H5T_STR_NULLTERM ;
500 CSET H5T_CSET_ASCII ;
501 CTYPE H5T_C_S1 ;
502 }
503 DATASPACE SIMPLE { (1) / (1) }
504 DATA {
505 (0): "Sample"
506 }
507 }
508 DATASET " Energy_0000000004 Data" {
509 DATATYPE H5T_COMPOUND {
510 H5T_STRING {

37

511 STRSIZE 24;
512 STRPAD H5T_STR_NULLTERM ;
513 CSET H5T_CSET_ASCII ;
514 CTYPE H5T_C_S1 ;
515 } " Date_Time ";
516 H5T_STD_U64LE "Time";
517 H5T_STD_U64LE "Power";
518 H5T_STD_U64LE " CPU_Frequency ";
519 }
520 DATASPACE SIMPLE { (1) / (1) }
521 DATA {
522 (0): {
523 "",
524 0,
525 0,
526 0
527 }
528 }
529 }
530 }
531 GROUP " Energy_0000000006 " {
532 ATTRIBUTE "Data Type" {
533 DATATYPE H5T_STRING {
534 STRSIZE 6;
535 STRPAD H5T_STR_NULLTERM ;
536 CSET H5T_CSET_ASCII ;
537 CTYPE H5T_C_S1 ;
538 }
539 DATASPACE SIMPLE { (1) / (1) }
540 DATA {
541 (0): "Energy"
542 }
543 }
544 ATTRIBUTE " Subdata Type" {
545 DATATYPE H5T_STRING {
546 STRSIZE 6;
547 STRPAD H5T_STR_NULLTERM ;
548 CSET H5T_CSET_ASCII ;
549 CTYPE H5T_C_S1 ;
550 }
551 DATASPACE SIMPLE { (1) / (1) }
552 DATA {
553 (0): "Sample"
554 }

38

555 }
556 DATASET " Energy_0000000006 Data" {
557 DATATYPE H5T_COMPOUND {
558 H5T_STRING {
559 STRSIZE 24;
560 STRPAD H5T_STR_NULLTERM ;
561 CSET H5T_CSET_ASCII ;
562 CTYPE H5T_C_S1 ;
563 } " Date_Time ";
564 H5T_STD_U64LE "Time";
565 H5T_STD_U64LE "Power";
566 H5T_STD_U64LE " CPU_Frequency ";
567 }
568 DATASPACE SIMPLE { (1) / (1) }
569 DATA {
570 (0): {
571 "",
572 0,
573 0,
574 0
575 }
576 }
577 }
578 }

39

E. hdf5-dumps of slurm 14 compared
to slurm 15

Generated by me with the h5dump executable. The storage of data has gotten much
more space efficient from slurm 14 to 15. Where slurm 14 consumes 7kB for 3 samples
of data, slurm 15 only needs 3 kB for 9 samples:
Slurm 14 - 3 samples of energy data

1 HDF5 "32 _0_nerge - desktop .h5" {
2 GROUP "/" {
3 GROUP "Node_nerge - desktop " {
4 ATTRIBUTE "Node Name" {
5 DATATYPE H5T_STRING {
6 STRSIZE 13;
7 STRPAD H5T_STR_NULLTERM ;
8 CSET H5T_CSET_ASCII ;
9 CTYPE H5T_C_S1 ;
10 }
11 DATASPACE SIMPLE { (1) / (1) }
12 DATA {
13 (0): "nerge - desktop "
14 }
15 }
16 ATTRIBUTE "Number of Tasks" {
17 DATATYPE H5T_STD_I32LE
18 DATASPACE SIMPLE { (1) / (1) }
19 DATA {
20 (0): 1
21 }
22 }
23 ATTRIBUTE "Start Time" {
24 DATATYPE H5T_STRING {
25 STRSIZE 24;
26 STRPAD H5T_STR_NULLTERM ;
27 CSET H5T_CSET_ASCII ;
28 CTYPE H5T_C_S1 ;
29 }

40

30 DATASPACE SIMPLE { (1) / (1) }
31 DATA {
32 (0): "Fri Apr 01 15:47:11 2016"
33 }
34 }
35 GROUP "Tasks" {
36 GROUP "Task_0" {
37 ATTRIBUTE "CPUs per Task" {
38 DATATYPE H5T_STD_I32LE
39 DATASPACE SIMPLE { (1) / (1) }
40 DATA {
41 (0): 1
42 }
43 }
44 ATTRIBUTE "Task Id" {
45 DATATYPE H5T_STD_I32LE
46 DATASPACE SIMPLE { (1) / (1) }
47 DATA {
48 (0): 0
49 }
50 }
51 }
52 }
53 GROUP "Time Series" {
54 GROUP "Energy" {
55 ATTRIBUTE "Data Type" {
56 DATATYPE H5T_STRING {
57 STRSIZE 6;
58 STRPAD H5T_STR_NULLTERM ;
59 CSET H5T_CSET_ASCII ;
60 CTYPE H5T_C_S1 ;
61 }
62 DATASPACE SIMPLE { (1) / (1) }
63 DATA {
64 (0): "Energy"
65 }
66 }
67 GROUP " Energy_0000000001 " {
68 ATTRIBUTE "Data Type" {
69 DATATYPE H5T_STRING {
70 STRSIZE 6;
71 STRPAD H5T_STR_NULLTERM ;
72 CSET H5T_CSET_ASCII ;
73 CTYPE H5T_C_S1 ;

41

74 }
75 DATASPACE SIMPLE { (1) / (1) }
76 DATA {
77 (0): "Energy"
78 }
79 }
80 ATTRIBUTE " Subdata Type" {
81 DATATYPE H5T_STRING {
82 STRSIZE 6;
83 STRPAD H5T_STR_NULLTERM ;
84 CSET H5T_CSET_ASCII ;
85 CTYPE H5T_C_S1 ;
86 }
87 DATASPACE SIMPLE { (1) / (1) }
88 DATA {
89 (0): "Sample"
90 }
91 }
92 DATASET " Energy_0000000001 Data" {
93 DATATYPE H5T_COMPOUND {
94 H5T_STRING {
95 STRSIZE 24;
96 STRPAD H5T_STR_NULLTERM ;
97 CSET H5T_CSET_ASCII ;
98 CTYPE H5T_C_S1 ;
99 } " Date_Time ";
100 H5T_STD_U64LE "Time";
101 H5T_STD_U64LE "Power";
102 H5T_STD_U64LE " CPU_Frequency ";
103 }
104 DATASPACE SIMPLE { (1) / (1) }
105 DATA {
106 (0): {
107 "",
108 1459518461 ,
109 20,
110 1
111 }
112 }
113 }
114 }
115 GROUP " Energy_0000000002 " {
116 ATTRIBUTE "Data Type" {
117 DATATYPE H5T_STRING {

42

118 STRSIZE 6;
119 STRPAD H5T_STR_NULLTERM ;
120 CSET H5T_CSET_ASCII ;
121 CTYPE H5T_C_S1 ;
122 }
123 DATASPACE SIMPLE { (1) / (1) }
124 DATA {
125 (0): "Energy"
126 }
127 }
128 ATTRIBUTE " Subdata Type" {
129 DATATYPE H5T_STRING {
130 STRSIZE 6;
131 STRPAD H5T_STR_NULLTERM ;
132 CSET H5T_CSET_ASCII ;
133 CTYPE H5T_C_S1 ;
134 }
135 DATASPACE SIMPLE { (1) / (1) }
136 DATA {
137 (0): "Sample"
138 }
139 }
140 DATASET " Energy_0000000002 Data" {
141 DATATYPE H5T_COMPOUND {
142 H5T_STRING {
143 STRSIZE 24;
144 STRPAD H5T_STR_NULLTERM ;
145 CSET H5T_CSET_ASCII ;
146 CTYPE H5T_C_S1 ;
147 } " Date_Time ";
148 H5T_STD_U64LE "Time";
149 H5T_STD_U64LE "Power";
150 H5T_STD_U64LE " CPU_Frequency ";
151 }
152 DATASPACE SIMPLE { (1) / (1) }
153 DATA {
154 (0): {
155 "",
156 1459518491 ,
157 40,
158 1
159 }
160 }
161 }

43

162 }
163 GROUP " Energy_0000000003 " {
164 ATTRIBUTE "Data Type" {
165 DATATYPE H5T_STRING {
166 STRSIZE 6;
167 STRPAD H5T_STR_NULLTERM ;
168 CSET H5T_CSET_ASCII ;
169 CTYPE H5T_C_S1 ;
170 }
171 DATASPACE SIMPLE { (1) / (1) }
172 DATA {
173 (0): "Energy"
174 }
175 }
176 ATTRIBUTE " Subdata Type" {
177 DATATYPE H5T_STRING {
178 STRSIZE 6;
179 STRPAD H5T_STR_NULLTERM ;
180 CSET H5T_CSET_ASCII ;
181 CTYPE H5T_C_S1 ;
182 }
183 DATASPACE SIMPLE { (1) / (1) }
184 DATA {
185 (0): "Sample"
186 }
187 }
188 DATASET " Energy_0000000003 Data" {
189 DATATYPE H5T_COMPOUND {
190 H5T_STRING {
191 STRSIZE 24;
192 STRPAD H5T_STR_NULLTERM ;
193 CSET H5T_CSET_ASCII ;
194 CTYPE H5T_C_S1 ;
195 } " Date_Time ";
196 H5T_STD_U64LE "Time";
197 H5T_STD_U64LE "Power";
198 H5T_STD_U64LE " CPU_Frequency ";
199 }
200 DATASPACE SIMPLE { (1) / (1) }
201 DATA {
202 (0): {
203 "",
204 0,
205 0,

44

206 0
207 }
208 }
209 }
210 }
211 }
212 }
213 }
214 }
215 }

Slurm 15 - 6 samples of energy data and 3 samples of filesystem data

1 HDF5 "83 _0_nerge - desktop .h5" {
2 GROUP "/" {
3 GROUP "nerge - desktop " {
4 ATTRIBUTE "CPUs per Task" {
5 DATATYPE H5T_STD_I32LE
6 DATASPACE SIMPLE { (1) / (1) }
7 DATA {
8 (0): 1
9 }
10 }
11 ATTRIBUTE "Node Name" {
12 DATATYPE H5T_STRING {
13 STRSIZE 13;
14 STRPAD H5T_STR_NULLTERM ;
15 CSET H5T_CSET_ASCII ;
16 CTYPE H5T_C_S1 ;
17 }
18 DATASPACE SIMPLE { (1) / (1) }
19 DATA {
20 (0): "nerge - desktop "
21 }
22 }
23 ATTRIBUTE "Number of Tasks" {
24 DATATYPE H5T_STD_I32LE
25 DATASPACE SIMPLE { (1) / (1) }
26 DATA {
27 (0): 1
28 }
29 }
30 ATTRIBUTE "Start Time" {
31 DATATYPE H5T_STRING {

45

32 STRSIZE 24;
33 STRPAD H5T_STR_NULLTERM ;
34 CSET H5T_CSET_ASCII ;
35 CTYPE H5T_C_S1 ;
36 }
37 DATASPACE SIMPLE { (1) / (1) }
38 DATA {
39 (0): "Fri Apr 01 14:21:21 2016"
40 }
41 }
42 DATASET "Energy" {
43 DATATYPE H5T_COMPOUND {
44 H5T_STD_U64LE " ElapsedTime ";
45 H5T_STD_U64LE " EpochTime ";
46 H5T_STD_U64LE "Power";
47 }
48 DATASPACE SIMPLE { (7) / (H5S_UNLIMITED) }
49 DATA {
50 (0): {
51 0,
52 1459513281 ,
53 10
54 },
55 (1): {
56 15,
57 1459513296 ,
58 20
59 },
60 (2): {
61 30,
62 1459513311 ,
63 40
64 },
65 (3): {
66 45,
67 1459513326 ,
68 80
69 },
70 (4): {
71 60,
72 1459513341 ,
73 160
74 },
75 (5): {

46

76 75,
77 1459513356 ,
78 320
79 },
80 (6): {
81 90,
82 1459513371 ,
83 640
84 }
85 }
86 }
87 DATASET " Filesystem " {
88 DATATYPE H5T_COMPOUND {
89 H5T_STD_U64LE " ElapsedTime ";
90 H5T_STD_U64LE " EpochTime ";
91 H5T_STD_U64LE "Reads";
92 H5T_IEEE_F64LE "ReadMB";
93 H5T_STD_U64LE "Writes";
94 H5T_IEEE_F64LE " WriteMB ";
95 }
96 DATASPACE SIMPLE { (3) / (H5S_UNLIMITED) }
97 DATA {
98 (0): {
99 0,
100 1459513281 ,
101 0,
102 0,
103 0,
104 0
105 },
106 (1): {
107 45,
108 1459513326 ,
109 400004 ,
110 2002 ,
111 30003 ,
112 101
113 },
114 (2): {
115 90,
116 1459513371 ,
117 400004 ,
118 2002 ,
119 30003 ,

47

120 101
121 }
122 }
123 }
124 }
125 }
126 }

48

List of Figures
Appendix B contains three figures created by me, depicting my understanding of naive
scheduling and backfill scheduling.

49

List of Listings

Anhaenge/corrupt/6.txt . 36

Anhaenge/32.txt . 40
Anhaenge/83.txt . 45

There are two listings in appendix a: They are config files generated by configura-
tor.easy.html and myself. There are two listings in appendix c: They are the slurm
source code files, which i modified (including the modifications). There is one listings in
appendix d: An excerpt from an corrupted hdf5-file provided by Hendryk Bockelmann.
There are two listings in appendix e: They are hdf5-files dumped by me, to show how
the structure has improved between slurm 14 and 15.

50

List of Tables
There is only one table, i made up myself. It is depicting the results of my experiments.

51

	Foreword
	Introduction - Part 1 / Seminar
	Terminology
	Resource management
	Job scheduling
	SLURM
	Plugin

	Architecture of slurm
	Daemons of slurm
	Slurm plugin architecture

	Energy-efficient resource management
	Motivation
	Measuring energy
	Profiling energy
	Plugins for slurm
	IPMI
	RAPL
	HDEEM (in development)
	HDF5 - storing the collected data

	Outlook

	Conclusion - Part 1 / Seminar
	Introduction - Part 2 / Project
	Setting up the test environment
	Installing the operating system
	Installing slurm
	Prerequisites
	Downloading
	Compiling and installing

	Configuring slurm
	Running slurm

	Profiling data
	The problem
	The approach
	Modification of plugins
	Results of profiling dummy data

	Conclusion - Part 2 / Project
	Bibliography
	Appendices
	Test Environment Access Information
	Scheduling example
	Modification of plugins
	Corrupted hdf5-dump example
	hdf5-dumps of slurm 14 compared to slurm 15
	List of Figures
	List of Listings
	List of Tables

