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Parallel Programming

Simpler code is serial
One instruction at a
time
executed one after the
other
run on a single machine

[Bar]

Performant code should
be parallelized

concurrent execution

[Bar]
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Introduction to OpenMP

Introduction to OpenMP

Supports C, C++ and Fortran

Comes with the compiler

Programmer directed

High-level
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Introduction to OpenMP

Low vs high-level approach

PThreads (low-level)

1 #include<stdio.h>
2 #include<pthread.h>
3

4 void* say_hello(void* data)
5 {
6 char *str;
7 str = (char*)data;
8 printf("%s\n",str);
9 }

10

11 void main()
12 {
13 pthread_t t1,t2;
14 pthread_create(&t1,NULL,say_hello,"Hello Seminar");
15 pthread_create(&t2,NULL,say_hello,"Hello Seminar");
16 pthread_join(t1,NULL);
17 pthread_join(t2,NULL);
18 }
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Introduction to OpenMP

Low vs high-level approach

OpenMP (high-level)

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 void main()
5 {
6 #pragma omp parallel num_threads(2)
7 printf("Hello Seminar\n");
8 }
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Introduction to OpenMP

Syntax

Preprocessor directive begins with #pragma omp

Followed by a specification as to what feature is being applied

The parallelism is applied to the block of code following the preprocessor directive

1 foo(){
2 #pragma omp <command specifier>
3 {
4 //some block of code that runs parallel
5 }
6 }

!$OMP <COMMAND SPECIFIER> in Fortran

unknown pragmas are ignored by the compiler
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Introduction to OpenMP

omp.h

#include <omp.h>
provides many helpful functions

e.g. omp_get_thread_num()

not required to run OpenMP code
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Parallel construct

Parallel construct

#pragma omp parallel

1 int main(void){
2 #pragma omp parallel
3 printf("hello Seminar\n");
4

5 return EXIT_SUCCESS;
6 }

Creates a team of n threads

n usually depends on the number of cpu cores unless specified otherwise

Parallelized block is executed once by every thread
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Parallel construct

num_threads

#pragma omp parallel num_threads(int)

alternative: omp_set_num_threads(int) from omp.h

1 int main(void){
2 #pragma omp parallel num_threads(3)
3 printf("hello Seminar\n");
4

5 return EXIT_SUCCESS;
6 }

Let’s you specify the number of threads to be created
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Parallel construct

Parallel if

#pragma omp parallel if(bool)

1 int main(void){
2 #pragma omp parallel if(0)
3 printf("hello Seminar\n");
4

5 return EXIT_SUCCESS;
6 }

parallelizes only if the boolean within the if clause is true
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Loops

For construct

#pragma omp for

1 int main(void){
2 #pragma omp parallel num_threads(2)
3 {
4 #pragma omp for
5 for(int n=0; n<10; ++n)
6 {
7 printf(" %d", n);
8 }
9 }

10

11 return EXIT_SUCCESS;
12 }

Each thread of the active team handles a different part of the loop
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Loops

Parallel for

#pragma omp parallel for

1 int main(void){
2 #pragma omp parallel for
3 for(int n=0; n<10; ++n)
4 {
5 printf(" %d", n);
6 }
7

8 return EXIT_SUCCESS;
9 }

Combines #pragma omp parallel and #pragma omp for into one line

Creates a team of threads and assigns each thread a part of the loop
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Loops

Schedule

static (default), dynamic, auto, guided, runtime

1 ...//2 active threads
2 #pragma omp for schedule(static)
3 for(int n=0; n<10; ++n) printf(" %d", n);

1 //2 threads
2 #pragma omp for schedule(dynamic, 3)
3 for(int n=0; n<10; ++n) printf(" %d", n);
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Loops

Ordered

1 //2 threads
2 #pragma omp for ordered schedule(static)
3 for(int n=0; n<10; ++n) {
4 printf(" %d", n);
5 }

1 //2 threads
2 #pragma omp for ordered schedule(static)
3 for(int n=0; n<10; ++n) {
4 #pragma omp ordered
5 printf(" %d", n);
6 }
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Loops

Nested loops and the collapse clause

1 //2 threads
2 #pragma omp for
3 for(int n=0; n<3; ++n) {
4 for(int m=0; m<2; ++m) {
5 printf("(%d%d)",n,m);
6 }
7 }

1 //2 threads
2 #pragma omp for collapse(2)
3 for(int n=0; n<3; ++n) {
4 for(int m=0; m<2; ++m) {
5 printf("(%d%d)",n,m);
6 }
7 }
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Sections

Sections

1 //3 threads
2 #pragma omp sections
3 {
4 {
5 printf("a ");
6 }
7 #pragma omp section
8 {
9 printf("b1 ");

10 printf("b2 ");
11 }
12 #pragma omp section
13 {
14 printf("c ");
15 }
16 }
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Shared, unshared variables

Shared, unshared variables

shared: One variable shared by all threads (default)

private: Each thread has their own variable of this name

1 int main(void){
2 int m,l=0;
3 #pragma omp parallel for num_threads(2) private(l) shared(m)
4 for(int n=0; n<10;n++) {
5 l++;
6 m++;
7 printf("(%d,%d)",l,m);
8 }
9 }
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Shared, unshared variables

Firstprivate

1 int main(void){
2 int m,l=0;
3 #pragma omp parallel for num_threads(2) firstprivate(l)

shared(m)↪→

4 for(int n=0; n<10;n++) {
5 l++;
6 m++;
7 printf("(%d,%d)",l,m);
8 }
9 }
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Offloading

Offloading

Execution also on other hardware than the computers CPU

1 #pragma omp target device(device_number)
2 {
3 //executed on the device with the number specified
4 }

omp.h provides helpful methods e.g. to set a default device or find out device
numbers
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Thread-Safety

Atomic

1 int count = 0;
2 #pragma omp parallel num_threads(100)
3 {
4 //#pragma omp atomic
5 count++;
6 }
7 printf("Number of threads: %d\n", count);

Not atomic:
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Thread-Safety

Reduction

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main()
5 {
6 int count = 0;
7 #pragma omp parallel num_threads(100) reduction(+:count)
8 {
9 count++;

10 }
11 printf("Number of threads: %d\n", count);
12 return 0;
13 }
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Thread-Safety

Critical

1 #pragma omp parallel num_threads(2)
2 {
3 if(omp_get_thread_num() == 0){
4 #pragma omp critical(loop)
5 for(int n = 0; n < 5; n++) printf("a");
6 } else {
7 #pragma omp critical(loop)
8 for(int n = 0; n < 5; n++) printf("b");
9 }

10 }
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Synchronization

Barrier

1 #pragma omp parallel num_threads(2)
2 {
3 if(omp_get_thread_num() == 1)
4 {
5 for(int n = 0; n < 10; n++) printf("n ");
6 }
7 #pragma omp barrier
8 printf("\npast the barrier");
9 }

With barrier: Without barrier:
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Synchronization

Nowait

1 #pragma omp parallel num_threads(2)
2 {
3 #pragma omp for nowait
4 for(int n = 0; n < 10; n++){
5 printf("%d", omp_get_thread_num());
6 if(omp_get_thread_num() == 1) printf("");
7 }
8 printf("\ndone with the loop");
9 }

With nowait: Without nowait:
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Compilation

Requirements

Compiler supporting OpenMP
Set compiler flag for OpenMP e.g. -fopenmp

Produces serial code otherwise

Link the runtime library libgomp-1.dll
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Compilation

Additional compilation

Additionally to the usual compilation:

Reads omp directives and checks for correctness
Substitution:

Replace sections by Do- and For-constructs
Implicit to explicit barrier

Handles memory

Applies some optimization

Creates multithreading code from omp constructs

Outlines parallel region to function

Philipp Quach University of Hamburg OpenMP December 15th 2016 27 / 37



Introduction Features Compilation Performance Conclusion Sources

Compilation

Transformed code example

Original:

1 void main(){
2 #pragma omp parallel
3 {
4 #pragma omp for
5 for( i = 0; i < n; i++ ){...}
6 }
7 }

Transformed:

1 void outlined(...){
2 tid = ompc_get_thread_num();
3 ompc_static_init(tid, lower,upper,incr,.);
4 for( i = lower;i < upper;i += incr ){ ... }
5 ompc_barrier();
6 }
7

8 void main(){
9 __ompc_fork(...,&outlined,...);

10 }
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Parallel Overhead

Time spent coordinating threads etc.
Initializing threads
Terminating threads
Coordination such as synchronization

Aim: Minimize overheads
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Speedup

OpenMP uses a thread-pool
Threads are created once
Once done with their work, return to dock
Then wait for new work

Speedup over serial code can vary strongly

Speedup(P) =
TSerial (P)

TElapsed (P)
= 1

f
P −f+1+OP ·P

(simplified)

Efficiency(P) = Speedup(P)
P
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Bad usage makes it worse

1 #pragma omp parallel for private(j)
2 for(i=0;i<=100000;i++)
3 {
4 for(j=0;j<=100000;j++)
5 {
6 #pragma omp atomic
7 a++;
8 }
9 }

10 printf("%lld", a);

Serial:

Parallel:

Thread-save:
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Example speedup

Table: Matrix-Vector-Product

Size Serial time Parallel Time Speedup
10000*10000 0.10 0.03 2.95
30000*30000 1.01 0.23 4.33
40000*40000 1.88 0.39 4.73

[App14]

Execution with 4 cores, 8 logical processors/threads
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Optimization

Minimize Overheads

Load balance: Threads should have similar runtime

Thread-Safety causes waiting time

Don’t parallelize in inner loops

Maximize parallel regions

The ordered construct is slow

Optimize barrier and nowait usage

Avoid memory conflicts
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How good is OpenMP

How good is OpenMP

Pro:
Target audience: general-purpose application programers

portability, maintainability, convenience

Highly effective for simple loop based code

Contra:

Too narrow for complexer code structures

Doesn’t optimize for the specific hardware the code runs on
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Summary

Summary

OpenMP is easy to use
Parallelize by adding a few lines
Not necessary to rewrite existing code

Not a substitution of low-level APIs

Although high level, the many features allow for flexible control

Possible speedup depends on hardware

Poor parallelization may even slow down, optimize well!
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