
Introduction Features Compilation Performance Conclusion Sources

OpenMP
Open Multi Processing

Philipp Quach

Seminar “Effiziente Programmierung”
University of Hamburg

December 15th 2016

Philipp Quach University of Hamburg OpenMP December 15th 2016 1 / 37

Introduction Features Compilation Performance Conclusion Sources

Content

1 Introduction
Parallel Programming
Introduction to OpenMP

2 Features
Parallel construct
Loops
Sections
Shared, unshared variables
Offloading
Thread-Safety
Synchronization

3 Compilation

4 Performance

5 Conclusion
How good is OpenMP
Summary

6 Sources

Philipp Quach University of Hamburg OpenMP December 15th 2016 2 / 37

Introduction Features Compilation Performance Conclusion Sources

Parallel Programming

Simpler code is serial
One instruction at a
time
executed one after the
other
run on a single machine

[Bar]

Performant code should
be parallelized

concurrent execution

[Bar]

Philipp Quach University of Hamburg OpenMP December 15th 2016 3 / 37

Introduction Features Compilation Performance Conclusion Sources

Introduction to OpenMP

Introduction to OpenMP

Supports C, C++ and Fortran

Comes with the compiler

Programmer directed

High-level

Philipp Quach University of Hamburg OpenMP December 15th 2016 4 / 37

Introduction Features Compilation Performance Conclusion Sources

Introduction to OpenMP

Low vs high-level approach

PThreads (low-level)

1 #include<stdio.h>
2 #include<pthread.h>
3

4 void* say_hello(void* data)
5 {
6 char *str;
7 str = (char*)data;
8 printf("%s\n",str);
9 }

10

11 void main()
12 {
13 pthread_t t1,t2;
14 pthread_create(&t1,NULL,say_hello,"Hello Seminar");
15 pthread_create(&t2,NULL,say_hello,"Hello Seminar");
16 pthread_join(t1,NULL);
17 pthread_join(t2,NULL);
18 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 5 / 37

Introduction Features Compilation Performance Conclusion Sources

Introduction to OpenMP

Low vs high-level approach

OpenMP (high-level)

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 void main()
5 {
6 #pragma omp parallel num_threads(2)
7 printf("Hello Seminar\n");
8 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 6 / 37

Introduction Features Compilation Performance Conclusion Sources

Introduction to OpenMP

Syntax

Preprocessor directive begins with #pragma omp

Followed by a specification as to what feature is being applied

The parallelism is applied to the block of code following the preprocessor directive

1 foo(){
2 #pragma omp <command specifier>
3 {
4 //some block of code that runs parallel
5 }
6 }

!$OMP <COMMAND SPECIFIER> in Fortran

unknown pragmas are ignored by the compiler

Philipp Quach University of Hamburg OpenMP December 15th 2016 7 / 37

Introduction Features Compilation Performance Conclusion Sources

Introduction to OpenMP

omp.h

#include <omp.h>
provides many helpful functions

e.g. omp_get_thread_num()

not required to run OpenMP code

Philipp Quach University of Hamburg OpenMP December 15th 2016 8 / 37

Introduction Features Compilation Performance Conclusion Sources

Parallel construct

Parallel construct

#pragma omp parallel

1 int main(void){
2 #pragma omp parallel
3 printf("hello Seminar\n");
4

5 return EXIT_SUCCESS;
6 }

Creates a team of n threads

n usually depends on the number of cpu cores unless specified otherwise

Parallelized block is executed once by every thread

Philipp Quach University of Hamburg OpenMP December 15th 2016 9 / 37

Introduction Features Compilation Performance Conclusion Sources

Parallel construct

num_threads

#pragma omp parallel num_threads(int)

alternative: omp_set_num_threads(int) from omp.h

1 int main(void){
2 #pragma omp parallel num_threads(3)
3 printf("hello Seminar\n");
4

5 return EXIT_SUCCESS;
6 }

Let’s you specify the number of threads to be created

Philipp Quach University of Hamburg OpenMP December 15th 2016 10 / 37

Introduction Features Compilation Performance Conclusion Sources

Parallel construct

Parallel if

#pragma omp parallel if(bool)

1 int main(void){
2 #pragma omp parallel if(0)
3 printf("hello Seminar\n");
4

5 return EXIT_SUCCESS;
6 }

parallelizes only if the boolean within the if clause is true

Philipp Quach University of Hamburg OpenMP December 15th 2016 11 / 37

Introduction Features Compilation Performance Conclusion Sources

Loops

For construct

#pragma omp for

1 int main(void){
2 #pragma omp parallel num_threads(2)
3 {
4 #pragma omp for
5 for(int n=0; n<10; ++n)
6 {
7 printf(" %d", n);
8 }
9 }

10

11 return EXIT_SUCCESS;
12 }

Each thread of the active team handles a different part of the loop

Philipp Quach University of Hamburg OpenMP December 15th 2016 12 / 37

Introduction Features Compilation Performance Conclusion Sources

Loops

Parallel for

#pragma omp parallel for

1 int main(void){
2 #pragma omp parallel for
3 for(int n=0; n<10; ++n)
4 {
5 printf(" %d", n);
6 }
7

8 return EXIT_SUCCESS;
9 }

Combines #pragma omp parallel and #pragma omp for into one line

Creates a team of threads and assigns each thread a part of the loop

Philipp Quach University of Hamburg OpenMP December 15th 2016 13 / 37

Introduction Features Compilation Performance Conclusion Sources

Loops

Schedule

static (default), dynamic, auto, guided, runtime

1 ...//2 active threads
2 #pragma omp for schedule(static)
3 for(int n=0; n<10; ++n) printf(" %d", n);

1 //2 threads
2 #pragma omp for schedule(dynamic, 3)
3 for(int n=0; n<10; ++n) printf(" %d", n);

Philipp Quach University of Hamburg OpenMP December 15th 2016 14 / 37

Introduction Features Compilation Performance Conclusion Sources

Loops

Ordered

1 //2 threads
2 #pragma omp for ordered schedule(static)
3 for(int n=0; n<10; ++n) {
4 printf(" %d", n);
5 }

1 //2 threads
2 #pragma omp for ordered schedule(static)
3 for(int n=0; n<10; ++n) {
4 #pragma omp ordered
5 printf(" %d", n);
6 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 15 / 37

Introduction Features Compilation Performance Conclusion Sources

Loops

Nested loops and the collapse clause

1 //2 threads
2 #pragma omp for
3 for(int n=0; n<3; ++n) {
4 for(int m=0; m<2; ++m) {
5 printf("(%d%d)",n,m);
6 }
7 }

1 //2 threads
2 #pragma omp for collapse(2)
3 for(int n=0; n<3; ++n) {
4 for(int m=0; m<2; ++m) {
5 printf("(%d%d)",n,m);
6 }
7 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 16 / 37

Introduction Features Compilation Performance Conclusion Sources

Sections

Sections

1 //3 threads
2 #pragma omp sections
3 {
4 {
5 printf("a ");
6 }
7 #pragma omp section
8 {
9 printf("b1 ");

10 printf("b2 ");
11 }
12 #pragma omp section
13 {
14 printf("c ");
15 }
16 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 17 / 37

Introduction Features Compilation Performance Conclusion Sources

Shared, unshared variables

Shared, unshared variables

shared: One variable shared by all threads (default)

private: Each thread has their own variable of this name

1 int main(void){
2 int m,l=0;
3 #pragma omp parallel for num_threads(2) private(l) shared(m)
4 for(int n=0; n<10;n++) {
5 l++;
6 m++;
7 printf("(%d,%d)",l,m);
8 }
9 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 18 / 37

Introduction Features Compilation Performance Conclusion Sources

Shared, unshared variables

Firstprivate

1 int main(void){
2 int m,l=0;
3 #pragma omp parallel for num_threads(2) firstprivate(l)

shared(m)↪→

4 for(int n=0; n<10;n++) {
5 l++;
6 m++;
7 printf("(%d,%d)",l,m);
8 }
9 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 19 / 37

Introduction Features Compilation Performance Conclusion Sources

Offloading

Offloading

Execution also on other hardware than the computers CPU

1 #pragma omp target device(device_number)
2 {
3 //executed on the device with the number specified
4 }

omp.h provides helpful methods e.g. to set a default device or find out device
numbers

Philipp Quach University of Hamburg OpenMP December 15th 2016 20 / 37

Introduction Features Compilation Performance Conclusion Sources

Thread-Safety

Atomic

1 int count = 0;
2 #pragma omp parallel num_threads(100)
3 {
4 //#pragma omp atomic
5 count++;
6 }
7 printf("Number of threads: %d\n", count);

Not atomic:

Philipp Quach University of Hamburg OpenMP December 15th 2016 21 / 37

Introduction Features Compilation Performance Conclusion Sources

Thread-Safety

Reduction

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main()
5 {
6 int count = 0;
7 #pragma omp parallel num_threads(100) reduction(+:count)
8 {
9 count++;

10 }
11 printf("Number of threads: %d\n", count);
12 return 0;
13 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 22 / 37

Introduction Features Compilation Performance Conclusion Sources

Thread-Safety

Critical

1 #pragma omp parallel num_threads(2)
2 {
3 if(omp_get_thread_num() == 0){
4 #pragma omp critical(loop)
5 for(int n = 0; n < 5; n++) printf("a");
6 } else {
7 #pragma omp critical(loop)
8 for(int n = 0; n < 5; n++) printf("b");
9 }

10 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 23 / 37

Introduction Features Compilation Performance Conclusion Sources

Synchronization

Barrier

1 #pragma omp parallel num_threads(2)
2 {
3 if(omp_get_thread_num() == 1)
4 {
5 for(int n = 0; n < 10; n++) printf("n ");
6 }
7 #pragma omp barrier
8 printf("\npast the barrier");
9 }

With barrier: Without barrier:

Philipp Quach University of Hamburg OpenMP December 15th 2016 24 / 37

Introduction Features Compilation Performance Conclusion Sources

Synchronization

Nowait

1 #pragma omp parallel num_threads(2)
2 {
3 #pragma omp for nowait
4 for(int n = 0; n < 10; n++){
5 printf("%d", omp_get_thread_num());
6 if(omp_get_thread_num() == 1) printf("");
7 }
8 printf("\ndone with the loop");
9 }

With nowait: Without nowait:

Philipp Quach University of Hamburg OpenMP December 15th 2016 25 / 37

Introduction Features Compilation Performance Conclusion Sources

Compilation

Requirements

Compiler supporting OpenMP
Set compiler flag for OpenMP e.g. -fopenmp

Produces serial code otherwise

Link the runtime library libgomp-1.dll

Philipp Quach University of Hamburg OpenMP December 15th 2016 26 / 37

Introduction Features Compilation Performance Conclusion Sources

Compilation

Additional compilation

Additionally to the usual compilation:

Reads omp directives and checks for correctness
Substitution:

Replace sections by Do- and For-constructs
Implicit to explicit barrier

Handles memory

Applies some optimization

Creates multithreading code from omp constructs

Outlines parallel region to function

Philipp Quach University of Hamburg OpenMP December 15th 2016 27 / 37

Introduction Features Compilation Performance Conclusion Sources

Compilation

Transformed code example

Original:

1 void main(){
2 #pragma omp parallel
3 {
4 #pragma omp for
5 for(i = 0; i < n; i++){...}
6 }
7 }

Transformed:

1 void outlined(...){
2 tid = ompc_get_thread_num();
3 ompc_static_init(tid, lower,upper,incr,.);
4 for(i = lower;i < upper;i += incr){ ... }
5 ompc_barrier();
6 }
7

8 void main(){
9 __ompc_fork(...,&outlined,...);

10 }

Philipp Quach University of Hamburg OpenMP December 15th 2016 28 / 37

Introduction Features Compilation Performance Conclusion Sources

Parallel Overhead

Time spent coordinating threads etc.
Initializing threads
Terminating threads
Coordination such as synchronization

Aim: Minimize overheads

Philipp Quach University of Hamburg OpenMP December 15th 2016 29 / 37

Introduction Features Compilation Performance Conclusion Sources

Speedup

OpenMP uses a thread-pool
Threads are created once
Once done with their work, return to dock
Then wait for new work

Speedup over serial code can vary strongly

Speedup(P) =
TSerial (P)

TElapsed (P)
= 1

f
P −f+1+OP ·P

(simplified)

Efficiency(P) = Speedup(P)
P

Philipp Quach University of Hamburg OpenMP December 15th 2016 30 / 37

Introduction Features Compilation Performance Conclusion Sources

Bad usage makes it worse

1 #pragma omp parallel for private(j)
2 for(i=0;i<=100000;i++)
3 {
4 for(j=0;j<=100000;j++)
5 {
6 #pragma omp atomic
7 a++;
8 }
9 }

10 printf("%lld", a);

Serial:

Parallel:

Thread-save:

Philipp Quach University of Hamburg OpenMP December 15th 2016 31 / 37

Introduction Features Compilation Performance Conclusion Sources

Example speedup

Table: Matrix-Vector-Product

Size Serial time Parallel Time Speedup
10000*10000 0.10 0.03 2.95
30000*30000 1.01 0.23 4.33
40000*40000 1.88 0.39 4.73

[App14]

Execution with 4 cores, 8 logical processors/threads

Philipp Quach University of Hamburg OpenMP December 15th 2016 32 / 37

Introduction Features Compilation Performance Conclusion Sources

Optimization

Minimize Overheads

Load balance: Threads should have similar runtime

Thread-Safety causes waiting time

Don’t parallelize in inner loops

Maximize parallel regions

The ordered construct is slow

Optimize barrier and nowait usage

Avoid memory conflicts

Philipp Quach University of Hamburg OpenMP December 15th 2016 33 / 37

Introduction Features Compilation Performance Conclusion Sources

How good is OpenMP

How good is OpenMP

Pro:
Target audience: general-purpose application programers

portability, maintainability, convenience

Highly effective for simple loop based code

Contra:

Too narrow for complexer code structures

Doesn’t optimize for the specific hardware the code runs on

Philipp Quach University of Hamburg OpenMP December 15th 2016 34 / 37

Introduction Features Compilation Performance Conclusion Sources

Summary

Summary

OpenMP is easy to use
Parallelize by adding a few lines
Not necessary to rewrite existing code

Not a substitution of low-level APIs

Although high level, the many features allow for flexible control

Possible speedup depends on hardware

Poor parallelization may even slow down, optimize well!

Philipp Quach University of Hamburg OpenMP December 15th 2016 35 / 37

Introduction Features Compilation Performance Conclusion Sources

Sources I

Appentra.
A widely-used algebraic code: Parallel computation of matrix-vector product.
http://www.appentra.com/
parallel-computation-of-matrix-vector-product/, 2014.
[Online; accessed 8-December-2016].

Blaise Barney.
Introduction to Parallel Computing.
https://computing.llnl.gov/tutorials/parallel_comp/.
[Online; accessed 8-December-2016].

Lei Huang Barbara Chapman.
How OpenMP is Compiled.
https:
//iwomp.zih.tu-dresden.de/downloads/OpenMP-compilation.pdf.
[Online; accessed 8-December-2016].

Keld Helsgaun.
How to Get Good Performance by Using OpenMP.
http://www.akira.ruc.dk/~keld/teaching/IPDC_f10/Slides/
pdf4x/4_Performance.4x.pdf, 2010.
[Online; accessed 8-December-2016].

Philipp Quach University of Hamburg OpenMP December 15th 2016 36 / 37

http://www.appentra.com/parallel-computation-of-matrix-vector-product/
http://www.appentra.com/parallel-computation-of-matrix-vector-product/
https://computing.llnl.gov/tutorials/parallel_comp/
https://iwomp.zih.tu-dresden.de/downloads/OpenMP-compilation.pdf
https://iwomp.zih.tu-dresden.de/downloads/OpenMP-compilation.pdf
http://www.akira.ruc.dk/~keld/teaching/IPDC_f10/Slides/pdf4x/4_Performance.4x.pdf
http://www.akira.ruc.dk/~keld/teaching/IPDC_f10/Slides/pdf4x/4_Performance.4x.pdf

Introduction Features Compilation Performance Conclusion Sources

Sources II

Timothy G. Mattson.
How Good is OpenMP.
Hindawi Publishing Corporation, 2003.

Microsoft.
atomic.
https://msdn.microsoft.com/de-de/library/8ztckdts.aspx, 2016.
[Online; accessed 8-December-2016].

Joel Yliluoma.
Guide into OpenMP: Easy multithreading programming for C++.
http://bisqwit.iki.fi/story/howto/openmp/, 2007.
[Online; accessed 8-December-2016].

Philipp Quach University of Hamburg OpenMP December 15th 2016 37 / 37

https://msdn.microsoft.com/de-de/library/8ztckdts.aspx
http://bisqwit.iki.fi/story/howto/openmp/

	Introduction
	Parallel Programming
	Introduction to OpenMP

	Features
	Parallel construct
	Loops
	Sections
	Shared, unshared variables
	Offloading
	Thread-Safety
	Synchronization

	Compilation
	Performance
	Conclusion
	How good is OpenMP
	Summary

	Sources

