
Schriftliche Ausarbeitung

OpenMP

vorgelegt von

Philipp Quach

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Software-System-Entwicklung
Matrikelnummer: 6706421

Betreuer: Konstantinos Chasapis

Hamburg, 03.03.2017

Abstract
Open Multi-Processing (short: OpenMP) is a library for the programming languages C,
C++ and Fortran that can be used to write parallel programs. Among the libraries that
share this purpose, OpenMP stands out due to the simplicity of applying it to already
existing, working code.
This paper gives an Introduction to OpenMP, then for the main part explains the most
important features, displays a “behind the scenes” over the compilation process and talks
about performance. Code examples are in C.

Contents
1 Introduction 4

1.1 Parallel Programming . 4
1.2 Introduction to OpenMP . 5

2 Features 7
2.1 Parallel Construct . 7
2.2 Loops . 8

2.2.1 For construct . 8
2.2.2 Scheduling . 8
2.2.3 Nested loops . 9

2.3 Sections . 10
2.4 Shared, unshared variables . 11
2.5 Offloading . 11
2.6 Thread-Safety . 12
2.7 Synchronization . 13

3 Compilation 15

4 Performance 17

5 Conclusion 19

Bibliography 20

3

1 Introduction

1.1 Parallel Programming
When writing code in order to solve a problem, we usually define instructions that we
execute one after the other with only one processor. Code of this kind is called serial code.

[Bar]
In the case of parallel programming however, we split the problem into sub-problems

and define a set of instructions for each of those. Each of those sets of instructions can
be executed on a different processor. Having multiple processors working together to
solve the problem can make the program a lot faster.

[Bar]

4

1.2 Introduction to OpenMP
OpenMP works with the programming languages C, C++ and Fortran. It can be seen as
a downside that it works only with those, however these are languages that are known to
produce very fast code. Hence aiming for high performance in terms of speed may lead
you to choose one of these languages anyway, so you may as well see it as an advantage
that it works with all three. OpenMP comes with the compiler, so there is no need to
download a software package for it, just a version of a compiler that supports it. One
such compiler would be the GCC-compiler, used to compile the code examples in this
paper.
OpenMP uses a programmer-directed approach, which means that the programmer is in
charge of defining which parts of the code are to be parallelized. The opposite approach
would be automatic parallelization, which would mean that the programmer himself
wouldn’t need to change any part of his serial code in order to create the parallel version.
As of today there is no working solution to the automatic approach. In fact OpenMP
works on a very high level compared to other libraries and keeps the workload on the
programmer relatively low.
The following code uses the PThreads-library, one that works on a lower level:

1 #include <stdio.h>
2 #include <pthread.h>
3

4 void* say_hello(void* data)
5 {
6 char *str;
7 str = (char*)data;
8 printf("%s\n",str);
9 }

10

11 void main()
12 {
13 pthread_t t1,t2;
14 pthread_create(&t1,NULL,say_hello,"Hello Seminar");
15 pthread_create(&t2,NULL,say_hello,"Hello Seminar");
16 pthread_join(t1,NULL);
17 pthread_join(t2,NULL);
18 }

In PThreads it is necessary to write many steps of the parallelization manually:
Creating the thread-variables in line 13, starting the threads in lines 14 and 15, joining
these back into the main algorithm in lines 16 and 17 and passing a starting-function as
well as other parameters for each thread-creation to work with.
Looking at the following OpenMP code we will see in what way exactly OpenMP works
on a higher level:

5

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 void main()
5 {
6 #pragma omp parallel num_threads(2)
7 printf("Hello Seminar\n");
8 }

Line 6 is the only line that OpenMP adds to the original, serial code. Both, the
PThreads and the OpenMP code, print “Hello Seminar” twice into the console by cre-
ating two threads and having both threads print it once. However, it is easy to note
that the OpenMP code is a lot simpler. While PThreads requires you to embed the
parallelization deeply into your code, OpenMP leaves the original, serial code completely
intact, adding only short preprocessor directives.

The syntax of OpenMP looks as follows:

1 foo(){
2 #pragma omp <command specifier>
3 {
4 //some block of code that runs parallel
5 }
6 }

The preprocessor directive begins with “#pragma omp”, followed by a specification of
the OpenMP feature that is to be applied. The feature specified is then being applied to
the block of code following the preprocessor directive, starting with “{”, ending with
“}”. An advantage of the pragma statement is that unknown pragmas are being ignored
by the compiler. Hence you can run OpenMP code serial by simply not telling your
compiler to recognize the pragma. Unknown pragma would mean that if the compiler
came across the “#pragma omp” not recognizing what “omp” is, then it would ignore it;
if however it would recognize the “#pragma omp” but come across a broken command
specifier then it wouldn’t interpret that as unknown and ignore, but recognize it as an
error, since the compiler knows what “#pragma omp” means, knowing what command
specifiers would be valid.

One optional header that can be included is <omp.h>. It provides many helpful
functions to work with such as omp_get_thread_num() used to return the ID of a
thread.

6

2 Features
OpenMP includes many different features for various purposes, this chapter will explain
the most important of them one by one.

2.1 Parallel Construct
1 int main(void){
2 #pragma omp parallel
3 printf("hello Seminar\n");
4

5 return EXIT_SUCCESS;
6 }

The parallel construct is the construct that creates threads and is hence fundamental
in that it’s always the feature that is called first. The number of threads that it creates
is dependant on the number of cpu cores that are available on the executing computer.
Each created thread executes the block of code following exactly once. For instance a
machine with 2 cores creating 4 logical processors via hyper-threading would print “Hello
Seminar” 4 times if it were to run aboves code.

Instead of creating the default number of threads based on your hardware you may
specify the number of threads that are to create by using the num_threads construct.

1 int main(void){
2 #pragma omp parallel num_threads(3)
3 printf("hello Seminar\n");
4

5 return EXIT_SUCCESS;
6 }

It is also possible to restrict the creation of threads by a condition. The following code
would be serial as the boolean passed into the if statement is false. Only if the condition
is fulfilled does the parallel construct go into effect.

1 int main(void){
2 #pragma omp parallel if(0)
3 printf("hello Seminar\n");
4

5 return EXIT_SUCCESS;
6 }

7

2.2 Loops
Parallelizing loops is a big strong point of OpenMP. They appear very frequently and
OpenMP handles them very efficiently in terms of simplicity and performance.

2.2.1 For construct
1 int main(void){
2 #pragma omp parallel num_threads(2)
3 {
4 #pragma omp for
5 for(int n=0; n<10; ++n)
6 {
7 printf(" %d", n);
8 }
9 }

10

11 return EXIT_SUCCESS;
12 }

The for construct divides the affected loop into equally sized portions for each active
thread to work on. In the program above thread 0 would handle the iterations with n =
0 to n = 4 while thread 1 would handle those with n = 5 to n = 9. The console output
of the program would be “0 5 1 6 2 7 3 8 4 9” with thread 0 starting with the printout
of 0 while thread 1 starts with that of 5 and then both threads advancing their portion
of the loop at similar speed. It is not necessarily the case that thread 0 happens to be
faster than thread 1, the printout could possibly end up being “5 0 6 1 7 2 8 3 9 4”.

1 int main(void){
2 #pragma omp parallel for
3 for(int n=0; n<10; ++n)
4 {
5 printf(" %d", n);
6 }
7

8 return EXIT_SUCCESS;
9 }

Constructs can be combined with each other for shorter code. The above first creates
threads with the parallel construct and then parallelizes the loop using the for construct.

2.2.2 Scheduling
The for construct divides the loop into equally sized portions and in the case of 2 threads
just cuts the loop in half, but there is a construct for better control over how the loop is

8

supposed to be divided: The schedule construct. There is different available options to
schedule including static which is the default, dynamic, auto, guided and runtime.

1 //2 threads
2 #pragma omp for schedule(dynamic, 3)
3 for(int n=0; n<10; ++n) printf(" %d", n);

Aboves schedule(dynamic, 3) for instance causes the loop to be divided in steps of 3.
Thread 0 doing the iterations from n = 0 to n = 2, thread 1 doing n = 3 to n = 5, thread
0 doing n = 6 to n = 8 and thread 1 doing n = 9. So thread 0 prints “0 1 2 6 7 8” while
thread 1 prints “3 4 5 9”, hence the output of aboves code could be “0 3 1 4 2 5 6 9 7 8”.

There is oftenly the requirement that instructions are to be executed in a certain order
which could be destroyed by parallelism.

1 //2 threads
2 #pragma omp for ordered schedule(static)
3 for(int n=0; n<10; ++n) {
4 doSomethingInParallel();
5 #pragma omp ordered
6 doSomethingOrdered();
7 }

The ordered construct allows one to define a block of code in which the serial order
is maintained while the rest of the for loop is running parallel. In aboves example the
iteration with n = 5, which thread 1 starts with, would finish doSomethingInParallel()
before the iteration with n = 4, which is the last one that thread 0 executes, would finish
it. Coming across the “#pragma omp ordered” the iteration with n = 5 would halt its
progress and wait for the iterations with n = 0 to n = 4 to execute doSomethingOrdered()
before doing it itself.

2.2.3 Nested loops
Having loops inside of loops requires some special direction as to which thread does
which iterations.

1 //2 threads
2 #pragma omp for
3 for(int n=0; n<3; ++n) {
4 for(int m=0; m<2; ++m) {
5 printf("(%d%d)",n,m);
6 }
7 }

9

The above simply divides the outer loop letting thread 0 do the iterations with n
= 0 and n = 1 while thread 1 does the iteration with n = 2. The output would be
“(00)(20)(01)(21)(10)(11)”. This is an uneven workload distribution as thread 0 prints 4
of the tuples while thread 1 only prints 2 of them.

Ideally, both threads would do 3 of the printouts. The collapse clause can be used to
let OpenMP consider both loops when dividing into the 2 parts.

1 //2 threads
2 #pragma omp for collapse(2)
3 for(int n=0; n<3; ++n) {
4 for(int m=0; m<2; ++m) {
5 printf("(%d%d)",n,m);
6 }
7 }

With the above thread 0 would print (00) up to (10) while thread 1 would print (11) up
to (21), creating a printout of “(00)(11)(01)(20)(10)(21)” that shows even distribution.

2.3 Sections
Defining sections is another way to create parallelism.

1 //3 threads
2 #pragma omp sections
3 {
4 {
5 printf("a ");
6 }
7 #pragma omp section
8 {
9 printf("b1 ");

10 printf("b2 ");
11 }
12 #pragma omp section
13 {
14 printf("c ");
15 }
16 }

In the above, thread 0 would print “a”, thread 1 would print “b1” and “b2” and thread
2 would print “c”.

10

2.4 Shared, unshared variables
Threads can share variables with each other or have their own versions of them. OpenMP
defines “shared” variables as variables that are used by all threads together and “private”
variables as those that each thread has its own version of.

1 int main(void){
2 int m,l=0;
3 #pragma omp parallel for num_threads(2) private(l) shared(m)
4 for(int n=0; n<10;n++) {
5 l++;
6 m++;
7 printf("(%d,%d)",l,m);
8 }
9 }

One console output of aboves code happened to be “(1,1)(103635,2)...”. The peculiar
number 103635 occurred because the private variable l was first created and initialized
in line 2 and kept being used for thread 0, however it was never copied into the second
version of l that thread 1 is using for the parallel block.

Private variables must be initialized for each thread. In order to do this the firstprivate
statement can be used instead of private.

1 int main(void){
2 int m,l=0;
3 #pragma omp parallel for num_threads(2) firstprivate(l)

shared(m)↪→

4 for(int n=0; n<10;n++) {
5 l++;
6 m++;
7 printf("(%d,%d)",l,m);
8 }
9 }

Firstprivate copies the original value of l into all the other ls that the other threads are
using. The console output in this case would be “(1,1)(1,2)(2,3)(2,4)(3,5)(3,6)(4,7)(4,8)(5,9)(5,10)”.
We can see that together both threads increment the shared variable m up to 10 while
each thread only increases their version of l up to 5.

2.5 Offloading
Offloading can be used in order to execute code on other hardware than the “main”
computers CPU. One example for possible usage would be to specify the device number
of the device that the code is to be executed on:

11

1 #pragma omp target device(device_number)
2 {
3 //executed on the device with the number specified
4 }

2.6 Thread-Safety
Having multiple threads access and write inside of shared memory at the same time can
lead to erroneous results. OpenMP provides multiple ways of ensuring thread-safety.

One such way is the usage of the atomic clause.

1 int count = 0;
2 #pragma omp parallel num_threads(100)
3 {
4 //#pragma omp atomic
5 count++;
6 }
7 printf("Number of threads: %d\n", count);

In the above the variable count is incremented once by each of the 100 threads, hence
the final value should be 100. However due to many many threads accessing that variable
at the same time they would oftenly get in each others way and not produce the 100 as
the final value. If the commented out atomic clause would be in effect it would ensure
that the threads don’t intervene with each other and the final value would be the correct
100.

Another solution is the usage of the reduction clause.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main()
5 {
6 int count = 0;
7 #pragma omp parallel num_threads(100) reduction(+:count)
8 {
9 count++;

10 }
11 printf("Number of threads: %d\n", count);
12 return 0;
13 }

12

The reduction clause causes count to be treated as a private variable so that each
thread only accesses their own copy of count. The values of the many count variables are
then summed up together into the final value for the shared variable. Instead of summing
the values up a different operation could be specified. The reduction clause is oftenly
faster than the atomic clause but requires the programmer to specify the operation that
is being applied in the end.

Another construct to ensure thread-safety is the critical construct. The critical
construct defines critical regions of different names and ensures that no more than 1
thread enters a critical region of the same name.

1 #pragma omp parallel num_threads(2)
2 {
3 if(omp_get_thread_num() == 0){
4 #pragma omp critical(loop)
5 for(int n = 0; n < 5; n++) printf("a");
6 } else {
7 #pragma omp critical(loop)
8 for(int n = 0; n < 5; n++) printf("b");
9 }

10 }

In the above we have 2 critical regions of the same name “loop”. The first accessed
by thread 0 printing “a”, the later accessed by thread 1 printing “b”. Once the faster
thread has reached its loop the slower thread can’t enter its own loop until the faster
one has finished printing. Hence the console output would be either “aaaaabbbbb” or
“bbbbbaaaaa”.

2.7 Synchronization
1 #pragma omp parallel num_threads(2)
2 {
3 if(omp_get_thread_num() == 1)
4 {
5 for(int n = 0; n < 10; n++) printf("n ");
6 }
7 #pragma omp barrier
8 printf("\npast the barrier");
9 }

The barrier directive causes all threads to wait at the barrier until every thread has
reached the barrier. Without the barrier the output could be “n \npast the barrier n n n
n n n n n \npast the barrier” while it would be “n n n n n n n n \npast the barrier \npast

13

the barrier” if the barrier was in effect with thread 0 waiting for thread 1 to finish the loop.

There is an implicit barrier at the end of parallel blocks, for blocks and sections. In
order to remove the implicit barrier the nowait directive can be used.

1 #pragma omp parallel num_threads(2)
2 {
3 #pragma omp for nowait
4 for(int n = 0; n < 10; n++){
5 printf("%d", omp_get_thread_num());
6 if(omp_get_thread_num() == 1) printf("");
7 }
8 printf("\ndone with the loop");
9 }

The above wouldn’t print “done with the loop” before both threads would have finished
the loop if the nowait directive wasn’t there. With the nowait directive however the
thread that finishes the loop first would go ahead and print it.

14

3 Compilation
In order to compile the code using OpenMP one requires a compiler that supports
OpenMP, fulfill other dependencies such as linking the runtime library libgomp-1.dll on
windows and set the compiler flag for OpenMP e.g. -fopenmp for GCC. If the compiler
flag isn’t set it will ignore the “#pragma omp” and produce serial code instead.

Additionally to the usual compilation process there is extra work that the compiler
needs to do when compiling an OpenMP program. The compiler needs to read omp
directives ie. the pragmas and check them for correctness. It needs to transform sections
to Do- and For-constructs and turn implicit barriers to explicit ones. It needs to handle
extra memory for all the different threads and the memory each of those is using. It
transforms the omp directives into multi-threading code ie. transforming the code with
pragmas into something that looks more similar to the PThread code. Furthermore
parallel regions are being outlined into functions. And last but not least it is performing
optimization wherever it can detect it.

One example for the code transformation:

1 void main(){
2 #pragma omp parallel
3 {
4 #pragma omp for
5 for(i = 0; i < n; i++){...}
6 }
7 }

The above OpenMP code would internally be transformed into something like the
below:

1 void outlined(...){
2 tid = ompc_get_thread_num();
3 ompc_static_init(tid, lower,upper,incr,.);
4 for(i = lower;i < upper;i += incr){ ... }
5 ompc_barrier();
6 }
7

8 void main(){
9 __ompc_fork(...,&outlined,...);

10 }

15

The entire parallel region is put into an outlined function which is forked to in the
main function, the implicit barrier is turned into an explicit one creating the function
call in line 5 and the omp directives are turned into the “usual” code.

16

4 Performance
Performance increase in terms of speed is the big motivation to even use parallel pro-
gramming. Important to note is that using parallelization doesn’t only yield positive
effects. There is a time cost that comes along with having to coordinate the parallel
processes. Time is spent initializing threads, terminating threads and coordinating them
e.g. in means of synchronization or maintaining their memory. That additional cost is
called the parallel overhead.

The speedup over the serial version of the code can vary strongly. The simplified
formula for speedup and average efficiency of each processor are as follows:

Speedup(P) = TSerial(P)
TElapsed(P) = 1

f
P
− f + 1 + OP · P

Efficiency(P) = Speedup(P)
P

P is the number of processors. f is the fraction of the code that is being parallelized,
f = 0 would mean that the code is serial while f = 1 would mean a perfectly parallel
application. OP ·P is the parallel overhead with OP being a constant percentage which is
simplified as that percentage may change, higher OP means higher overhead. Assuming
the perfect, but unrealistic case, of having OP = 0% and f = 1 we can see that the
maximal speedup is P ie. P -times as fast:

1
1
P
− 1 + 1 + 0 · P = 1

1
P

= P

This would mean that each processor is running at 100% efficiency with every processor
doing as much work just as fast as the single processor in the serial version.

As for OpenMP in particular, one upside worth pointing out is that OpenMP uses a
thread-pool. A thread-pool means that threads are only created once and once a thread
has finished its work it will return to that pool waiting for new work. This is efficient.

On a critical note however, if the parallelization is done poorly then the performance
may even decrease.

1 #pragma omp parallel for private(j)
2 for(i=0;i<=100000;i++)
3 {

17

4 for(j=0;j<=100000;j++)
5 {
6 #pragma omp atomic
7 a++;
8 }
9 }

10 printf("%lld", a);

The above for instance took 24 seconds to execute in serial, 39 seconds in parallel while
non-thread-save and 3 minutes and 49 seconds in the parallel and thread-save version.

Below is a table of the well done parallelisation of a matrix-vector-product calculation
with 4 cores and 8 logical processors. The bottom row shows a speedup of 4.73 while the
theoretical maximum given 0% overhead and perfect parallelization would be 8.

Table 4.1: Matrix-Vector-Product
Size Serial time Parallel Time Speedup

10000*10000 0.10 0.03 2.95
30000*30000 1.01 0.23 4.33
40000*40000 1.88 0.39 4.73

[App14]

In order to optimize performance there is multiple things that can be payed attention
to. One general aim is to minimize the overhead which can be achieved by different
means. One big time consumer is parallelizing inner loops. “#pragma omp for” should
be used at the most outer loop possible, if used on an inner loop the overhead of the
parallelization will be cause for each iteration of the loops outside of the parallelized loop.
Another good practice is to maximize parallel regions e.g. instead of using “parallel for”
multiple times you would rather use the parallel construct once and then only use the
for construct multiple times, since each time the parallel construct is called new threads
will be initialized. Memory conflicts cause overhead as well so these should be avoided.

Then other than reducing overheads it will help a lot to increase the efficiency of the
threads which is achievable in multiple ways. First of all there is the load balancing
problem which states that each thread should have about the same amount of workload.
Having one thread finish early and then waiting for the rest of the threads isn’t efficient.
It is better to have all threads working all the time and finishing their task simultaneously.
Another way to increase thread performance is to optimize the usage of barriers and the
nowait directive. Then generally thread-safety and the ordered construct are very slow
since both require threads to wait for one another, thread-safety should only be ensured
when necessary.

18

5 Conclusion
How good is OpenMP? On the upside OpenMP is highly convenient given that it is very
simple to apply and doesn’t require one to rewrite ones serial code. That makes the
target-audience of OpenMP the general-purpose application programmer. It is unusual
to worry about performance before implementing functionality, optimization is usually
done somewhere near the end of a project. Having to rewrite the entire code in order
to turn an application into a parallel program would cost a lot of time, if it weren’t for
OpenMP. With OpenMP most of what you do is to just add the pragma statements
in front of already existing code parts. OpenMP is also very efficient for parallelizing loops.

On the downside, OpenMP is too narrow for complexer code structures. OpenMP is
not very efficient when it comes to making different threads do different things. OpenMP
also doesn’t optimize for the specific hardware the code is running on.

Summarizing, OpenMP is very easy to use, requiring you to only add a few lines which
makes it unnecessary to rewrite code, but it is no substitution for lower-level APIs. For
a more performance oriented audience a lower-level API may prove to be more pleasing
given the possibility of finer tuning, but for the average programmer OpenMP will prove
to be very convenient. Nevertheless, OpenMP has many features that allow flexible
control. In terms of performance the possible speedup is hardware dependant and it
is necessary to optimize the parallelization well, otherwise it may even yield negative
effects.

19

Bibliography
[App14] Appentra. A widely-used algebraic code: Parallel compu-

tation of matrix-vector product. http://www.appentra.com/
parallel-computation-of-matrix-vector-product/, 2014. [Online;
accessed 8-December-2016].

[Bar] Blaise Barney. Introduction to Parallel Computing. https://computing.llnl.
gov/tutorials/parallel_comp/. [Online; accessed 8-December-2016].

[BC] Lei Huang Barbara Chapman. How OpenMP is Compiled. https://iwomp.
zih.tu-dresden.de/downloads/OpenMP-compilation.pdf. [Online; accessed
8-December-2016].

[Hel10] Keld Helsgaun. How to Get Good Performance by Using OpenMP.
http://www.akira.ruc.dk/~keld/teaching/IPDC_f10/Slides/pdf4x/4_
Performance.4x.pdf, 2010. [Online; accessed 8-December-2016].

[Mat03] Timothy G. Mattson. How Good is OpenMP. Hindawi Publishing Corporation,
2003.

[Mic16] Microsoft. atomic. https://msdn.microsoft.com/de-de/library/8ztckdts.
aspx, 2016. [Online; accessed 8-December-2016].

[Yli07] Joel Yliluoma. Guide into OpenMP: Easy multithreading programming for C++.
http://bisqwit.iki.fi/story/howto/openmp/, 2007. [Online; accessed 8-
December-2016].

20

http://www.appentra.com/parallel-computation-of-matrix-vector-product/
http://www.appentra.com/parallel-computation-of-matrix-vector-product/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://iwomp.zih.tu-dresden.de/downloads/OpenMP-compilation.pdf
https://iwomp.zih.tu-dresden.de/downloads/OpenMP-compilation.pdf
http://www.akira.ruc.dk/~keld/teaching/IPDC_f10/Slides/pdf4x/4_Performance.4x.pdf
http://www.akira.ruc.dk/~keld/teaching/IPDC_f10/Slides/pdf4x/4_Performance.4x.pdf
https://msdn.microsoft.com/de-de/library/8ztckdts.aspx
https://msdn.microsoft.com/de-de/library/8ztckdts.aspx
http://bisqwit.iki.fi/story/howto/openmp/

	Introduction
	Parallel Programming
	Introduction to OpenMP

	Features
	Parallel Construct
	Loops
	For construct
	Scheduling
	Nested loops

	Sections
	Shared, unshared variables
	Offloading
	Thread-Safety
	Synchronization

	Compilation
	Performance
	Conclusion
	Bibliography

