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Abstract
The modern era of computing makes extensive use of parallel computing, and non-blocking
synchronization is a way to most optimally utilize the capabilities of modern multi-core
machines. This elaboration will first discuss the downsides of blocking synchronization and
subsequently ways to overcome them using non-blocking synchronization. Additionally it
will provide a look into lock-free and wait-free algorithms, elaborate on their advantages
and limitations. To further illustrate that performance experiments with a lock-free
data structure will be conducted and it’s results examined. Furthermore it will provide
an in-depth look at the inner workings of said data-structure and compare it with it’s
blocking and not-synchronized counterparts.
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1. Introduction
In this chapter, the use of non-blocking synchronization techniques will be further moti-
vated or rather the use of blocking techniques further discouraged.

Blocking synchronization has the commonality that threads are paused until a resource
is available. What the resource ends up being can greatly differ. It may be access
to a file/data structure or atomic access to a critical section of code. In network
communication even a message from a remote computer, can be considered a resource.
In any of these examples blocking the thread can or will cause a number of issues.

Before elaborating on all the disadvantages of blocking synchronization however, there
is a need to discuss it’s one advantage: It is very simple.
Whenever a resource is required the execution simply holds until said resource is available.
For the programmer this creates concise semantics. They will simply put a lock before
using the resource and a corresponding unlock after they are done using the resource. In
the line after the lock call, the programmer can assume atomic access to the resource and
use it like they are the only process on the planet. Concise and simple, both syntactically
and semantically. It seems the step from single process to concurrent environment only
takes two lines of code.

However that simplicity does not automatically entail that it is not also very easy to
get wrong. When someone first starts with concurrent programming they will often run
into the issue that their program compiles, runs without errors, but nonetheless never
completes. When they then look at the states of all of their threads, a majority of them
remains in the WAIT-state. They have inadvertently created a deadlock. Meaning that
their locking mechanism is somehow faulty and created a state in which all threads are
waiting, possibly for each other and are not able to continue computation. Indefinitely.
The reason maybe as simple as forgetting the unlock after finishing to use a resource,
but the reasons for a deadlock are vast and some of the most complex bugs out there.
To shortly summarize why they are so difficult:

• There is no error message.
The code fails silently. If the in-progress operation is represented in the form of a spinning wheel,
then this wheel will just spin indefinitely. Until something or someone external decides that it
must be a deadlock.

• You cannot always decide whether it actually is a deadlock.
It is possible that the saving unlock call is right around the corner. This is especially an issue in
distributed systems, there it is known as a ’phantom deadlock’.
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• It may not always occur.
If the deadlock is caused by a rare race condition, then it may not even occur until way into
production. To be fair this is more of race condition and concurrency problem in general, but
locking synchronization is especially prone to this type of bug.

Now a very smart programmer may argue something along the lines of: "Well, anything
can be done wrong.. So just don’t do that!"

One problem with that hypothetical statement is that there are other downsides that
are not avoidable using blocking synchronization. Even if the programmer using it is
very smart.

A deadlock can even occur when the programmer did not make any mistakes, as threads
holding a resource are still subject to the scheduler. If, by chance or priority-scheduling
the thread holding the resource is paused for a long time then all the other threads cannot
continue execution either. Even worse: if the thread is interrupted without releasing
the lock, then all other threads are halted indefinitely and a deadlock occurs. A more
detailed analysis of that behavior can be found in Appendix A. It is rare, but especially
in low-level, high-performance programming it can become an issue.
Even if the code computes the correct result, anyone doing concurrent programming

will want to see the merits of their efforts at some point. They won’t want to run their
code on a single core. What good are many threads if they are eventually sequentialized
by some scheduler. In that case one could just write ordinary, sequential code in the first
place. Therefore most concurrent code will eventually be run on multiple cores, multiple
machines even. Best case: Each thread executes on it’s own core1. With any lock, for
any waiting thread the resources of that thread are wasted. One way to mitigate that
problem is to use Futures (see Appendix D).
Threads are expensive, they do have overhead. Both to create and to keep up. On a

smaller linux machine the maximum number of threads per process is 61573 2. To be
fair, most programs do not require that number of threads. In webserver-programming
however that number can quickly become a limiting factor with regards to scalability.

1With hyper-threading this principle can fall. The important thing is that there is no theoretical need
for there to be more threads than the hardware can execute in parallel.

2obtained by executing ’cat /proc/sys/kernel/threads-max’ in a shell on a linux machine with 2 cores
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2. Concurrency guarantees
In this chapter, the different guarantees that can be assigned to a concurrent algorithm
will be discussed.

2.1. Lock Freedom
In the introduction it was shown that algorithms employing blocking mechanisms have a
number of disadvantages. Lock-Free algorithms do not have these disadvantages. By
definition.

Lock-Freedom is essentially just the trait of an algorithm, guaranteeing that it is free
of a number of potential problems. A Lock-Free algorithm guarantees global process
in a concurrent system [HHCP18]. This may seem like a necessity for any system,
but with deadlocks and the interrupted thread scenario detailed in Appendix A it can
become a complex guarantee to make or prove. As both of those issues are common
and complicated. The trait of Lock Freedom is commonly associated to concurrent data
structures or the algorithms mutating the data structure.
While Lock Freedom guarantees globabl progress, it does not guarantee, and this

differentiates it from Wait-Freedom(Section 2.2), is that any single thread may fail or take
an infinite number of steps [HHCP18]. As long as there is still progress at a global level.
While Lock-Free algorithms do not exhibit the same issues that blocking algorithms do,
they only do so by definition. How to actually design and implement such an algorithm
is not easily derived from it. Depending on the problem the algorithm aims to solve,
it may not even be possible. For example computing data with multiple threads, then
evaluating the combined results is an algorithm that requires waiting and cannot handle
thread-failure. It would therefore not be possible to implement a lock-free version of it.
Later chapters will explore an implementation of a lock-free data-structure, analyze

how it works and do some experiments with it (see Section 3.1 and Chapter 4).

2.2. Wait Freedom
The next level of behavior guarantee in a concurrent environment is Wait-Freedom.

It does not actually guarantee no wait for any single thread as the name suggests, but
only guarantees that any single thread will not wait indefinitely and eventually make
progress. As that automatically entails global progress, every Wait-Free algorithm is
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also a Lock-Free algorithm [HHCP18]. It solves the remaining problem in Lock-Free
algorithms by making a guarantee for every single thread.

As with Lock-Freedom, Wait-Freedom is a very difficult property to actually implement
and prove. Furthermore it is not possible find a wait-free algorithm for every problem.
Even algorithms that have a lock-free implementation, do not necessarily have a wait-
free implementation. i.e not every problem can be solved with a wait-free algorithm.
[HHCP18].

Due to it being a very strong guarantee Wait-Freedom is hard to implement and
therefore typically only implemented at a very low level and/or for very simple data-
structures. For example there is an implementation of a Wait-Free Queue that employs
a custom scheduling algorithm and helper threads [KE11]. Most commonly however
Wait-Freedom is encountered in the form of CPU-primitives. These are of the utmost
importance, because they are in turn used to construct most lock-free and wait-free
algorithms. Most notably the lock-free algorithm that will be discussed in a later chapter.
The most relevant primitive is compare-and-swap1, commonly referred to by it’s

acronym CAS. It is the one used by the algorithm in a later chapter. CAS is wait-
free([Her91]) and can even be wait-free when operating on multiple words [DFL13].
The following showcases how CAS works2:

This primitive takes two values: old and new. If the register’s current value
is equals to old, it is replaced by new; otherwise it is left unchanged. The
register’s old value is returned.

([DFL13])

At a programming language level one typically has to additionally supply the memory
address to ’compare and swap’. Compare Listing 2.1, showing an implementation for
cas on integers. Instead of the old value, this versions returns whether the swap has
occurred. Which will be helpful when implementing a stack in the next chapter.

1 \\ atomic
2 boolean compare_and_swap (int* pointer_to_val , int

↪→ expected_val , int new_val ) {
3 int current_val = * pointer_to_val ; // obtain value
4 if( current_val == expected_value ) { // compare value
5 * pointer_to_val = new_val ; //set value
6 return true;
7 }
8 return false;
9 }

Listing 2.1: Compare and Swap (CAS - Pseudo C Code)

1contemporarily also known as compare-and-set
2Shown only for integers, but the generic version works equivalently
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3. Concurrent Mutation
In this chapter, the ways one can concurrently mutate certain data structures without
using locks will be explored. Most notably the implementation of a lock free stack is
presented.

3.1. Lock Free Stack
A simple and concise data structure taught in every CS-101 class is the ’stack’. It is easy
to describe and has, in it’s simplest form, only three operations:

• Push - puts a new element on top of the stack.
• Pop - removes and returns the most-recently pushed, but not popped element.

i.e. removes and returns the top of the stack1.
• Peek - returns the TOS, without mutating the stack.

For the following experiments four version of the stack data-structure have been im-
plemented for this elaboration. The complete code for each of them can be found in
Chapter Appendix B.
One version is the linked stack(see Listing B.3), that ignores the side-effects of concurrent
access entirely. It’s approach to concurrency is to hope that it causes no issues. As the
experiments will show this does not always work and results in a loss of data. Why
data is lost can be best shown at the push method of the unsynchronized stack, seen in
Listing 3.1.
The method itself is easily understood. The TOS is redefined as a new node that contains
the added element e and points to the old TOS as the next, now second element on the
stack. This method can be even shorter as demonstrated in Listing B.3. The data loss
problem occurs if a thread A reads the head(currently value x) and puts it into oldHead.
Then a thread B concurrently does the same. For both of them the local variable oldHead
now contains x. Now thread A sets the head to a− > x, having amended a to the stack.
Afterwards thread B set the head to b− > x, having amended b to the stack. Thread-B
had no way of knowing that thread A had changed the stack and that x was not the real
old head anymore. This is known as the lost update problem.

1 public void push(E e) {
2 Node oldHead = head;

1from here on referred to as TOS
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3 Node newHead = new Node <>(e, oldHead );
4 head = newHead ;
5 }

Listing 3.1: Unsynchronized Stack - Push Method

Two other version’s employ blocking locking to solve the lost update problem. Be-
fore every read and write operation the entire stack is locked. One version uses
java.util.concurrent.locks.ReentrantLock(see Listing B.4), the other uses the java-keyword
’synchronized’(see Listing B.5). Using the keyword is advantageous, because it allows
the Java Virtual Machine to optimize scheduling. Experiments will show that this
version is the best performing for many use cases. Yet it still employs locks, is not
Lock-Free and therefore retains the disadvantages of blocking synchronization (As shown
in Appendix A). This will be further illustrated by the experiment in Section 4.2.4.

Finally the lock free version(see Listing B.6). It heavily employs the CAS-primitive(described
in detail above, see Listing 2.1).
In the following, once again only the push method of the Stack is discussed in detail.

The pop method functions similarly(compare Listing B.6) and the peek method requires
no synchronization at all. The reason is examined at the end of this chapter.

1 public void push(E e) {
2 Node <E> oldHead ;
3 Node <E> newHead ;
4 do {
5 oldHead = head.get ();
6 newHead = new Node <>(e, oldHead );
7 } while (! head. compareAndSet (oldHead , newHead ));
8 }

Listing 3.2: Lock Free Stack - Push Method

Listing 3.2 shows the push method of the lock-free stack in it’s entirety. When com-
paring it to the unsynchronized push in Listing 3.1 a lot of similarities can be discovered
and only a few differences. It now declares the variables oldHead and newHead up front,
which is required by do-while loop syntax. Furthermore it uses a ’get’ on head to obtain
it’s value, which is required because normal Java objects do not support compareAndSet.
Instead it has to be wrapped in a java.util.concurrent.atomic.AtomicReference, which
unwraps using said ’get’ method.
The interesting and critical new part is the do-while loop and the compareAndSet2.
Combined with the loop this is can be viewed as a try and error loop. The algorithm
attempts to do what the unsynchronized push(see Listing 3.1) did, however if another

2CAS - contemporary name for compareAndSwap
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thread altered the real head since oldHead was queried(using ’get’), then it does not
overwrite that update and instead just try’s again. The significant advantage, and
what makes this a lock-free stack implementation3, is the fact that a thread A can
be interrupted in the middle of this method(for example line 5) and a thread B will
can nonetheless set oldHead to newHead and continue to make progress. Without any
knowledge of thread A’s failure. Global progress is therefore independent of any single
thread.
Since there are no complex operations between query and the set attempt it is likely

that the operation completes successfully at some point, however it is not guaranteed.
There is a theoretical non-zero chance that in a busy system a thread never successfully
sets it’s newHead to head, because some other thread always alters it before. It is
unlikely, but possible. This scenario is known as starvation and the reason this algorithm
is not wait-free. No per thread progress can be guaranteed.
There is a wait-free implementation for the stack data-structure [GAS15].

Another upside is that readers do not require any synchronization. The head a reader
obtains is always valid(once again obtained using get) and cannot be altered by other
threads because it’s reference is assigned to a local variable and nodes itself are immutable.
From that copy of the head it’s value or lack thereof can be easily determined. As would
be done in the non-concurrent case.

3.2. Copy On Write
Another common pattern in highly concurrent data-structures is Copy-On-Write
Note up front that the use of Copy-On-Write does in and of itself not make any guarantees
regarding Lock- or Wait-Freedom. It does not even necessarily need to be used with
non-blocking techniques, though it often is. The lock free stack previously discussed (see
Section 3.1) can be considered a Copy-On-Write algorithm, though the only thing copied
is a reference to the current head.
In a Copy-On-Write data structure on every mutation the data4 is copied, mutated and
atomically set. Until the mutation is complete, any read on the data occurs on the old,
un-mutated and therefore consistent data. The major advantage here is that reader’s
do not require a synchronization mechanism. Neither during a read nor a mutating
operation. 5.
The major disadvantage of Copy-On-Write is that mutation requires at least twice the
memory of the area to be mutated and that locking is still required(see Listing 3.4 for
an example). Alternatively a lock free approach using the cas primitive is feasible. This
however increases the maximum space complexity to infinity, if there is no set maximum
of concurrent modifiers (see Listing 3.5 for an example).
Copy-On-Write nonetheless has many use cases, one example from the Java world is the

3by definition, not just in the obvious way of not containing any locks
4many modern algorithms only copy a partition of the data, but the principle remains the same
5Why readers need to be locked without Copy-On-Write can be understood when looking at Listing 3.3
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CopyOnWriteArrayList. It is a commonly used list implementation for concurrent Java
programs.
Generally speaking Copy-On-Write is optimal when a data-structure is expected to have
many readers, few writers and few mutating-operations in general. Otherwise a simple
ReadWriteLock may offer both better performance and scalability. A read-write-lock is
a blocking-technique of fine grained locking that allows multiple concurrent readers, but
locks the entire list on a write operation.

1 // Readers require locking.
2 int find_index (array , element ) {
3 for(int i=0; i < array.length; i++) {
4 //if the thread is paused here , and another threads

↪→ 'clears ' the list , the next line will yield a
↪→ IndexOutOfBoundsException. And not return
↪→ DOES_NOT_EXIST.

5 if(array[i] == element ) {
6 return i;
7 }
8 }
9 return DOES_NOT_EXIST ;
10 }

Listing 3.3: List - Safe Replace Operation (Pseudo Java)

1 //A Copy -On-Write list using locks
2 void replace (array , old_element , new_element ) {
3 //lock (writers only)
4 Array array_new = array.clone ();
5
6 int old_element_index =

↪→ find_index (array_new , old_element );
7 array_new [ old_element_index ] = new_element ;
8 array = array_new ;
9 // unlock (writers only)
10 }

Listing 3.4: List - Safe Replace Operation (Pseudo Java)

1 //A Lock -Free Copy -On-Write list
2 void replace (array , old_element , new_element ) {
3 //'array' vom Java -Typ AtomicReference
4 Array array_old ;
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5 Array array_new ;
6 do {
7 array_old = array.load ();
8 array_new = array_old .clone ();
9
10 int old_element_index =

↪→ find_index (array_new , old_element );
11 array_new [ old_element_index ] = new_element ;
12
13 } while (! array.cas(array_old , array_new ));
14 }

Listing 3.5: List - Lock-Free Replace (Pseudo Java)
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4. Experiment
In this chapter, a performance experiment is conducted to compare the performance and
correctness of the different stack implementations shown in Appendix B

4.1. Methodology
The results presented in Section 4.2 were obtained by running each of the four test
methods shown in Appendix C with each of the four stack implementations shown in
Appendix B. The experiments where repeated multiple times within the same JVM-
instance as is best-practice when running benchmarks. The elapsed time of one run was
measured using the Java function ’System.nanoTime’. For the assertions JUnit4 was
used. If such an assertion failed or another kind of exception was thrown the attempt
was not counted, otherwise it’s time was measured and added to the results set.
Additionally the complete first run of each test was omitted from the results, to first
allow JIT optimization to occur on every implementation. The Tests where run on a
Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, with 2 cores. The machine was running
the linux kernel 4.19.23-1-MANJARO 1 and an openjdk JVM version "1.8.0-202" 2.
The different run-times of each test cannot be compared, but the different stack im-
plementation’s results within one test environment can. To best compare the results
visually, bloxplots where chosen. Additionally outliers in the data are presented as points
or rectangles next to the boxplots.

1obtained using ’uname -r’
2obtained using ’java -version’
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4.2. Results
4.2.1. Single Thread Comparison

0.1 0.2 0.3 0.4 0.5

not locked(55)

locked(55)

synchronized(55)

lock-free(55)

seconds

Figure 4.1.: Test results for multiple executions of Listing C.1

Each version successfully completed 55 times.
Unsurprisingly the version with no synchronization performed best in a single threaded
environment, due to the fact that it has no synchronization overhead. That overhead is
visible in the other even when there is no synchronization required.

4.2.2. Single Writer - Multiple Readers Comparison

0.1 0.15 0.2 0.25

not locked(54)

locked(55)

synchronized(55)

lock-free(55)

seconds

Figure 4.2.: Test results for multiple executions of Listing C.2
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Each synchronized version successfully completed 55 times, the non synchronized version
only successfully completed 54 times. This may be surprising at first glance, but when
looking at the test code and the implementation of the stack one will see that the window
for the race condition to occur is very narrow and therefore very unlikely to occur.
The Lock-Free version outperforms both conventionally blocking versions. However only
by a very narrow margin and with multiple outliers. This can be attributed to the fact
that the this test is focused on the read operation which requires no synchronization in
the lock-free implementation.

4.2.3. Multiple Writers - Multiple Readers Comparison

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

not locked(48)

locked(55)

synchronized(55)

lock-free(55)

seconds

Figure 4.3.: Test results for multiple executions of Listing C.3

Each synchronized version successfully completed 55 times, while the non synchronized
version is now down to 48 successful executions. This nonetheless good success rate can
be attributed to the fact that the race condition is still unlikely and that the critical
section of code does not take long to execute.
The ’synchronized-keyword’ version outperforms the lock-free version in this test. This is
likely caused by the heavy optimization done within the JVM. That theory is supported
by the fact that the locked version now falls far behind the other versions, taking almost
twice as long as the ’synchronized-keyword’ version. Despite the fact that they both rely
on the same underlying principle of blocking synchronization.
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4.2.4. Thread Suspension Comparison

2.8 3 3.2 3.4 3.6 3.8

locked(55)

synchronized(55)

lock-free(55)

seconds

Figure 4.4.: Test results for multiple executions of Listing C.4
Note: The not locked version’s results were omitted for clarity.

While the test code is very similar to the ’many writers - many readers’ code on the
surface(doing the same operations in the same order, compare Listing C.3 and Listing C.4),
the results are vastly different.
Due to the effects described in Appendix A, the blocking version’s both behave badly
with thread suspension and would behave much worse if their threads were interrupted
instead. In the lock-free version other threads can continue their mutations even when
a thread is suspended during it’s mutation attempt. This detail makes a very visible
difference in the results presented in Figure 4.4.
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5. Conclusion
To summarize, synchronization in a concurrent algorithm is unavoidable to obtain a
correct results.
Blocking synchronization has a number of disadvantages.
Non-blocking synchronization can mitigate some of those disadvantages, but will often
increase the complexity of a previously simple program.
Therefore the general advice is to use blocking synchronization in most cases. This may
be shocking after a long elaboration on the disadvantages of blocking synchronization and
how to overcome them. However the one upside blocking synchronization has is a major
one. Simplicity. In Java there is even a keyword reserved for it. Amending a method
with ’synchronized’ and it immediately becomes a critical, atomically executed section
of code. This simplicity is of immense value. The programmer can then focus their
attention on other important aspects of the code. User-experience, features, modifiability
and correctness to only name a few. Using as few fine-grained locks as possible, and
those with great care will often be enough to achieve acceptable performance.

Implementing non-blocking synchronization for an algorithm can be seen as a form of
optimization, and as is well documented:

[...] premature optimization is the root of all evil [...]

(Donald Knuth, 1974)

The added complexity of non-blocking synchronization is only warranted in low-level,
high-performance and time-critical computing. In those circumstances non-blocking
synchronization is a powerful tool to increase performance. It also has it’s strengths
where guarantees about performance are required. A Wait-Free algorithm can make
those guarantees even in a concurrent environment.

Some frameworks/languages aim to decrease complexity whilst retaining the advantages
of non-blocking synchronization techniques. Go-lang can be named as an example. It
can offer a good trade-off between complexity and scalability, for the every day web
programmer.

In conclusion, non-blocking synchronization techniques are a great way to optimize
your code. This elaboration gave an overview of what they are, what they can do and
where their limitations lie.
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A. Thread blocking side effects
In this chapter, the side-effects of blocking synchronization are discussed. These are
exactly the side-effects lock-free algorithms aim to mitigate.

If a thread A is paused but is holding a lock L then that lock L is clearly blocked for
as long as the thread A is paused.
That results in another problem. If then a thread B blockingly requests the lock L(i.e.
pauses until lock L is available), then thread B will have to wait until thread A is
unpaused and releases the lock.
Listing A.1 shows this scenario more clearly:

1 Lock L = new Lock ();
2
3 thread - A : requests L
4 thread - A : gets L
5 thread - A : look at some array
6 thread - B : requests L
7 thread - A : sleep (10 minutes ) //or is paused by scheduler
8 thread - B : waits for 10 minutes ..
9 thread - A : look at some other array
10 thread - A : releases L
11 thread - B : finally acquires L

Listing A.1: Sleeping threads (Pseudo Code)

While the above scenario is already a major issue, the even more severe scenario is the
version where thread A is not just paused, but interrupted. Then lock L can never be
released and thread B will never complete.

Listing A.2 shows an example of this behavior:

1 Lock L = new Lock ();
2
3 thread - A : requests L
4 thread - A : gets L
5 thread - A : looks at some array
6 thread - B : requests L
7

20



8 os|mainThread interrupts thread - A
9
10 thread - B : waits forever

Listing A.2: Interrupted threads (Pseudo Code)

While this may seem unlikely, at low level programming it can become a debilitating
problem.
Another feasible version of this problem is if the lock has been implemented as a file

on the machine. If the file exists the lock L is locked, otherwise it’s unlocked. If, for
example a user decides to kill the process, then the file is not deleted and other processes
will not be able to access whatever resource the file was representing a lock on.
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B. Implementations of a Stack

1 public interface Stack <E> {
2 void push(E e);
3 E pop ();
4 E peek ();
5
6 // functionality that requires implementation for the

↪→ tests , but is omitted from the code definitions
↪→ below for clarity

7 int size ();
8 void println ();
9 void push(E e, long sleep_at_some_point );
10 E pop(long sleep_at_some_point );
11 E peek(long sleep_at_some_point );
12 }

Listing B.1: Interface definition of a stack with minimal functionality

1 public class Node <E> {
2 public final E val;
3 public Node <E> next;
4 public Node(E val , Node <E> next) {
5 this.val = val;
6 this.next = next;
7 }
8 }

Listing B.2: Generic Node class used by the Stack implementations below

1 public class LinkedStack <E> implements Stack <E> {
2 private Node <E> head = null;
3
4 public void push(E e) {
5 head = new Node <>(e, head);
6 }
7
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8 public E pop () {
9 if(head == null)
10 return null;
11 else {
12 E val = head.val;
13 head = head.next;
14 return val;
15 }
16 }
17
18 public E peek () {
19 return head == null? null: head.val;
20 }
21 }

Listing B.3: Simple, non concurrent Stack

1 import java.util. concurrent .locks.Lock;
2 import java.util. concurrent .locks. ReentrantLock ;
3
4 public class LockedStack <E> extends LinkedStack <E> {
5 private Lock lock = new ReentrantLock ();
6
7 @Override public void push(E e) {
8 lock.lock ();
9 try {
10 super.push(e);
11 } finally {lock.unlock ();}
12 }
13
14 @Override public E pop () {
15 lock.lock ();
16 try {
17 return super.pop ();
18 } finally {lock.unlock ();}
19 }
20
21 @Override public E peek () {
22 lock.lock ();
23 try {
24 return super.peek ();
25 } finally {lock.unlock ();}
26 }
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27 }

Listing B.4: Locking Stack (using locks)

1 public class SynchronizedStack <E> extends LinkedStack <E> {
2 @Override public synchronized void push(E e) {
3 super.push(e);
4 }
5
6 @Override public synchronized E pop () {
7 return super.pop ();
8 }
9
10 @Override public synchronized E peek () {
11 return super.peek ();
12 }
13 }

Listing B.5: Locking Stack (using the synchronized keyword)

1 import java.util. concurrent .atomic. AtomicReference ;
2 public class LFStack <E> implements Stack <E> {
3 private AtomicReference <Node <E>> head = new

↪→ AtomicReference <>( null);
4
5 public void push(E e) {
6 Node <E> oldHead ;
7 Node <E> newHead ;
8 do {
9 oldHead = head.get ();
10 newHead = new Node <>(e, oldHead );
11 } while (! head. compareAndSet (oldHead , newHead ));
12 }
13
14 public E pop () {
15 Node <E> oldHead ;
16 Node <E> newHead ;
17 do {
18 oldHead = head.get ();
19 if( oldHead == null)
20 return null;
21 else
22 newHead = oldHead .next;
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23 } while (! head. compareAndSet (oldHead , newHead ));
24
25 return oldHead .val;
26 }
27
28 public E peek () {
29 Node <E> headNode = head.get ();
30 return headNode == null? null: headNode .val;
31 }
32 }

Listing B.6: Lock-Free Stack - Inspired by Lock-Free-Queue([Val94])
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C. Performance Measurement Code

1 void singleThreadTest (Stack <String > stack) {
2 int iterations = 200000;
3 for(int i=0;i< iterations ;i++) {
4 stack.push(String. valueOf (i));
5 }
6
7 assertEquals (iterations , stack.size ());
8
9 for(int i=0;i< iterations ;i++) {
10 assertEquals (String. valueOf (iterations -1) ,

↪→ stack.peek ());
11 }
12
13 assertEquals (iterations , stack.size ());
14
15 for(int i=iterations -1;i >=0;i--) {
16 assertEquals (String. valueOf (i), stack.pop ());
17 }
18
19 assertEquals (0, stack.size ());
20 }

Listing C.1: single thread, correctness test

1 void singleWriterMultipleReaders (Stack <String > stack)
↪→ throws Throwable {

2 stack.push("former tos");
3 stack.push("tos");
4
5 int nThreads = 500;
6 ConcurrentPoolTester pool = new

↪→ ConcurrentPoolTester ( nThreads );
7 pool. execute (() -> {
8 for(int i=0;i< nThreads * nThreads ;i++) {
9 if (i%2==0) stack.pop ();
10 else stack.push(i + "");
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11 }
12 });
13
14 for(int i=0;i< nThreads ;i++) {
15 pool. execute (() -> {
16 for(int i2 =0;i2 < nThreads ;i2 ++) {
17 String val = stack.peek ();
18 assertNotNull (val); // cannot assert

↪→ anything else , actual state is
↪→ nondeterministic

19 }
20 });
21 }
22 pool. waitForShutdownOrException ();
23 }

Listing C.2: single writer thread, multiple reader threads

1 void multipleWritersMultipleReaders (Stack <String > stack)
↪→ throws Throwable {

2 int nThreads = 500;
3 ConcurrentPoolTester pool = new

↪→ ConcurrentPoolTester ( nThreads );
4 for(int i=0;i< nThreads ;i++) {
5 int fi = i;
6 pool. execute (() -> {
7 stack.push(fi + "");
8 });
9 }
10 pool. waitForShutdownOrException ();
11
12 assertEquals (nThreads , stack.size ());
13
14 pool = new ConcurrentPoolTester ( nThreads );
15
16 for(int i=0;i< nThreads ;i++) {
17 pool. execute (() -> {
18 String val = stack.peek ();
19 assertNotNull (val); // cannot assert anything

↪→ else , actual state is nondeterministic
20 });
21 }
22 pool. waitForShutdownOrException ();
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23
24 assertEquals (nThreads , stack.size ());
25
26 pool = new ConcurrentPoolTester ( nThreads );
27 for(int i=0;i< nThreads ;i++) {
28 pool. execute (() -> {
29 String val = stack.pop ();
30 assertNotNull (val); // cannot assert anything

↪→ else , actual state is nondeterministic
31 });
32 }
33 pool. waitForShutdownOrException ();
34
35 assertEquals (0, stack.size ());
36 }

Listing C.3: multiple writer threads, multiple reader threads

1 void writersAndReaders_withSuspension (Stack <String > stack)
↪→ throws Throwable {

2 int nThreads = 500;
3 int suspendEveryNthThread = 100;
4 int suspendFor = 500;
5
6 ConcurrentPoolTester pool = new

↪→ ConcurrentPoolTester ( nThreads );
7 for(int i=0;i< nThreads ;i++) {
8 int fi = i;
9 pool. execute (() -> {
10 if(fi % suspendEveryNthThread == 0)
11 stack.push(String. valueOf (fi), suspendFor );
12 else
13 stack.push(String. valueOf (fi));
14 });
15 }
16 pool. waitForShutdownOrException ();
17
18 assertEquals (nThreads , stack.size ());
19
20 pool = new ConcurrentPoolTester ( nThreads );
21
22 for(int i=0;i< nThreads ;i++) {
23 int fi = i;
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24 pool. execute (() -> {
25 String val = (fi % suspendEveryNthThread == 0)?

↪→ stack.peek( suspendFor ) : stack.peek ();
26 assertNotNull (val); // cannot assert anything

↪→ else , actual state is nondeterministic
27 });
28 }
29 pool. waitForShutdownOrException ();
30
31 assertEquals (nThreads , stack.size ());
32
33 pool = new ConcurrentPoolTester ( nThreads );
34 for(int i=0;i< nThreads ;i++) {
35 int fi = i;
36 pool. execute (() -> {
37 String val = (fi % suspendEveryNthThread == 0)?

↪→ stack.pop( suspendFor ) : stack.pop ();
38 assertNotNull (val); // cannot assert anything

↪→ else , actual state is nondeterministic
39 });
40 }
41 pool. waitForShutdownOrException ();
42
43 assertEquals (0, stack.size ());
44 }

Listing C.4: multiple writer threads, multiple reader threads,
plus deterministic thread suspension during execution(for each push, pop
and peek operation at three different points within the synchronization
mechanism)
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D. Futures
One cannot write an elaboration on non-blocking synchronization without acknowledging
the concept of futures1.

It is typically used in conjunction with non-blocking IO, but can be generalized for
usage with normal locks.

Listing D.1 shows a minimal Example of a client connecting to a server and awaiting a
message2. A connection is established and a read-future obtained. Line 5 demonstrates
what could also be done in a blocking environment. The result of the future is awaited
and in line 6 the message is available. Before and after the thread completes some work.
The downside is that no work can be completed while the thread is waiting.

Lines 9 to 14 demonstrate the alternative. Clearly the thread still has to wait for the
message to arrive, but it bridges that time with ’doing some work’. The fairly expensive
thread is not wasted, but optimally utilized. Additionally the time spent copying the
data from NIC to the correct memory location, in this case a newly created string is also
optimally bridged.

1 Socket connection = Socket. connect (" localhost ", 12345);
2 Future <String > future = connection . read_async ();
3
4 //The old way , the blocking way
5 doSomeWork ();
6 String message = future.get ();
7 handleMessage ( message );
8 doSomeWork ();
9
10 //The cool way , the non -blocking way
11 while (! future.isDone ()) {
12 doSomeWork ();
13 }
14 String message = future.get ();
15 handleMessage ( message );

Listing D.1: List - Example of using Futures (Pseudo Code)

1Occasionally also referred to as ’promises’
2Exception-Handling abbreviated for clarity.
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Using Futures and non-blocking IO to bridge the waiting time with computation can
significantly increase performance [VCGH11]. However it does have an obvious limitation.
When the awaited IO-message is required for further computation and there is nothing
else to do at the moment3, then Futures introduce nothing but syntactic complexity and
do not need to be used.

Futures and asynchronous IO can also be used to decrease the number of threads used
to handle clients on a server. Instead of one thread per client, multiple clients can be
handled by the same thread. As threads are an expensive resource and the number of
threads is limited on a machine, this can make a significant improvement with regards
to the scalability of a server.

3Though one could always mine Bitcoin
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