UH
m
.23 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Master-Project Report

JULEA - Transformation/Compression

vorgelegt von

Michael Blesel, Oliver Pola

Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Abstract

In this project report we will show our work of implementing a transformation object
client for JULEA. We give an introduction to JULEA and data transformations and
compression followed by a detailed explanation of our design and implementation choices.
We highlight the challenges we faced during development and how we solved them.

We will end with benchmark comparisons between the transformation client and the
standard JULEA object client and reason about how usable our implementation is for
real world applications.

Contents

1 Introduction

2 JULEA
2.1 The JULEA framework
2.2 Setting up JULEA
2.3 Creating a JULEA applications

3 Compression and Transformations
3.1 General design
3.2 Important transformation properties L.
3.3 A subset of transformations to implement L.

4 Challenges
4.1 General concept and structure
4.2 Handling partial object writes and reads
4.3 Metadata management for object persistence
4.4 Concurrent object accesso

5 Implementation
5.1 General structure of the transformation client
5.2 The JTransformation type L.
5.3 The JTransformationObject type
5.3.1 The client-side read operation
5.3.2 The client-side write operation
5.3.3 Server-side operations
5.4 The JChunkedTransformationObject type

6 Results and Benchmarks
6.1 Comparing JChunkedTransformationObject to JObject
6.2 Partial writes vs. non partial writes benchmark

7 Future Work
8 Conclusion
Bibliography

Appendices

10
10
12
13

15
15
17
18
19

20
20
22
25
26
27
28
28

31
31
33

35
36
37

38

List of Figures
List of Tables

List of Listings

39
40

41

1 Introduction

JULEA [Kuh17] is a distributed file system, that is described in Chapter 2. Since it runs
in user space, it is more easy to implement new features than in standard established file
systems. This offers students and researchers the ability to experiment with file system
ideas and proofs of concept.

This report describes our project to enhance JULEA with the ability to apply data
transformations in general. The main use case for such a transformation is data com-
pression to either reduce storage usage or network traffic. Having compression in mind,
we try to keep the basic concepts generic, such that any kind of transformation (e.g.
encryption) should be more easy to implement in follow-up projects.

The transformation feature will be a proof of concept and only offer a few simple
algorithms to show the basic ideas. Our implementation then can be used as a template
to further enhance JULEA, for example with multiple compression algorithms, if one
wants to study their performance impact or storage capacity benefits.

The basic concepts of compression and transformations in general are discussed in
Chapter 3. Then Chapter 4 lists specific challenges that need to be addressed when
implementing those concepts. Our solutions to those challenges and the structure of our
implementation are described in Chapter 5.

In Chapter 6 we discuss some benchmark results and, after offering some possible
future work in Chapter 7, we conclude our project in Chapter 8.

2 JULEA

In this chapter we will give an introduction to the JULEA framework. We will look at
the design, its benefits compared to complex modern file systems and go through the
installation process and a small example application.

2.1 The JULEA framework

JULEA [Kuhl7] is a flexible storage framework developed by Michael Kuhn at the
University of Hamburg. It offers arbitrary 1/O interfaces to applications and supports a
variety of different backends. Due to its uncomplicated and quite modular implementation,
JULEA lends itself to experimentation and prototyping of new and interesting file system
ideas. JULEA runs in user space, which makes it much easier for developers to make
modifications and to add additional functionality. It is also implemented very concise
and in a minimalistic way, which makes it feasible for students and non experts in file
systems to understand and to experiment with implementing their own ideas. This is a
clear benefit in contrast to today’s very complex and often monolithicly built file systems.

JULEA has a standard client-server model design where user applications use the
client interfaces to communicate with the JULEA servers via network. Multiple clients
are already implemented, like for example an object client, a key-value store and an item
client that provides a cloud-like interface with collections and items in a flat hierarchy.
Developers can also quite easily create their own clients and add them to JULEA. On
the server side different backends such as POSIX, LevelDB and MongoDB are available.
Here it is also possible for developers to include their own backends.

In this report we will show how we implement our own transformation client, which
will internally make use of the provided object and KV clients. In the next sections we
will give a brief overview of how to set up and use JULEA from an application.

2.2 Setting up JULEA

The installation and setup of JULEA is very straight forward. The source code can
be pulled from from GitHub!. JULEA has only a few required dependencies such
as GLib and libbson but the different clients and backends might bring their own
dependencies. To make the dependency handling easier for users, JULEA provides an
install-dependencies.sh script which can be run with different options depending on
how many optional dependencies should be installed. To accomplish the dependency

https://github.com/julea-io/julea

https://github.com/julea-io/julea

installation JULEA makes use of Spack [GLC*15], which is a package manager that is
often used on HPC clusters. Spack provides automated building and version control of
many software packages. Spack builds and installs the software locally for the user and
is therefore very helpful for non root users on for example a supercomputer where they
would not have access to the system package manager. Installed Spack packages can
then be loaded as environment modules. JULEA’s dependency script creates a local
Spack installation and then automatically builds all needed dependencies.

The JULEA build process uses Meson for configuration and Ninja. The required
commands can be found in the ‘Quick Start’ section of the JULEA GitHub repository.
The last setup step is to create a JULEA config file by following the instructions in the
quick start guide. After these three steps JULEA should be usable.

2.3 Creating a JULEA applications

Listing 2.1 shows a simple application using JULEA’s object client. We will use this
example to explain the general workflow of a JULEA application.

In the include section of the code we can see that the general JULEA header (julea.h)
is included and we also need to include the header for the object client (julea-object.h).
This already shows some of the modular nature of JULEA. The different clients are
independent of each other and if a user for example does not want to install the
dependencies for a client, they do not have to build the client and can without any
problems still use the other clients.

The first thing we can see in the main function is the use of multiple GLib types.
JULEA’s implementation makes heavy use of GLib features (mainly for memory man-
agement) and our example codes in this report will mirror this behaviour. The code
makes use of Glib’s g_autoptr, which is essentially a kind of smart pointer that handles
the cleanup for an object when it gets dropped. This Glib macro works for all types
that have defined a matching Glib cleanup function, which is the case for most JULEA
types and it can therefore be used to avoid the need for manual cleanup code in JULEA
applications.

The first two JULEA specific types in the code appear in lines 9 and 10. First we have
a JSemantics variable. JULEA supports different 1/O semantics like POSIX or MPI-10.
We will not go into detail about that in this report and it can be generally assumed that
we are working under POSIX semantics.

The JBatch type in line 10 is very important to the way how 1/O operations are
handled by JULEA. In general, and specifically for the object client, all operations on
objects can first be gathered in a batch. This means that for example a write operation
is not immediately executed when, like in line 21, the j_object_write function is called.
The operations are first added to a batch and the actual write process is only run
when the corresponding batch is executed with the j_batch_execute function. This
functionality is useful from a performance standpoint since multiple operations can first
be gathered and the possible overhead of for example connecting from the client to the
server is minimized. In our example code we do not make much use of this benefit but

© 00 O UL W N+

#include <glib .h>
#include <julea .h>
#include <julea—object.h>
#include <stdio.h>

int main(int argc, charxx argv)

{

gboolean ret = false;
g_autoptr (JSemantics) semantics =
— j_semantics_new (J_SEMANTICS TEMPLATE POSIX) ;
g _autoptr (JBatch) batch = j batch new(semantics);
gchar data[10] = {0,1,2,3,4,5,6,7,8,9};
gchar buf[10];
guint64 bytes__written = O0;
guint64 bytes_read = 0;

g_autoptr(JObject) object = j_object_new ("t namespace"', "test");

j_object_create(object , batch);
ret = j_batch_execute(batch) && ret;

j_object__write(object , data, 10, 0, &bytes_written, batch);
ret = j_batch_ execute(batch) && ret;

j_object_read(object , buf, 10, 0, &bytes_read, batch);
ret = j_batch_execute(batch) && ret;
for (guint i = 0; i < 10; i++)
printf("%d\n", buf[i]);
printf("bytes read: %ld\n", bytes_read);

j_object__delete(object , batch);
ret = j_batch_execute(batch) && ret;

return ret;

Listing 2.1: A small example of an application using the JULEA object client

always execute the batch after adding one operation to make it more clear when object
operations happen.

Finally in line 16 we declare our JObject by using the j_object_new function. This
returns a handle to an object with the given namespace and name. It is important to
notice that at this point no new object has actually been created on the server. The
j_object_new function only gives us a handle and if an object with the given name
under the given namespace already exists on the server we would now have a valid handle.
In this case no such object is already in existence and we have to create one in lines
18/19. Here we can see that all functions that operate on objects take a batch as an
argument. The actual object creation happens when the corresponding batch is executed.
Here the client opens a connection to the server/backend and sends a message containing
the required information to create the ‘test’ object in the ‘t_namespace’ namespace.

In the following lines we can see the same pattern for a write and a read operation on
the object. This is followed by a delete operation where we delete the physical record of
the object from the server. This delete is of course optional and since we are dealing
with a file system the object would otherwise be kept persistent on the server and could
be accessed from different user applications at any time.

This concludes the explanation of our small example application. The provided code
is complete and an example Makefile for how to build JULEA applications can be found
in the example directory of the JULEA repository.

3 Compression and Transformations

In this work we consider a compression algorithm to be a specific example of a data
transformation. Since we consider data compression as the most useful task of any
transformations on storage systems, we mostly focus on this example.

A transformation in general can be any algorithm that changes the data. Here a
user provides a before-image of the data (also called original data) and applying the
transformation leads to an after-image of that data (called transformed or compressed
data). The transformed data then can be used for transport or persistent storage and
may have beneficial properties, e.g. being smaller in size.

It is always desired to get the original data back to the user, therefore only transfor-
mations f are considered where an inverse-transformation f~! exists to compute the
original data from the transformed data.

f(original data) = transformed data

f~!(transformed data) = original data

Later other properties of transformations are discussed as well.

3.1 General design

The first design decision is what part of the system applies the transformation. JULEA
is a client-server system, so the transformation can happen on the client or the server
side, or both. We want to compare the different designs, so our implementation has to
offer multiple modes.

o Client transformation: The transformation is applied by the client. On write,
the already transformed data is transferred and the receiving server is unaware
of the transformation. On read, the client inverse-transforms the data after the
transfer from the server.

When the data is compressed, the benefits are less data to transfer and less usage
of persistent storage.

The workflow for a write is shown in Figure 3.1:
1. The user writes memory blocks A, B and wants them to be stored
2. On a JULEA object a write-operation (w) is called for each block

3. Given the client mode, the object now applies the transformation and generates
new memory blocks A’, B’

10

4. The transformed data A’, B’ is transferred to the server’s memory

5. The server backend stores the transformed data A’, B’ to disk

2. : 4.
user »>————(object server
3. 2 5.

transformatio backend
1. /
operafi W,
Y
NEINEE als| | |

Figure 3.1: Client transformation workflow on write

On read the workflow is reversed accordingly:
1. The user requests some data from a JULEA object to target memory

2. The server has the transformed data in storage, that is now transferred to
temporary memory on the client

3. From temporary to target memory, the data is inverse-transformed by the
client

4. The user can access the original data in target memory
o Server transformation: The transformation is applied by the server after receiv-
ing it from the client, and in the other direction before sending requested data to

the client. The client is totally unaware of the transformation, so this could be
applied even if the client does not support transformation.

When the data is compressed, the uncompressed larger data has to be transmitted,
but the usage of persistent storage benefits from compressed data size.

user 2 @bje(@ M k

operatio W

£

sl T 1]

Figure 3.2: Server transformation workflow on write

11

The workflow for a write with server transformation is shown in Figure 3.2:
1. The user writes memory blocks A, B and wants them to be stored
2. On a JULEA object a write-operation (w) is called for each block
3. The original data A, B is transferred to the server’s memory
4

. Given the server mode, the server now applies the transformation and generates
new memory blocks A’, B’

5. The server backend stores the transformed data A’, B’ to disk
On read the workflow is again reversed:
1. The user requests some data from a JULEA object to target memory

2. The server has the transformed data in storage, that is loaded to server
memory

3. The server applies the inverse-transformation and stores the original data in
additional server memory

4. The original data is now transferred to target memory on the client

5. The user can access the original data in target memory

o Transport transformation: The idea is to combine both methods and apply
the transformation before sending data over the network and apply the inverse-
transform directly after receiving the data on the other side.

For compressed data, this does not enhance storage utilization, because the original
data is stored on disk. The compression is only applied for transportation to reduce
network traffic.

3.2 Important transformation properties

To implement different transformations the following properties determine the implemen-
tation details that have to be considered.

o Changing data size: The most crucial information about the transformation
algorithm is, whether the resulting data size is the same as the original data size
or not. Memory in the resulting size has to be allocated before the transformation
can be applied. Also disk space has to be allocated in the resulting size, not the
original size. Of course compression algorithms aim for changing the size to the
minimum possible result.

o Context-free changes: If the original data is the concatenation of A, B, C, some
transformations f will transform each subset to A’, B’, C" and the overall result is

f([A, B, Cl) = [f(A), f(B), F(C)] = [A', B, ("],

12

the concatenation of the partial results. Furthermore the transformation of B does
not depend on the context A and C, so we could replace B by a new content B,
and the transformation f([A, Bhew, C]) will then be [A, B.,,,, C'].

new’

Given this property, it might be necessary to move C’, if sizeof(B’) # sizeof(B.,..),
but A and C' have not to be transformed again.

This property is not given for secure encryption transformations, where the change
of one byte of the input will most likely change any byte of the output. And this is
also not given for effective compression algorithms.

« Partial access: A transformation has the partial access property, if the data size
does not change and the transformation is context-free. If then a certain byte of
the original data is changed, only that changed byte needs to be transformed and
the transformed data can be updated at the fixed offset of the change. And any
partial update only needs to consider all the bytes that were changed.

In this case the transformation may also be applied in-place. But no in-place
update should ever be performed on write in client mode, because the client will
probably continue to work with the memory blocks it wants to be written, so they
must not change.

3.3 A subset of transformations to implement

The proof of concept will be shown on a small subset of possible transformations. The
following methods are chosen to cover different special cases and are considered to be in
increasing order of difficulty:

e None: Independent of how transformations are implemented, it should be possible
to apply no transformation, even if a transformation client is used. This should
also be performant and skip the transformation steps, especially not make a copy
of the data.

e« XOR: The XOR method simply applies a fixed binary pattern via XOR to the
data. The inverse-transformation is just to apply XOR with the same binary
pattern again. This is the most simple method that at least changes the data and
has the partial access property, so it is chosen to be implemented first to test the
concept and implementation in general.

A B C Z

Y Y Y

A’ B’ C /A

Figure 3.3: Schema of XOR transformation

13

o RLE: The run-length-encoding is often used as a very simple compression algorithm,
when data contains many repetitions. The data is split into multiple sections,
where each section just repeats the same byte. For each section the compressed
data contains the number of repetitions and the used byte only once.

This is a very simple method that we could implement very fast on our own. It
is used as an example for changing data size. Please note that in some cases the
transformed data size might be even larger than the original size. Such cases can
be constructed to test the robustness of our implementation.

A B B B C C C C D

RN |

1x A 3% B 4x C 1x D

Figure 3.4: Schema of RLE transformation

o LZ4: Finally we wanted to implement an effective compression algorithm. For the
LZ4 compression algorithm [Yanl19], the library 1iblz4 is used. Using a library
and extending the list of supported transformations within JULEA is considered
to be the way how our proof of concept can be extended to cover a larger variety
of algorithms.

The LZ4 algorithm is not explained here, but it is considered to be efficient and
complex in the sense of changing one byte of input does change almost all of the
output.

o) B v)

Figure 3.5: Schema of L.Z4 transformation

14

4 Challenges

In this chapter we outline the different challenges that we faced during the planning
and implementation of the transformation client. We were able to solve some of these
challenges and had to make some compromises on others. Our solutions to these problems
will be discussed further in Chapter 5 and Chapter 6.

4.1 General concept and structure

We started the project with the general idea of introducing transformation and com-
pression functionalities to JULEA. Before actually starting to implement something
we had to make some concrete design decision on how we wanted to integrate our new
functionalities within JULEA’s code base.

At first we had to decide whether we wanted to add the transformation ability to the
already existing JULEA types or if we wanted to introduce a new client type. We rather
quickly decided that it would be more appropriate to create our own transformation
client instead of adding the it to the JObject type. This decision was based on multiple
factors. Firstly our transformation concept needed to introduce changes to the JObject
interface. This might have broken existing JULEA applications and would have been
non-ideal. Furthermore the addition of the transformation code would probably have
introduced some computational overhead to JO0bject, even if no transformation behavior
was used. Another concern was the introduction of additional dependencies like for
example 1iblz4 to the core of JULEA, which would also be unwanted for users that are
not interested in using the transformation features. Due to these reasons we decided to
add a new client type called ‘transformation’ with its own types like JTransformation
and JTransformationObject.

The next design decision was on how we wanted to provide the transformations to
the user and which kinds of transformations we wanted to support. Here we decided
on providing a JTransformation type which holds all necessary information about a
transformation.

o Transformation type: The transformation type describes the used transforma-
tion algorithm. This could be anything from a simple XOR of the data to complex
compression algorithms or even encryption of the data. It is important to notice
here that depending on the used transformation algorithm different properties
apply to the transformed data. For example it is important to know how the
transformation will influence the size of the data. With a simple XOR the data
size does not change at all but with other transformation algorithms the original

15

size of the data and the transformed size of the data will very likely differ. This
already introduces a new type of metadata information that needs to be stored for
the object to make sure that for example read operations can be executed correctly.
It is also important to keep in mind that even when using a compression algorithm
you are not always guaranteed that the size of the transformed data actually has
decreased. This can for example be the case if a very small amount of data with a
pattern that is not good for the compression algorithm gets transformed.

The other important property of transformed data is whether partial reads and
writes can be executed on it. If we go back to the XOR example it is without a
problem possible to read and inverse-transform just a subset of the transformed
data block. This is however not possible for data that has been transformed using a
compression algorithm. To read just a few bytes in the middle of a compressed data
block the whole data has to be uncompressed first and then the read on the wanted
bytes can be performed. This property has a strong impact on the implementation
of a transformation object and also brings some serious performance concerns.

Transformation mode: The transformation mode describes where the actual
transformation of the data takes place inside JULEA. We looked at three specific
scenarios here.

1. Client mode: In this mode all transformation and inverse-transformation
of the data is handled on the client side. This means that the server can be
unaware that it even stores transformed data and it specifically does not need
to know about the used transformation algorithm. The client is completely in
charge of handling the needed metadata and doing the correct transformations.
This however poses the problem that even a client that has not created a
transformation object needs to be able to get access to the transformation
information metadata to be able to work correctly with the object. It also
keeps all computation effort of executing the transformation algorithms on
the client side which could in theory be detrimental to the performance of
applications but on the other hand also be beneficial to the server if it is often
under high workloads.

2. Server mode: In this mode the server takes complete care of all transforma-
tions and inverse-transformations. This makes the clients able to act mostly
unaware of the transformation and just interact with the transformation object
as if only the original untransformed data was stored on the server. In this
scenario the server needs to take care of the objects metadata and it needs
access to this information to correctly handle read and write requests from
the clients. This approach might in some cases produce more network load
because uncompressed data is sent to the server and it is only compressed
there. For specific read patterns and transformation types it could also lessen
the amount of data that needs to be sent. If for example a client just wants
to read the first few bytes of a big amount of compressed data the server can
do the inverse-transformation of the whole data block and just send back the

16

needed bytes. If the same scenario would take place in client mode, the server
would need to send the whole compressed data block back to the client which
then in turn inverse-transforms it and only uses the first few bytes of the sent
data.

3. Transportation mode: Transportation mode is used to lessen the network
load between client and server. In this mode all data that has to be sent
is compressed beforehand and gets decompressed at arrival. This is a very
specific mode for niche use cases and was not regarded very much by us.

As we can already see the different combinations of transformation types and modes will
have a big influence on how to implement the transformation client best and especially
on how the object’s metadata has to be stored and managed. We also tried to plan our
design of the JTransformation type in a way that it would be easy to add additional
transformation algorithms in the future, since we could only implement a few our self in
the scope of this project and future users might have very specific needs for the type of
transformation that they want to use.

Our last design decision was that we wanted to keep the interface of our newly introduced
JTransformationObject type as close as possible to the already familiar JObject. This
keeps the workflow with our own client very close to using the already existing JULEA
objects and it should be quite easy to migrate functioning code that uses JObject to
use our client instead.

4.2 Handling partial object writes and reads

original data compressed data

transformation

Al B |c|D|E|F |::> 1 2 | 3 | 4 wm'cf'
operation

retransformation
read operation
c D ,:.l A B c D £ . Partial r.ead
operation

read data original data

Figure 4.1: Workflow of a partial read on compressed data

As we have already mentioned in the previous section depending on the transformation
type it is not possible to just access a substring of a transformed data block to do a
correct inverse-transformation on it. In Figure 4.1 we can see an example of a partial
read on an object that uses a compression algorithm as transformation. We can see
that the original data consists of six blocks which get compressed into four blocks by an
initial write to the object. In the second step a client sends a read request for the two

17

middle blocks of the original data. Since it is not possible to partially decompress the
transformed data to get the original content of the requested blocks, the application first
needs so inverse-transform the complete data. After decompression we get the original
state of the data back and can now answer the read request and provide the requested
data blocks. An even worse scenario would be a partial write to the object. In that
scenario the whole data would again have to be decompressed first. Then the write can
be executed and the whole resulting data has to be compressed again and written to
persistent storage.

As we can clearly see this whole process can have a grave influence on the performance
of an application. Especially if the I/O access patterns of the application contain many
small partial reads and writes to a big object it could get very problematic.

The other important thing for the implementation of this process is that additional
buffers are needed to store the intermediate processing steps of the data. In the given
partial read example JULEA needs to provide a buffer that is big enough to hold the
complete uncompressed data from which the actual data of the actual read request can
be sent to the user application.

To mitigate some of these problems we quite early during development decided that
some chunking of the object’s data was needed to avoid cases where a huge object needs
to be completely inverse-transformed to accomplish a small partial read. We will go into
more detail about this in Section 5.4.

4.3 Metadata management for object persistence

As we have already discussed, the transformation objects need metadata information to
be used correctly. The used transformation algorithm and also information about the
original and the transformed size of the object are necessary for performing the correct
read and write operations on an object. As long as we are only dealing with one client
that creates the object and then also deletes it during the client’s lifetime this is a simple
task and this information can be stored on the client side inside the transformation object
type. However this is not how objects in a file system are normally accessed by general
applications. The stored transformation objects must be able to be used by every client
that requests them as long as they are existent on the server. Therefore the required
metadata also has to be stored persistently on disk and every client needs to load it
automatically when requesting a reference to a transformation object. To solve this we
had two different ideas in mind when designing our transformation client.

1. Store metadata inside the object: The first idea was to store the required
metadata together with the object data. This would for example mean that
each transformation object’s data starts with a prefixed header which stores the
metadata. With this solution each access to the object would first need to read
the object header from disk and then extract the different metadata attributes
from it. Furthermore each modification of the object would also need to overwrite
the header with the new metadata. This approach comes with its advantages
and drawbacks. The clear advantages is that the metadata and the object data

18

are always stored at the same place and it makes it trivial to find the matching
metadata for an object. A drawback of this approach are the aforementioned many
small read and write operations on the object that are required. Another small
problem is the fact that in such an implementation the exact size of the header
data block always needs to be known since each write and read operation needs
to take the header offset into account to reach the correct object data bits. This
would make it harder to add or remove new metadata attributes after the fact and
also make it difficult to support a varying number of metadata fields for different
types of transformations.

2. Store metadata and object data separate: With this method the metadata
of a transformation object is stored in a different place, like for example the JULEA
key-value store. This approach of course requires the clients to be able to find
the correct place where the metadata of the current object is stored. The main
advantage of this version is an easier access to specific metadata fields by using the
features of JULEA’s key-value store. It also solves the problem of having different
metadata attributes for different types of transformation objects better than the
previous method. The main drawback of this approach is the requirement of using
the key-value client with every transformation client application.

In the end we decided to implement the second approach, mainly to avoid the necessary
multiple reads on the objects mentioned in the first approach and because we felt it would
be easier to expand on if the need for more specific metadata for different transformation
objects would arise. It would be interesting to do some measurements for both methods
to get an idea about which version would provide better performance.

4.4 Concurrent object access

One last challenge was how we would handle the concurrent access of multiple clients
on the same object. This scenario can produce a multitude of errors for clients. The
concurrent read access on an object should be unproblematic and has no need of specific
safeguards but concurrent writes or reads and writes can lead to undefined behaviour.
These problems also get amplified when metadata is taken into account and could even
lead to crashes. If for example client A writes to an object and with that changes its
transformed size and client B tries to read from that object at the same time but before
the metadata of the write operation has been updated the whole inverse-transformation
step would fail.

The most common way to avoid these concurrency problems is the usage of locks.
Each operation that modifies the object should claim an exclusive lock on the object
and its metadata. However at the time of our transformation client implementation
JULEA does not yet provide locking functionality and the problems described above
could also occur for the normal object client. Therefore we did not yet solve this problem
in our implementation and can therefore not guarantee correct behaviour for concurrent
transformation object accesses.

19

5 Implementation

In this chapter we will discuss our implementation of the transformation client. We will
show the final state of our implementation and talk about our design decisions and how
we tried to solve the challenges presented in Chapter 4.

5.1 General structure of the transformation client

The implementation of our transformation client mainly consists of three new JULEA
types:

e JTransformation
e JTransformationObject

e JChunkedTransformationObject

We will go into detail about them in the following sections after we explain the general
concept and workflow of our client.

Our main idea behind the provided interface for the transformation client was to keep
it as close as possible to the regular JULEA object client. The transformation object
types provide a nearly identical API with only some added parameters that are needed
to specify the wished transformation type and mode.

In Listing 5.1 we can see the same example code as in Listing 2.1 with the only
difference being that it uses a JTransformationObject instead of the regular JULEA
JObject type. If we compare the two examples we can see that the only real difference,
besides now using the JTransformationObject API functions, is at the object creation
in line 18. To create a new transformation object we need to specify the aforementioned
transformation type (as in which transformation algorithm to use) and transformation
mode (server- or client-side transformation). Everything else behaves exactly the same
as the regular object type from the perspective of the user.

We tried to keep the transformation logic as hidden as possible from the user as to not
create any confusion or implementation effort. This should make it very easy to try out
our transformation client with already existing JULEA applications. All that needs to be
done is to exchange all JObject references and functions with JTransformationObject
ones and the application should run exactly the same as before on a surface level.

We will now go on with a deeper look into the inner workings of our newly introduced

types.

20

© 00 O Ui Wi+

17
18

19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34

#include <glib .h>

#include <julea .h>

#include <julea—transformation .h>
#include <stdio.h>

int main(int argc, charsx argv)

{

}

gboolean ret = false;
g_autoptr(JSemantics) semantics =
— j_semantics_new (J_SEMANTICS TEMPLATE POSIX) ;
g_autoptr (JBatch) batch = j_batch_new(semantics);
gchar data[l10] = {0,1,2,3,4,5,6,7,8,9};
gchar buf[10];
guint64 bytes_written = 0;
guint64 bytes_read = O0;

g_autoptr (JTransformationObject) object =
< j_transformation_object_new ("t _namespace"', "test");

j_transformation_ object_ create(object, batch,
— J TRANSFORMATION_ TYPE 174, J TRANSFORMATION MODE_ CLIENT) ;
ret = j_batch_execute(batch) && ret;

j_transformation_object_write(object , data, 10, 0, &bytes_ written
— batch);
ret = j_batch_execute(batch) && ret;

j_transformation_object_ read (object , buf, 10, 0, &bytes read, batch);
ret = j_batch_execute(batch) && ret;
for (guint i = 0; i < 10; i++)
printf("%d\n", buf[i]);
printf("bytes read: %ld\n", bytes_read);

j_transformation_object_delete(object , batch);
ret = j_batch_execute(batch) && ret;

return ret;

Listing 5.1: A small example of an application using the JULEA transformation client

21

0O U Wi

struct JTransformation

{ JTransformationType type;
JTransformationMode mode;
gboolean partial access;

}s

void

j_transformation apply (JTransformationx trafo, gpointer input,
guint64 inlength , guint64 inoffset , gpointerx output,
guint64x outlength , guint64x outoffset ,
JTransformationCaller caller)

void

j_transformation_cleanup (JTransformation* trafo, gpointer data,
guint64 length , guint64 offset ,
JTransformationCaller caller)

gboolean
j_transformation_need__whole_object (JTransformation *,
JTransformationCaller) ;

Listing 5.2: The important parts of the JTransformation interface

5.2 The JTransformation type

The JTransformation type is the only part of our code that we had to explicitly add
to the JULEA core. This requirement arose because of the server side transformation
mode. In this mode the transformations and inverse-transformations need to be handled
by the backend, which therefore needs to know about the JTransformation type. The
only other way to solve this problem would have been to make the whole JULEA backend
depend on the transformation client which seemed much more problematic.

In Listing 5.2 we can see a summary of the most important parts of the JTransformation
interface. As we have already discussed in the previous chapter a transformation needs
attributes for the transformation type and mode. These need to be set at creation time
and will govern what transformation algorithms are used by the object and whether the
transformation takes place on client- or server-side. Depending on the used transforma-
tion it can also be determined whether partial read and write operations on the object
need to retransform the whole object data every time or if parts of the data can be re-
transformed correctly on their own. This behaviour is indicated by the partial_access
boolean in line 7. If we take a look at lines 10-19 we can find the functions that handle
the actual data transformation.

e The apply function: This function is the core part of the JTransformation
type. It takes a pointer to the data and some length and offset information and
returns the transformed data in the output pointer together with the maybe

22

modified length and offsets values. Whether the apply function should transform
original data or inverse-transform already transformed data back to the original
is decided by the caller argument. This enum lets the user specify what kind
of transformation operation should be performed as for example a read (where
the data would be inverse-transformed to its original state) or a write (where the
transformation algorithm is applied in the original data to yield the for example
compressed data).

The apply function is very general by design so that it should support any kind
of actual transformation algorithm that could be applied to data. The specific
transformation type is given implicitly with the pointer to a JTransformation
and the implementation of the function will then redirect to the corresponding
transform and inverse-transform function for the used algorithm. We implemented
it that way to make it easier for future users to add implementations of their own
transformation algorithms. To add support for a new transformation type it has
to be added as an option to the JTransformationType enum and transformation
and inverse-transformation functions have to be added to the JTransformation
implementation. This process is very straightforward and needs to be done in the
j_transformation_apply function of JTransformation. Here the transformation
call is handed over to the appropriate function, determined by a switch statement
over the transformation type the current object is using. The user simply has to
add a new case for the added transformation type and provide one function, that
applies the new transformation algorithm and returns the transformed data in an
output buffer, and also provide one function that does the same for the inverse
transformation.

The cleanup function: This function is necessary to deallocate the transforma-
tion data buffer that is created by the apply function. This buffer is necessary for
both read and write operations. In the case of a write operation the transformation
client needs to take the data from the provided data pointer and apply the transfor-
mation algorithm to it, thereby modifying the original data. This modification can
of course not be done in-place since this would invalidate the data buffer provided
by the user by replacing the original data with the transformed data. Therefore
the apply function needs to allocate a new buffer for the transformed data which
is then written to disk by the backend. If this buffer is not freed at some point
JULEA would start to leak memory for every operation on a transformation object.
In the case of a read operation a new buffer is also necessary in some cases since
we might need to read the whole object and retransform it before being able to
provide the result of a partial read request from the user. The buffer that holds
the complete object would therefore in many cases be larger than the provided
read buffer from the user which means that in this case also the transformation
client needs to create an intermediate buffer that needs to be freed at some point.

It should be noted that the use of this extra buffer for read operations is only
necessary in the case of transformations that do not support partial reads. If the

23

0O U Wi

19
20
21
22
23
24

25

struct JTransformationObject

{
guint32 index;
gchar* namespace;
gchar* name;
gint ref_count;
JTransformationx transformation;
JKV* metadata ;
guint64 original_size;
guint64 transformed_size;
I
void
j_transformation_object_create(JTransformationObject* object , JBatchsx
— batch ,
JTransformationType type, JTransformationMode mode)
void

j_transformation__object_status_ext(JTransformationObject* object ,

gint64x modification_time, guint64x original_size

guint64+ transformed_size, JTransformationTypex
— transformation_type,

JBatch* batch)

Listing 5.3: The important parts of the JTransformationObject interface

transformation can be done on any arbitrary subset of the data, no additional
buffer that needs to temporarily store the whole object is necessary. In that case
the cleanup function has no work to do and simply returns immediately.

Those free operations can not always be done directly in the write or read function
of the transformation object because the pointers might need to be valid until after
the function end. Fortunately the JULEA object type already provided _read free
and write free functions where cleanup for operations on the object can be
done. In our implementation of the JTransformationObject we added calls to
this cleanup function to them.

The JTransformation type is not really used by itself in the transformation client but

it will be a central part of the JTransformationObject implementation which we will
take a look at now.

24

5.3 The JTransformationObject type

The JTransformationObject is the core type of our transformation client. It behaves
like the traditional JObject from JULEA with the exception that the data is stored
transformed by the backend. In Listing 5.1 we have already seen an example of how it
can be used by an application. In this section we will go more into detail on how the
transformation operations are integrated into write and read operations on the object
and how the key-value store is used to store the metadata. In Listing 5.3 we show the
important attributes and interface functions of the type.

The first four attributes of JTransformationObject are identical to JObject and
behave the same way. Following them we can see that the object contains a reference to
an instance of the previously described JTransformation type. This attribute contains
all necessary information about the type and mode of transformation which are set for
this object. It is either set at creation time of the object or in the case of an application
acquiring a reference to an already existing transformation object the transformation
information will be loaded from the key-value store and the transformation attribute is
set. The following metadata attribute is a reference to a JULEA key-value store entry
which is used to always load and store the most recent transformation object metadata.
In general before each operation on the object the key-value store is checked whether
it contains newer metadata, which will then be loaded and after each operation that
modifies the object’s metadata, the new data is stored again in the key-value store. The
association between the current object and its corresponding metadata object is handled
by concatenating the objects namespace and name which will yield the name of the
key-value store entry for its metadata.

The last two attributes are variables for the object’s original and transformed size.
Original size in this case means the size of the user data in its normal form and the
transformed size indicates the size of the transformed data stored by the backend. As we
have already discussed it depends on the transformation type whether and how these
values might differ from each other.

Below the JTransformationObject declaration we have highlighted the two interface
functions that differ in their signatures from the interface of the normal J0bject. First
is the _create function which we have already mentioned in our previous example. It
contains two additional attributes for the transformation type and mode that need to
be declared at the creation of a transformation object. The _status_ext function is
an extension to the regular status function which will deliver additional information
that concerns transformation objects like the original and transformed sizes and the
used transformation type and mode. The regular status function still exists for the
JTransformationObject and will return the same information as for JObject.

We have now seen the differences between JTransformationObject and JObject and
how to use it. In the rest of this section we will take a closer look at the write and read
operations on a transformation object and how their workflow in our implementation
using different transformation type and mode configurations. We will first discuss the
client-side and then go into the server-side transformation mode.

25

5.3.1 The client-side read operation

For a read operation on a transformation object some preparation steps and decisions
have to be made before any actual data can be requested from the backend. We will
now summarize the workflow of our implementation.

1. Load current metadata: The first step of each read operation is to request the
object’s current metadata from the key-value store and to update the corresponding
attributes in the local object reference. This is necessary if we want to allow multiple
clients to access the same object. The object might have been modified by another
client since the last operation of the current client on the object and therefore we
can never be sure that our local version of the metadata is the most recent one.

2. Check which transformation mode is set: In the next step we need to check
the set transformation mode of the object to find out if the client should even do
any transformation work or if it should just forward the read request to the server.

3. Check if transformation type allows partial reads: We now need to find out
whether the transformation type of our object allows partial reads. If this is the
case and our read operations just need a part of the objects data we can just go
ahead and make this request to the server followed by inverse-transforming the
received data and returning it to the user. In the following we will discuss the
more complicated case where partial reads are not possible and the whole object
data is needed to perform the retransformation of the data.

4. Perform the read and inverse-transformation: If we assume that partial
reads are not possible we first need to make a request to the backend to read
the whole object into a temporary buffer. From the object’s metadata we know
its transformed size and use it to modify the original read request from the user
to a read of all of the transformed data. Now we can hand a reference to the
transformed data to the previously described transformation_apply function of
JTransformation and receive a reference to the inverse-transformed data back.
Now that we have the object data in its original form we just need to copy the
requested part of the data into the read buffer that was provided by the user and
the read operation has been performed correctly. The only thing that remains is
to make sure to free all allocated temporary buffers.

As we can see there might be a significant overhead for read operations on transformation
object that can not support partial reads since we always need to read the whole object
from the backend. Our solution to reducing the performance impact of this problem is
to not always transform the complete object data but to divide it into multiple chunks
that are all transformed individually. We will discuss this closer in Section 5.4.

26

5.3.2 The client-side write operation

Write operations can get a bit more complicated then read operations in the case of no
partial writes. Like in the last section we will now give a summary of the necessary steps
to perform a write on a JTransformationObject.

1.

Load current metadata: Same as before we again have to refresh our metadata
before performing this operation

Check which transformation mode is set: In this step we again have to check
if the client is responsible for the transformation or not.

Check if transformation type allows partial writes: Also same as before
if partial writes are allowed the only thing that has to be done is applying the
transformation to the user write data and then writing the resulting transformed
data to the backend. We will again go on under the assumption that we have a
partial write request and the selected transformation type does not support partial
writes. If partial writes are supported by the used transformation, the next two
steps can be skipped and the write data can immediately be transformed and
written to the backend.

Read the whole object: If partial writes can not be done we first need to
read the whole object to later add the new data and transform everything again
before doing the actual write to the backend. This is done by simply calling the
transformation object’s read function on all transformed data. This is again stored
in a temporary buffer. Doing it this way already gives us the data in its original
form because the inverse-transformation is performed by the read function.

Add new write data and perform the write: Now that we have the original
data we can insert or add the data of the write operation and again apply the
transformation to the whole buffer and actual write to the backend can now finally
take place. Again all temporary buffers need to be freed to not introduce memory
leaks.

Update metadata: Since a write is a modifying operation the metadata of the
object will have changed and it needs to be updated and written to the key-value
store. Listing 5.4 shows the metadata struct of a transformation object. It contains
the basic type and mode information about the transformation object and the
original and transformed size of the object’s data. The first two fields are never
updated by a write operations since they need to be specified at the object creation
and can not change after that. The two size parameters will have changed after
the execution of a write operation and therefore always need to be updated for
future operations on the object to work correctly.

Even more than for the read operation this write implementation can come with some
severe overhead. If partial writes are not possible each write operations brings with it a
read of the whole object.

27

~N O Uk W N

struct JTransformationObjectMetadata

{
gint32 transformation_type;
gint32 transformation_mode;
guint64 original_ size;
guint64 transformed_ size;
b

Listing 5.4: The metadata struct for a transformation object

5.3.3 Server-side operations

The general workflow in which order reads, writes, transformations and inverse-
transformations have to take place does not change for the server-side operations but we
will give a short summary of how and where we implemented them.

First of all we added new J_MESSAGE entries for transformation object operations to
the JULEA server. To be able to perform transformations the server needs to have
access to an object’s metadata. If we wanted to solve this the same way as the client-side
transformation this would mean that the server would need to connect and depend on
the key-value client. This did not seem like a good option and therefore we decided on
just sending the required information with the read or write JULEA messages. Therefore
we added the JTransformation, original_size and transformed_size attributes to
each message. In the first step of parsing a received message the server will check the
transformation mode of the sent JTransformation. If the object uses client mode no
further action has to be done by the server and the code of the regular JObject is run.
If on the other hand the object works in server mode we call modified version of the
j_backend write or read functions. We added those functions to the backend code and
they pretty much implement the workflow for reads and writes described in the last two
sections.

The last thing that needs to be solved was to update the objects metadata after a
server-side write operation. Since we decided not to add a key-value client dependency to
the server the metadata updates can not take place here. We instead added the necessary
changes in metadata to the server’s reply messages and handle the metadata update on
the client upon receiving the reply.

5.4 The JChunkedTransformationObject type

We have now seen our basic implementation of a transformation object but as we have
discussed major overhead can occur for partial read and write operations in specific
situations. If we think about a client application that for example performs a lot of
small write operations on a big object it is not really feasible to have complete reads and
writes on the whole object occur every time. Therefore we have to find a solution for this
problem and at least reduce the amount of overhead for operations on the transformation
object. This is what the JChunkedTransformationObject type tries to do.

28

0O U Wi

21
22
23
24
25

26
27

28

struct JChunkedTransformationObject

{
guint32 index;
gchar* namespace;
gchar* name;
gint ref_count;
JTransformationType transformation_type;
JTransformationMode transformation_mode;
JKVx metadata;
guint64 chunk_count;
guint64 chunk_size;
H
void
j_chunked_transformation_object_create(JChunkedTransformationObject
— object ,
JBatchx batch, JTransformationType type,
JTransformationMode mode, guint64 chunk size)
void
j_chunked_ transformation_ object_status_ext(JChunkedTransformationObjectx

— object ,
gint64x modification__time, guint64x original_size
guint64* transformed_size, JTransformationTypex
— transformation_ type,
guint64+ chunk count, guint64x chunk_ size, JBatchx batch)

Listing 5.5: The important parts of the JChunkedTransformationObject interface

Instead of transforming the whole object data with one application of the transforma-
tion algorithm we decided to introduce chunking to the data. The general idea is that
the object consists of multiple fixed size chunks of transformed data. If a small partial
read or write operation now occurs it is sufficient to just read and inverse-transform the
data of one or a few chunks to correctly perform the operation and we do not need to
read the whole object.

In Listing 5.5 the most important parts of the JChunkedTransformationObject
interface are shown. Most of the attributes are identical to the ones already explained
for the JTransformationObject. Of most interest should be the last two, chunk_count
and chunk_size. The chunk count indicates how many chunks are currently part of
the object and the chunk size is the attribute that determines the original data size of
a chunk. We decided on performing the chunking on the original data instead of the
transformed data. This may lead to the transformed chunks not having identical sizes
but makes it much easier to handle the chunking and later offset and size calculations

29

for write and read operations. From a file system perspective it probably would be more
efficient to have the resulting transformed chunks be a specific and constant size but this
is a difficult task for transformations algorithms that compress the original data because
you would need a way to accurately predict how much of the original data compresses to
the set chunk size or you would have many transformed chunks that need empty padding
bits at the end.

We again highlighted the create and _status functions as the only functions that
have a modified signature from their JObject versions. The create function now has the
additional chunk_size parameter where the user has to set the wanted chunking size.
The _status_ext function now also return information about the chunk count and size.

The implementation of JChunkedTransformationObject is quite straight forward.
Since we already have the transformation logic implemented in JTransformationObject
we decided to build the chunked object around those objects. Each chunk consists of an
own instance of a JTransformationObject. The main task of the chunked transformation
object is managing its chunks and to translate the offset and length values of incoming
read and write operations to individual operations on the matching chunks.

The metadata consists of the transformation type and mode and the chunk count and
size, which are again stored in the key-value store. The chunk objects are automatically
created if the size of the chunked object grows and they are named in the form of:
<object namespace> <object name>_<chunk index>. Going with this pattern it is
quite trivial to compute and identify the necessary chunk object for an incoming read or
write operation. The operations are then simply passed along to the correct chunks and
the resulting data for a read operation is assembled in the read buffer or it is split and
and individually sent to the corresponding chunks for a write operation.

This concludes the description of our implementation of the transformation client. We
will now take a look at some benchmark results and discuss which of the challenges from
Chapter 4 we managed to solve and what future work is still open to improve the client.

30

6 Results and Benchmarks

In this chapter we will discuss a few benchmarks for our transformation client. We
will compare the write and read performance to the normal JObject to find out how
much the overhead cost the transformation of the data and the additional metadata
management tasks bring with them. We will also briefly compare the performance of the
different transformation algorithms provided by the transformation client and compare
transformations with and without partial read or write access.

6.1 Comparing JChunkedTransformationObject to
JObject

For this benchmark we wanted to see a comparison between the normal JObject and our
JChunkedTransformationObject in regard to the write and read performance for larger
objects with many operations. All benchmarks were run on a home desktop machine
with the POSIX backend of JULEA writing into a tmpfs.

When comparing our JChunkedTransformationObject to the regular JObject we
have to take into account that the chunking operations will definitely add an overhead
that impacts the performance of our implementation negatively. It could therefore be
argued that a comparison to JULEA’s distributed object instead would make sense.
However our implementation does not use chunking to spread the object over multiple
servers but instead uses it to increase the performance of partial write and read operations.
It does therefore serve a different purpose and we thought it more appropriate to compare
it with the normal JObject.

For the benchmark results that we can see in Table 6.1 the application writes in total
1GiB of data to the object in multiple small 1MiB write operations on the objects. In
this case each write or read operation was executed in its own batch to simulate an
application that has a high frequency of independent operations. The variable parameter
in these benchmarks was the chosen chunk size for the JChunkedTransformationObject
or alternatively the use of the standard JULEA JObject. The chunked transformation
object is configured with using the LZ4 transformation type and the client transformation
mode.

We also did two separate runs of the benchmarks with different kinds of data. In tables
(a) and (c) we used a block of random data which leads to a bad compression result for
LZ4 that in many cases even increases the data size by a bit. This could be seen as the
worst case for a transformation object. In tables (b) and (d) we used a block of ‘fixed’
data where all bytes where set to the same constant value. This leads to an enormous
compression rate for the 1.Z4 algorithm and can be seen as a best case scenario.

31

We only display the measured runtime of the write or read operations here and did not
calculate the write/read data rates here because this benchmark is mainly focused on
the comparison between the two object types and also the actual write and read speed
would be highly dependent on the used hardware, backend and filesystem and would
therefore not be very meaningful here. All shown results are the average values of three
separate benchmark runs.

chunk size | time chunk size | time
4KiB 105.6s 4KiB 119.1s
1MiB 2.3s 1MiB 0.91s
JObject 0.68s JObject 0.77s
(a) Writes(random (b) Writes(fixed data)
data)
chunk size | time chunk size | time
4KiB 134.6s 4KiB 128.2s
1MiB 2.1s 1MiB 1.10s
JODbject 0.62s JObject 0.56s

(c) Reads(random data) (d) Reads(fixed data)

Table 6.1: Read/Write benchmarks for JChunkedTransformationObject vs. JObject

If we take a look at the results shown in Table 6.1 we can immediately see that the
chunk size is a huge factor in the performance of the JChunkedTransformationObject.
The first data point of each table used a chunk size of 4KiB which means that there will
be 250000 chunks created for the 1GiB of total data and 250 new chunks for every 1MiB
write operation. We can clearly see that the overhead of managing that many chunks
has a huge impact on performance and makes it not really usable in practice. This was
at first a very demotivating result but if we take a look at the second rows in the tables
we can see that increasing the chunk size to 1MiB gave us a much more practical result.
The performance is still distinctly worse than the regular JObject but only by a factor
that a user might be alright with if the data compression aspect would be important for
the application.

We will now take a closer look at the differences between write and read operations on
the objects. The results show quite clearly that the time for read operations with small
chunk sizes exceed the times for write operations. This makes sense if we think about
how the read operation for chunked transformation objects is implemented. It first has
to send read request to all affected chunks and then needs to copy all small data chunks
into the read buffer before it can be returned to the user. In the second case of using
1MiB chunks this is not a factor anymore because only one chunk has to be read and
copied per read operations since the read size and chunk size are equal here.

The second thing to compare are the effects of the used data. As already mentioned
the random data will have a very low or even negative compression factor and the fixed

32

data will compress exceptionally good. If we compare tables (a) and (c) to tables (b)
and (d) we can see a clear improvement of read and write speeds for the 1MiB chunk
size case for the fixed data benchmarks. This is quite interesting and might show the
actual impact of running the transformation algorithm. For the random data we have
about a factor of 3 for the runtimes compared to the JO0bject run but for the fixed data
ones this factor goes down to under 2. We will try to measure the impact of the used
transformation algorithm in the next benchmark.

Overall we can conclude from this experiment that the chosen chunk size for the
chunked transformation object plays a huge role in its performance. This however also
leads to the conclusion that the chosen chunk size has to be highly tuned towards the
size of the write and read operations occurring in the applications using this object. We
suspect that this would be hard to realize for applications with widely different 1/0O
patterns on the same object and would probably need significant fine tuning of the chunk
size parameter to achieve the best possible performance.

6.2 Partial writes vs. non partial writes benchmark

In this benchmark we were interested in comparing the performance of the basic
JTransformationObject using different types of transformations. As we have dis-
cussed before the biggest difference with transformation types is whether they allow
partial writes and reads. If the transformation does not allow partial writes or reads it is
always necessary to first inverse-transform the whole object before writing or reading on
it. In this benchmark we compared JObject’s write performance using L.Z4 and XOR as
transformation algorithms. For a baseline we again did the same writes to a standard
JObject. Since JTransformationObject performs quite bad for many successive writes
we chose a rather small data size for this benchmark and only wrote 200MiB in 1MiB
increments. As before we did two benchmark runs, one with random and one with ‘fixed’
data blocks. The testing conditions were similar to the previous benchmark and done on
the same machine. Again all measurements were repeated three times and the average
values are shown in Table 6.2.

transformation | time transformation | time
LZ4 61.9s LZ4 26.8s
XOR 0.28s XOR 0.26s
JODbject 0.09s JObject 0.09s
(a) 200 1MiB writes (ran- (b) 200 1MiB writes (fixed
dom data) data)

Table 6.2: Comparing LZ4 and XOR transformations on JTransformationObject with
normal JObject writes

The first thing to notice is that JTransformationObject performs very badly for many
successive writes. This result was of course expected and is the reason why we imple-

33

mented the chunked transformation object. Since every write is preceded by a read and
inverse-transformation of the whole object a massive overhead is created. If we however
switch the transformation type from LZ4 to XOR the object can now support partial
writes and a lot of this overhead goes away. The results are still worse than the standard
JO0bject but the difference we can see here is much more bearable. The overhead that
is left here is of course the XOR transformation itself and additionally the metadata
management for the object. If we compare the random data to the fixed data benchmark
we can see that the fixed data results are only much better for the LZ4 case. In our
opinion this most likely stems from the fact that the size of the transformed data is very
small in this case and therefore a lot less data has to be read from the backend before
each write operation. Of course the LZ4 algorithm should also have a larger runtime
than the XOR algorithm but since we are only dealing with a small amount of data here
and LZ4 is a quite fast compression algorithm we don’t think that this has much impact
on the results here.

In conclusion these results confirm our line of reasoning of why a chunked transfor-
mation object would be necessary to achieve reasonable performance for transformation
algorithms without partial writes/reads. We can also see that transformations that allow
partial access only add a reasonable amount of overhead but on the other hand these
kinds of transformations are probably not very useful in practice. We do not think that
there exist many real world examples where such a transformation would be desirable
but it should not be harmful to offer an interface for such algorithms anyway in our
implementation.

34

7 Future Work

In this project we created a working transformation client for JULEA but we could not
solve all problems completely and some possible future work and optimizations are left
open.

Concurrent access:

In Section 4.4 we discussed the problem of allowing concurrent access to a transformation
object by multiple clients. As we already discussed there this would require some kind of
locking mechanism in JULEA which is currently not available. Since this problem can
also occur for other parts of JULEA we decided on focusing our work elsewhere first and
this task is still open for the future.

More transformation algorithms:

Our client currently supports LZ4, RLE and XOR transformations. This repertoire
could be extended by for example many other existing compression algorithms. We
tried to design the client as extendable as possible and adding a new transformation
type can be accomplished quite easily by simply adding the transformation and inverse
transformation functions to the JTransformation type. Since this project was more
about creating the infrastructure for this client we did not see much use in adding all
kinds of different compression algorithms ourselves but we always kept it in mind during
development and adding new algorithms in the future should not be very hard.

Performance:

Performance optimizations for the JChunkedTransformationObject are the biggest
open problems. As we have seen in Chapter 6 we can get to a reasonable performance
level if the chunk size parameter is tuned correctly for the occurring write and read
operations on the object, but if this is not the case the performance can be quite bad.
Of course a transformation object will never be as fast as the normal JObject because
of the always existing overhead, but it should still be possible to get closer to JObject’s
performance. The problem of always having to read and inverse-transform a whole
compressed chunk before performing an operation on its data seems non avoidable but
as we have seen the biggest performance degradations occur when the amount of chunks
gets large. It is probably still possible to optimize the read and write processes of the
chunked transformation object a bit more and also find ways to decrease the current
metadata management overhead.

35

8 Conclusion

In this report we discussed our project of adding a transformation client to JULEA. As
we have seen we managed to create a working proof-of-concept implementation that
supports multiple different kinds of transformations. The user interface for our client is
very similar to the already existing object client and should be easy to use for everybody
that is familiar with JULEA.

In Chapter 7 we discussed some of the problems and optimizations that are still left
open. Our main concern here lies with the performance. As we have seen a user should
always use the JChunkedTransformationObject over the JTransformationObject if
the transformation algorithm does not support partial reads and writes. To get a
reasonable performance the chunk size has to be tuned to the occurring 1/O patterns of
the applications using the object. If this can be done our client performs reasonably well.
However we think that there are still some optimization opportunities in the code base,
especially in the management of chunked transformation objects with a large number of
chunks.

Overall we can say that we implemented a working proof-of-concept for the trans-
formation client which could be used in the future to explore the application of data
transformations or more specifically compression algorithms for file systems.

36

Bibliography

[GLC*T15] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.

[Kuh17]

[Yan19]

de Supinski, and S. Futral. The Spack package manager: bringing order to
HPC software chaos. In SC15: International Conference for High-Performance
Computing, Networking, Storage and Analysis, pages 1-12, Los Alamitos, CA,
USA, nov 2015. IEEE Computer Society.

Michael Kuhn. JULEA: A Flexible Storage Framework for HPC. In Ju-
lian M. Kunkel, Rio Yokota, Michela Taufer, and John Shalf, editors, High

Performance Computing, pages 712-723, Cham, 2017. Springer International
Publishing.

Yann Collet. LZ4 - Extremely fast compression. https://github.com/1z4/
1z4, 2019. (accessed 09/2020).

37

https://github.com/lz4/lz4
https://github.com/lz4/lz4

Appendices

38

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1

Client transformation workflow on write 11
Server transformation workflow on write 11
Schema of XOR transformation 13
Schema of RLE transformation 14
Schema of LZ4 transformation 14
Workflow of a partial read on compressed data 17

39

List of Tables

6.1

6.2

Read/Write benchmarks for JChunked TransformationObject vs. JObject 32

a Writes(random data) 32
b Writes(fixed data) oo Lo 32
c Reads(random data) 32
d Reads(fixed data) L o L 32
Comparing LZ4 and XOR transformations on JTransformationObject

with normal JObject writes 33
a 200 1MiB writes (random data) L. 33
b 200 1MiB writes (fixed data) oL 33

40

List of Listings

2.1

0.1
0.2
5.3
5.4
2.5

A small example of an application using the JULEA object client 8
A small example of an application using the JULEA transformation client 21
The important parts of the JTransformation interface 22
The important parts of the JTransformationObject interface 24
The metadata struct for a transformation object 28
The important parts of the JChunked TransformationObject interface . . 29

41

	Introduction
	JULEA
	The JULEA framework
	Setting up JULEA
	Creating a JULEA applications

	Compression and Transformations
	General design
	Important transformation properties
	A subset of transformations to implement

	Challenges
	General concept and structure
	Handling partial object writes and reads
	Metadata management for object persistence
	Concurrent object access

	Implementation
	General structure of the transformation client
	The JTransformation type
	The JTransformationObject type
	The client-side read operation
	The client-side write operation
	Server-side operations

	The JChunkedTransformationObject type

	Results and Benchmarks
	Comparing JChunkedTransformationObject to JObject
	Partial writes vs. non partial writes benchmark

	Future Work
	Conclusion
	Bibliography
	Appendices
	List of Figures
	List of Tables
	List of Listings

