
Project Report

Evaluation of DAOS for
existing scientific software

submitted by

Tronje Krabbe
Ruben Felgenhauer

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Abstract

This paper will give a brief introduction to the goals of DAOS, the Distributed Asyn-
chronous Object Storage, and the issues with traditional I/O systems that DAOS aims
to overcome. The DAOS project is part of a joint effort of the US Department of Energy
among multiple US national labs and industry partners like Intel and the HDF group to
create the HPC storage stack of the future.

We will give insights into the inner workings of DAOS by presenting DAOS’ storage,
transactional, and fault models, as well as some miscellaneous information, like its
scalability. Furthermore, there will be an excursion into the topic of user space I/O,
which is one aspect of DAOS that makes it interesting in the high-performance computing
context. As a part of this excursion, there will be a brief look at SPDK, the Storage
Performance Development Kit, as well as the Linux kernel drivers that make user space
I/O possible.

We will also give an insight into the process of adapting a scientific application to DAOS
and compare the alternatives to do so in terms of their practicability.

Contents

1. Introduction 5
1.1. Challenges in I/O technology . 5

1.1.1. Current situation . 5
1.1.2. Centralized versus distributed storage 5
1.1.3. POSIX interfaces . 6
1.1.4. POSIX-compliant file systems . 7
1.1.5. Files and directories . 7

1.2. Related work . 8
1.3. The DAOS project . 9
1.4. Goals of this paper . 10

2. DAOS internals 11
2.1. Storage Model . 12

2.1.1. Overview . 12
2.1.2. Target . 14
2.1.3. Pool . 14
2.1.4. Container . 15
2.1.5. Object . 16

2.2. Transactional Model . 17
2.3. Fault Model . 18

2.3.1. Hierarchical Fault Domains . 18
2.3.2. Fault Detection and Diagnosis . 18
2.3.3. Fault Isolation . 19
2.3.4. Fault Recovery . 19

2.4. User Space I/O . 20

3

3. DAOS with a scientific application 21
3.1. Prerequisites . 22
3.2. Software installation . 23

3.2.1. Installing Spack . 23
3.2.2. Installing DAOS . 24
3.2.3. Installing MPICH . 26
3.2.4. Installing DAOS-VOL . 28

3.3. Using DAOS . 29
3.4. Adapting ECOHAM to DAOS . 31

3.4.1. General usage . 32
3.4.2. Usage with DFuse . 33
3.4.3. Usage with DAOS-VOL . 35
3.4.4. Usage with MPICH ADIO driver 36
3.4.5. Usage with DAOS-VOL and FUSE 37

3.5. Proof-of-concept DAOS-VOL Test Application 37

4. Conclusion and outlook 38

Bibliography 40

Appendices 44

A. Additional listings 45

List of Figures 48

List of Listings 49

List of Tables 50

4

1. Introduction

In this chapter, we will describe critical aspects, problems, and technical limitations of
traditional storage solutions that are commonly used in current scientific HPC applications,
as well as how the developers of the “Fast Forward Storage and IO” project, more
specifically the DAOS project, are trying to address these issues.

1.1. Challenges in I/O technology

1.1.1. Current situation

Regarding scientific applications in High Performance Computing, one will almost
inevitably encounter highly parallelised applications written for large Super Computers
with numbers of cores ranking up to the millions. For their highly performance-oriented
nature, performing I/O on these large-scale systems has become an art of its own. For
many HPC applications, the available storage space of the individual node is kept small,
often featuring fast media like SSD storage, while a centralized storage array running a
specialized parallel file system is used to retain the gross of the data.

There is a multitude of parallel file systems that are commonly used like the at least
partly POSIX-compliant Lustre, or the non-POSIX-compliant OrangeFS which all offer
an (optional) POSIX interface. This comes with a number of problems which are further
elaborated in Section 1.1.3 and Section 1.1.4. According to Lofstead et al. [32], these
traditional storage solutions are unlikely to meet the requirements for extreme-scale
science applications. Therefore, the US department of energy among other stakeholders
has started the “Fast Forward Storage and IO” project (FFSIO) to overcome the current
issues.

1.1.2. Centralized versus distributed storage

As opposed to the large centralized storage arrays that are widely used in HPC clusters,
the traditional storage approach for most Big Data applications is a distributed storage
system like the Hadoop Distributed File System (HDFS) which is used with the popular

5

Apache Hadoop stack. This approach allows to distribute queries to the known locations
of the needed data to improve the read performance of tasks following the MapReduce
paradigm [41].

However, distributed storage can also have advantages with scientific usage of HPC
whenever the compute nodes of the cluster are mostly reading and writing a small
and disjoint portion of the entire data set and the data that is needed by all nodes is
relatively small. With Big Data and HPC applications closing ranks increasingly, this
gains even more importance, and a storage solution that fulfils the requirements for
scientific computing will probably need to support both fields with a unified approach.

1.1.3. POSIX interfaces

When talking about POSIX file systems, one has to distinguish between file systems
that only offer a POSIX-style interface to the user and file systems that are also POSIX-
compliant. A POSIX interface is defined by a set of operations like file creation, deletion,
write, or read access. Offering a POSIX interface has many advantages for a file system:
Since most clusters and workstations running Linux are running some sort of POSIX file
system, applications are easy to develop and port to big cluster computers and developers
can assume a certain set of supported operations on the target machine to be supported.

When performing an I/O operation (IOP) in Linux, the query is handled by the Virtual
File System (VFS) module of the Linux Kernel. Since typical end-user software is usually
running in User Space, this makes a context switch necessary. The VFS tries to schedule
operations in a number of ways, like combining smaller operations to neighbouring
regions in a storage device to fewer larger ones, and other strategies that are beneficial
to the performance on average. Since not all types of operations can be automatically
aggregated to reduce the number of context switches, the reality can be a big number
which can significantly degrade a system’s performance even with today’s hardware.
With the perspective on future technologies like NVRAM and NVMe SSDs, context
switches are ought to become the bottlenecks of storage systems. A comparison of their
latencies can be found in Table 1.1.

File systems like OrangeFS are tackling this problem by running entirely in User Space.
Other advantages of this model are easier debugging and less disastrous consequences
on a system’s stability upon a malfunction. However, the optional POSIX interface is
realized via FUSE, a Kernel module and library that makes running file systems in User
Space possible, with the trade-off that each IOP causes two context switches: One for
accessing the VFS module, and one for the Kernel to access the fuse library running in
User-Space.

6

Table 1.1.: Latencies of different storage devices in comparison to a typical context switch
latency (order of µs) [20][4][46][45].

Storage device ≈ Latency

L1-Cache ≈ 1 ns
L2-Cache ≈ 5 ns
L3-Cache ≈ 10 ns

RAM ≈ 100 ns

NVRAM ≈ 1000 ns ← ≈ Context switch latency
SSD (NVMe) ≈ 10 000 ns

SSD (SATA) ≈ 100 000 ns
HDD ≈ 10 000 000 ns

1.1.4. POSIX-compliant file systems

Besides the guarantees that a file system is offering a certain set of operations, the
POSIX standard is also making a lot of requirements to a file systems for it to be called
POSIX-compliant. For example, “POSIX requires that a read(2) that can be proved to
occur after a write() has returned will return the new data. Note that not all filesystems
are POSIX conforming” [48].

Together with features like the access time (atime) entry that saves the time when a file
has been last accessed into the file’s meta data, more specifically into the inode, this
makes writing parallel file systems very complicated, since the information that a file has
been written to or read from would have to be synchronized between all clients that are
trying to access the file. For this performance-limiting requirement, a lot of file systems
offer the option to restrict or turn off features like access time, or to not guarantee that
write accesses will be synchronized between clients instantly or at all, thus making them
partly non-POSIX-compliant.

1.1.5. Files and directories

Another challenge naturally arising in scientific computing is properly saving and docu-
menting the results. The traditional semantics with storing files in directories is a very
generalized way of achieving this. File systems usually offer a predefined set of metadata
that will be partially automatically created and stored alongside the actual user-data like
the dates of creation, last modification and last access, or the user-name of the owner.

7

However, such selected amount of metadata usually doesn’t meet the requirements to
properly organize and manage scientific data. For example, the original author, contact
details, file-revision or project description are unknown to the file system.

Furthermore, the actual structure of the data itself is also not taken into account when
data is stored, read or modified which prevents optimization to the I/O patterns from
the file system’s side. Since it is probable that after the first values of data set have been
read, the rest of the data set would follow afterwards, a deeper knowledge of the storage
system would allow for more efficient caching strategies.

In scientific computing, container formats like HDF5 or NetCDF are already offering
a standardized way of determining detailed information about a data set’s metadata
and data structure. Since these container formats have a widespread use in the scientific
community, the idea to optimize the storage solution with this given information arises
naturally.

1.2. Related work

As described in Section 1.1, there exists a multitude of challenges in scientific I/O,
especially in the field of high performance computing. Even in a primarily computation-
driven (as opposed to data-driven) environments like scientific simulation there are
already many different competing strategies to approach these challenges.

On the file system level, the partly POSIX-compliant file system Lustre [5] has become
the de-facto standard for supercomputing centres. Lustre runs completely in Kernel
space, is usually accessed via its POSIX interface like a local file system and relies on
centralised arrays of Meta Data Servers and Object Storage Servers. Another popular file
system is OrangeFS which was previously developed as PVFS [7]. While OrangeFS runs
completely in user space which makes debugging easier, its POSIX interface is realised
through FUSE.

The HDF5 [15] library offers a popular model to store structured data by saving them
in a standardizes container format that can be seen as a file system inside a file system
which ensures data portability and consistency. The related format NetCDF is built
upon HDF5 in version 4 [40] and is especially popular among researchers of earth system
models. As an intermediate layer between POSIX interfaces and container libraries or
directly from an application perspective, the MPI standard specifies an I/O model which
is called MPI-IO [44]. The MPI-IO implementation of the MPI implementation MPICH
is called ROMIO [43].

On the other hand, there are several storage systems that do not offer a POSIX interface
and abstract from the underlying file structure through an I/O library. Ceph [47] is
a distributed object store and file system that offers both an object interface and a

8

POSIX interface. JULEA [29] is another storage framework that runs completely in
user space and offers support for object storage among others. In primarily data-driven
environments, HDFS [41] is popular for highly distributed storage of data.

In their 2016 paper [32], Lofstead et al. talk about the design aspects behind a proposed
storage stack of the future and introduce the DAOS project. The specific implementation
of HDF5 support into DAOS is described by Breitenfeld et al. in their 2017 paper [6]. A
comparison of different storage systems including DAOS and Ceph with different HPC
applications can be found in a 2018 paper [31] by Liu et al.

1.3. The DAOS project

The “DOE Extreme-Scale Technology Acceleration Fast Forward Storage and IO Stack
project”, usually abbreviated with “Fast Forward Storage and IO” project (FFSIO)
was started by Lawrence Livermore National Laboratory and the US Department of
Energy to tackle the problems described in Section 1.1, and is additionally developed by
Sandia National Laboratories, Los Alamos National Lab, Oak Ridge National Laboratory,
Pacific Northwest National Laboratory, Lawrence Berkeley National Laboratory, Argonne
National Laboratory, Intel, and the HDF Group. The FFSIO project describes an
architecture that consists of multiple layers which range from applications that perform
I/O through their respective I/O libraries to the software stack of the storage system.
Part of the latter is the “Distributed Application Object Storage” (DAOS). The project
was partitioned into multiple phases and while the first phase which completed in 2014
and focused on the basic functionality originally made a list of requirements to the storage
system’s hardware like NVRAM and NVMe SSDs, the second phase focused more on
fault recovery and other additional features and weakened many of the initial hardware
requirements because of limited availability and very high cost of these technologies [32].

The developers of DAOS aim to tackle the problems of traditional storage solutions by
working with a distributed storage setup that works with the concept of objects and
containers rather than files and directories which they argue will allow for a significant
performance increase, while the integration of support for already widely-used container
formats like HDF5 promises minimal end-user code changes since this layer is abstracting
from the POSIX-interface strongly enough that it’s already not strictly needed today.
Furthermore, the design-goals of DAOS are “high availability, byte-granular multi-version
concurrency control” [32], efficiently realized by a Copy-on-write approach. The problem
of context switches described in Section 1.1.3 is tackled by the usage of a user space
driver for NVMe SSDs provided by the “Storage Performance Development Kit” (SPDK).

At the time of writing, the current version of DAOS is version 1.0.1 [3] which was released
in July 2020 and is still not yet intended for production use. Version 1.0.0 [2] was released
in June 2020. In this paper, we are using version 0.9.

9

1.4. Goals of this paper

In Chapter 2, we will describe in detail the principles and internal structure of DAOS in
contrast to a classic POSIX file system like its storage model, transactional model and
fault models. Additionally, we will take a brief look at the functionality of the SPDK
user space driver. In Chapter 3, we will offer a comprehensive guide on how to perform
the necessary steps to modify an existing scientific application for usage together with
DAOS. In Chapter 4, we will conclude this paper with a summary and a rundown of
what to look out for in future developments, and we will review the practicality of the
individual strategies described in Chapter 3 and the claim of the DAOS project that the
modification requires minimal code change.

10

2. DAOS internals

In this chapter, we will introduce DAOS and its core concepts and give an overview
over its storage model, transactional model and fault model. Additionally we will briefly
explain how I/O from user space can be performed on a Linux system on the example of
SPDK.

DAOS is an open-source1 object store which is primarily designed for Non Volatile
Memory [25]. It has a key-value interface, and provides features such as “transactional,
non-blocking I/O, advanced data protection with self healing on top of commodity
hardware, end-to-end data integrity, fine grained data control and elastic storage to
optimize performance and cost.” It should be pointed out, that “commodity hardware”
primarily refers to NVRAM and NVMe SSD storage, both of which are perhaps not
specialty hardware, but still expensive and perhaps not what most would consider to be
commodity hardware.

DAOS aims to tackle the problems brought on by more and more data-intensive appli-
cations which stretch the limits of existing I/O models. The DAOS developers claim
that modern I/O workloads feature “an increasing proportion of metadata”, as well
as “misaligned and fragmented data”, which existing storage solutions are ill-equipped
for [21]. The goal is to create a stack that supports massively distributed storage “for
which failure will be the norm”, while offering low latency and high bandwidth.

DAOS is written primarily in C, and thus offers a native C API, although Python and
Go bindings are available as well. A management client is included and written in Go.
To give an idea of the scope of the project, DAOS is comprised of about 210,000 lines of
C code at the time of writing. It is licensed under the Apache License Version 2.0 [22].
Targeting, among others, the scientific computing context, DAOS offers HDF5 integration
via a VOL plugin [18].

The following sections will give insights about the inner workings of DAOS, and the
concepts it uses. Specifically, Section 2.1 will cover the storage model, Section 2.2 the
transactional model, and Section 2.3 the fault model. Section 2.4 will be an excursion
into the topic of user space I/O, which DAOS uses to manage NVMe SSD storage.

1https://github.com/daos-stack/daos

11

https://github.com/daos-stack/daos

2.1. Storage Model

2.1.1. Overview

Figure 2.1 gives an example of a DAOS configuration across four storage nodes. The
memory on the nodes is divided into a number of Targets, which are the basic unit
of storage. They correspond to a fixed-size partition of the node’s accessible storage.
Those Targets are assigned – uniquely – to different Pools. A Pool is thus a collection
of Targets, distributed across different storage nodes. Within those Pools, Containers
govern access to the Targets. Each Container is a private address space for Objects,
which are not shown in this figure.

Figure 2.2 shows the hierarchy of the DAOS storage model. Pools contain Containers,
which in turn contain Objects. Objects can have different types – like byte array or
key-value store – and they finally contain the actual data saved within DAOS.

Thus, the storage model can be broken down into these four key concepts:

• Targets
• Pools
• Containers
• Objects

The DAOS documentation gives an overview of the targeted level of scalability, shown in
Table 2.1.

The following sections will examine the components of the storage model in greater
detail, starting with the Target in Section 2.1.2

Table 2.1.: Targeted Level of Scalability for each DAOS Concept [10].
DAOS Concept Order of Magnitude
System 105 servers and 102 pools
Server 101 targets
Pool 102 containers
Container 109 objects

12

Figure 2.1.: Example of four Storage Nodes, eight DAOS Targets and three DAOS
Pools [10].

Figure 2.2.: Architecture of DAOS Storage Model [10].

13

2.1.2. Target

As mentioned previously, the Target is the basic unit of storage within DAOS. It is
directly associated with a reservation of memory, as well as – optionally – block-based
storage. Regarding memory and block-based storage, DAOS specifically targets NVRAM
and NVMe SSDs, respectively.

Since a Target only exists on a single node – as in, it does not govern memory from
multiple nodes, but only a single one – it is assumed to have no failover capability when
a storage node fails. It is thus assumed to be a single point of failure. It also does not
necessarily implement any kind of redundancy internally. It can, however, detect and
report corruption via checksums. The higher-order elements in the DAOS storage model
are responsible for ensuring redundancy by mirroring data across targets that belong to
different nodes.

A Target is further the basic unit of performance and concurrency, since the associated
hardware has limited capabilities. Data cannot be written to the Target faster than
the underlying memory allows. Targets can report their performance parameters – such
as bandwidth and latency – to the upper layers of the storage hierarchy for optimal
utilization.

Having now covered the Target, Section 2.1.3 will showcase the first element shown in
Figure 2.2, the Pool.

2.1.3. Pool

As shown in Figure 2.1, a Pool is, essentially, a set of Targets spread across different
storage nodes. Data and metadata are distributed across these Targets for horizontal
scalability, and/or replicated or erasure-coded to ensure durability and availability.
Erasure codes are computed using Intel’s own Intelligent Storage Acceleration Library2

[24], which implements Reed-Solomon type erasure codes [39].

As shown in Figure 2.1, each Target is associated with a unique pool, and this membership
is “definitive and consistent” [10]. The member-Targets of the Pool are recorded in the
so-called Pool Map. This structure also contains the storage topology of the cluster,
represented by a tree. This topology is used to identify Targets which share hardware
components. The documentation gives the following example of the different levels of
such a topology tree, displayed in Table 2.2. This solution represents hierarchical fault
domains, and makes it possible to avoid placing redundant data on Targets which are
likely to fail together. This and related concepts are further showcased in Section 2.3.

2https://github.com/intel/isa-l

14

https://github.com/intel/isa-l

Table 2.2.: Storage Topology Tree Example [10].
Level Represented Items
1 Targets which share the same motherboard
2 Motherboards which share the same rack
3 Racks which share the same cage

The storage topology tree must be supplied to DAOS [10], and is managed by the Pool
map[11]. Information about the format of the Pool map, or guidelines on how to create
it, are currently not given in the DAOS documentation.

When a Target fails, data redundancy inside the Pool is restored online. When Targets
are added to a Pool, data is migrated to the new Targets so that storage usage is
distributed equally among all Pool members.

Regarding security, Pools are only accessible to authenticated and authorized applica-
tions/clients. The authorization scheme uses a simple access control list scheme, derived
from NFSv4 [9].

Since a Pool stores a number of different persistent metadata – the Pool Map, a list of
containers, authentication and authorization information, etc. – its metadata requires a
very high level of robustness. It is therefore replicated on several nodes – in the order
of tens – of distinct fault domains. With a limited number of nodes responsible for the
metadata, DAOS relies on a Raft-based3 consensus algorithm to guarantee consistency
should a fault occur, as well as to avoid “split-brain” [13][26].

Section 2.1.4 will continue with the Container, the second item in the hierarchy displayed
in Figure 2.2.

2.1.4. Container

Getting closer within the storage model to actual data, the Container represents an
Object address space inside a Pool. We will cover the DAOS Object in Section 2.1.5.

A Container is “the basic unit of atomicity and versioning” within DAOS. That means
that all operations on Objects must be tagged – by the caller – with an identifier –
the so-called epoch. The epoch concept dictates that there shall be a so-called Highest
Committed Epoch (HCE), with all epochs less than or equal to the HCE being immutable,
and all newer ones mutable and unreliable.

3https://raft.github.io/

15

https://raft.github.io/

Epochs that have been committed to a Container may periodically be aggregated to free
space utilized by overlapping writes and to reduce metadata complexity. Epochs can
also be snapshot, which means that a permanent reference is placed on a committed
epoch to prevent this aggregation. The topic of epochs will be covered more in-depth in
Section 2.3.

One more notable detail about Containers is that their metadata is either also managed
by the parent-Pool’s consensus Raft service, or by a Container-owned Raft instance. This
can be chosen on Container creation. A particular use-case or reasons for or against using
one approach or the other are not given. We assume that using one or the other has
subtle performance and redundancy implications that can be fine-tuned for a complicated
DAOS setup.

2.1.5. Object

The final, lowest member of the storage hierarchy (recall Figure 2.2) is the Object. An
Object can have one of three types:

• byte array
• key-value store
• document store

Of note is that for key-value store Objects, values cannot be partially updated, and are
overwritten on write. However, document store Objects, which are special variations
of the key-value stores, allow both atomic values, which have the same behaviour as
described previously, as well as byte array values, which do support arbitrary extent read
and (over)write. Document stores further implement a locality feature, allowing values
to be guaranteed to be collocated on the same Target, should this be desired. All of the
above Object types may, in the future, be unified under just the document store.

Objects are kept very simple, with almost no metadata being provided by default. In
particular, the system does not maintain time, size, owner, or permission attributes.
This is done in order to avoid scaling problems as well as overhead common to tradi-
tional storage stacks. Additionally, all operations on Objects are idempotent and can
be processed multiple times, always yielding the same results, which guarantees that
operations can be repeated until they are either successful or abandoned.

This concludes the segment about the DAOS storage model. Section 2.2 will continue
with the transactional model.

16

2.2. Transactional Model

The stated goal of the transactional model is to provide a high degree of both concurrency
and control over the durability of data and metadata. The data set can be updated
safely and in-place, and it can also roll back to a known and consistent state upon failure.
The key to this is the epoch concept, previously mentioned in Section 2.1.4.

To reiterate, the epoch is a caller-selected identifier, which must be provided by the caller
for each I/O operation. As this means that transactions are exported to the top-level
API of DAOS, this approach is quite distinct from conventional storage systems [10].
This also means that accessing data in DAOS is not as simple as implicitly opening the
newest version of a data object – the epoch identifier must be explicitly stated for every
operation.

Figure 2.3 shows a simple example of how the state of a container evolves as a series of
epochs. Recall that a snapshot is a named, permanent epoch – non-snapshot epochs are
aggregated periodically to save space. The epochs up to and including the highest com-
mitted epoch denote globally-consistent, immutable Container versions. This guarantees
that any consumers can see consistent data, while producers can continually update the
state of a Container.

Epochs greater than the HCE correspond to transactions that have not yet been globally
committed, where new writes are still taking place. Interestingly, these epochs are
guaranteed to be applied in epoch-order, not execution-order, allowing applications not
only to model concurrent and distributed transactions, but also distributed execution.
Uncommitted epochs offer no guarantees regarding their consistency, but are readable
all the same.

DAOS provides no mechanisms to detect or resolve conflicts among different transactions,
or within one, making the caller responsible for implementing its own concurrency
control strategy. DAOS does, however, provide some functionality for developing conflict
detection and resolution implementations. All changes submitted against any epoch – so
long as it has not yet been aggregated – can be enumerated. This allows an “optimistic”
approach, where conflict detection is delayed until all operations have concluded, without
blocking them. Then, all operations can be examined and the transaction aborted, should
certain rules or conditions not be satisfied.

Figure 2.3.: Epoch in a Container [10].

17

2.3. Fault Model

Recall that DAOS relies of massively distributed storage, and imposes no requirements
regarding failover capabilities on the underlying storage. As mentioned in Section 2.1.2,
each Target is treated as a single point of failure, and so DAOS achieves reliable
redundancy – and thereby availability and durability – by replicating data and metadata
across Targets in different fault domains.

2.3.1. Hierarchical Fault Domains

Hierarchical fault domains have been described briefly in Section 2.1.3. DAOS assumes
that all fault domains are, in fact, hierarchical, and also do not overlap. The actual
hierarchy should be supplied to DAOS by means of “an external database”, in an
unspecified format [8]. It is worth noting here that a simple one-server, RAM-only
DAOS setup, such as the one we used, does not seem to require this, which is, of course,
reasonable. It is also possible that the above is a misinterpretation of the documentation –
the general layout of a DAOS system is provided in YAML files, and it is possible that the
fault domains are computed from the server specifications. DAOS does include example
configuration files in utils/config/examples (relative to the source code repository
root), but includes no examples of a hierarchical fault domain configuration.

Recall also that Pool metadata are replicated on multiple nodes from different high-level
fault domains, as also explained in Section 2.1.3. Object data, however, is replicated
or erasure-coded across a variable number of fault domains, depending on user require-
ments [10].

2.3.2. Fault Detection and Diagnosis

DAOS delegates detection of node failure to a Reliability, Availability, and Serviceability
(RAS) service, which delivers “authoritative notifications” [10]. This service receives
input from a number of sources, among them baseboard management controllers, the
network fabric, and the distributed software running on the cluster. If a DAOS client
experiences time-outs, it is able to report a problem to this service. The documentation
goes on to assert that “all this data is carefully analysed and correlated by the RAS
system that then makes authoritative and unilateral decision on node eviction” [10].
Unfortunately, what kind of algorithm or heuristic method is behind the RAS service
does not seem to be documented – only that it “can” use a consensus algorithm to assure
durability and availability.

The Pool Map is the highest authority – this means that while it listens to the RAS and
excludes nodes when the RAS asks it to, it can also decide by itself to exclude nodes

18

that are not performing satisfactorily, or that the administrator wants removed. It would
be interesting to know whether the Pool Map can choose to ignore the RAS and not
exclude a node that was deemed failed by the RAS, though this is not explicitly stated.
It seems sensible, though, that the RAS has the final say in such a case.

2.3.3. Fault Isolation

Fault isolation is straight-forward – a faulty node must be excluded, and this will be
done automatically and quietly so long as the Pool Map has the resources for sufficient
redundancy to redistribute the data. Has data been lost, applications will be informed
via I/O errors on access, and the administrator will also be notified.

The updated Pool Map is, apparently, pushed eagerly to all Targets. Why Targets must
know about the Pool Map is unclear, and the rest of the documentation reads as though
Targets do not know about much, other than their own properties. It is likely that,
in this case, the documentation means storage nodes rather than targets are provided
eagerly with the newest Pool Map.

In any case, client (non-storage) nodes are informed lazily – not eagerly – via a simple
mechanism: the Pool Map version is included in the RPC protocol, and when a new
version becomes available, nodes can fetch the new map. Thus, the exclusion of Targets
will eventually have propagated through the whole cluster lazily.

2.3.4. Fault Recovery

Fault recovery is actually performed by all remaining Targets. Each Target creates a list
of local Objects that are impacted by the absence of the failed Target(s). This can be
achieved because each Target, or its “underlying storage layer”, seems to keep a local
“object table”. Then, for each impacted Object, its shards are redistributed across the
remaining, intact Targets, and the recovery is finished. The extent or level of completeness
of the object tables that each Target seems to keep is not specified. Intuitively, it would
make sense for a higher-level component to be responsible for redistribution of data, such
as the containing Pool or some metadata service, but this is not stated explicitly.

In any case, to summarize, the documentation states that the Targets restore redundancy,
causing the system to recover from the Target failure. The restoration is executed online,
so that applications can still access and update Objects.

19

2.4. User Space I/O

Normally, writing to and reading from block devices require kernel interaction, so-called
context switches. Context switches are generally computationally expensive – in the Linux
kernel, it involves switching registers, the stack pointer, and the program pointer [34][17].

So, to speed up performance, one strategy is to manage block devices from user space.
The process to achieve this is thus [42]:

• Manually unbind the device driver from the device [28].
• Rebind the driver to one of two special drivers that are part of Linux – uio4 or

vfio5.
• At this point, Linux has no control over the device – for example, it will have

disappeared from the devtmpfs at /dev.
• Furthermore, the entire kernel block storage software stack is entirely uninvolved

now.
• SPDK provides its own implementation, which is now used to control the device

from user space.

The mentioned Linux drivers are beyond the scope of this document. Essentially, they
only act as dummy drivers – so that the kernel does not attempt to rebind the device to
a fitting driver – and do not provide much additional functionality.

Besides context switches, SPDK also eliminates interrupts, opting to poll devices for
completions instead of waiting for interrupts, which is claimed to further improve
performance. Apparently, “routing an interrupt to a handler in a user space process just
isn’t feasible for most hardware designs”[42], and using interrupts would re-introduce
the otherwise eliminated context-switches, which are, again, expensive.

4https://www.kernel.org/doc/html/v4.18/driver-api/uio-howto.html
5https://www.kernel.org/doc/Documentation/vfio.txt

20

https://www.kernel.org/doc/html/v4.18/driver-api/uio-howto.html
https://www.kernel.org/doc/Documentation/vfio.txt

3. DAOS with a scientific application

In this chapter, we will illustrate the necessary steps to port a specific scientific application
that uses a POSIX-style interface to DAOS and evaluate the available alternatives to do
so.

For our tests, we used the machine “abu2” which is part of the development cluster
of the research group “Scientific Computing” (Wissenschaftliches Rechnen, WR) of
the Universität Hamburg, which is located at the German Climate Computing Center
(Deutsches Klimarechenzentrum, DKRZ). abu2 has 120 GB of RAM and four “AMD
Opteron(tm) Processor 6344” CPUs with six cores each and hyperthreading (48 logical
cores in total) at 2.9 GHz and runs Ubuntu 18.04. Since this was the only machine
available for us and abu2 does not feature an NVMe SSD, we started DAOS on a single
server with only RAM taking the place of NVRAM.

The scientific application we are using is an earth system model that was developed
at the Universität Hamburg which is called ECOHAM5 (Ecosystem Model Hamburg,
Version 5). ECOHAM simulates the ecology of the North Sea and is used to research
the influence of carbon flows in the context of climate change [33][37] and the effects
of increasing levels of nutrients [30]. ECOHAM is written in Fortran, parallelised with
MPI, and uses NetCDF-4 (Network Common Data Format) for I/O and is therefore a
prime example for a typical scientific HPC application. While parallel I/O has been
implemented [27], in this paper we are only considering the default version where the
master MPI process does all of the (serial) I/O, which makes the utilisation of DAOS
easier. However, we did slightly modify ECOHAM for our purposes so that we’re able to
run it without a batch scheduling system.

By default, ECOHAM’s storage stack is structured as follows: The gross of its data
is saved in a single NetCDF-4 file. By construction, NetCDF-4 files are also HDF5
(Hierarchical Data Format) files and therefore, the libnetcdf4 will also internally use
the libhdf5. Beneath the HDF-5, MPI-IO gets used which finally writes onto a classic
POSIX file system.

This offers several different potential contact points to enable ECOHAM to write into
DAOS which is also graphically shown in Figure 3.1: The most top-level approach
is embracing DAOS with a forked version of NetCDF-4 which has been created by
Breitenfeld et al. in 2017 [6][14], however, at the time of writing, a NetCDF-4 version that
is compatible with current versions of DAOS could not be found and therefore we won’t

21

consider this option in this paper. Alternatively, a plugin for HDF5 which is referred
to as “DAOS-VOL” or “DAOS/HDF5V” can be used [18] that uses DAOS’ built-in
HDF5 support. The third option is connecting at the MPI-IO layer and using MPICH
in a version of at least v3.4a3 which features a ROMIO ADIO driver for DAOS [36].
Finally, one could also use DAOS’ FUSE interface [38] which is referred to as “DFuse”
or simply “DFS” and simply configure ECOHAM to write into DFuse’s mount point.
However, since the usage of FUSE requires two context switches for each I/O operation,
as has been already mentioned in Section 1.1.3, this is probably not a good idea in
most real-life environments for performance reasons. However, in a testing environment,
DFuse can come in handy to quickly examine the data that has been written into DAOS.
Additionally, one might also consider a hybrid solution: As described in Section 3.4.1,
ECOHAM writes the gross of its data (size-wise) into a single NetCDF-4 file, but creates a
lot of metadata in a nested structure of many small files. Since both writing a NetCDF-4
container into a DAOS POSIX container and saving a directory structure in a DAOS
HDF5 container is possible but cumbersome, one could simply use DAOS-VOL and
FUSE in parallel in situations where write performance for metadata is uncritical.

ECOHAM NetCDF-4 HDF5 MPI-IO POSIX

FUSEHDF5V MPICH,
ADIO driver

Forked NetCDF-4

DAOS

Figure 3.1.: Storage stack of ECOHAM with potential contact points of DAOS using
different auxiliary applications or plugins

3.1. Prerequisites

In our setup, we use a common base folder for all applications. This is generally not
necessary, but will deal as a way for us to signify that certain applications can or should
be built separately and alongside each other. In our case, this path will simply be $HOME.
We use the variable $basedir to guarantee some sort of configurability, which can be
set like shown in Listing 3.1.

1 $ export basedir ="$HOME"

Listing 3.1: basedir configuration

Throughout this guide, we will set a number of environment variables which will help us
in the later process. Every time we do so, we are expecting the variable to be present

22

in the later course of this guide. However, most of these variables, especially directory
definitions like $basedir can be simplified by collecting them in a shell script. An
example for such a script has been given in Listing A.2 which can be loaded like shown
in Listing 3.2. However, it is advised not to source the script before the installation
steps are finished, because some directories that are used will probably not exist up to
this point. We will therefore make sure to also include all necessary variable definitions
redundantly in their respective steps before Section 3.3. In the following, we assume that
a shell is used that supports bash syntax and that all commands are executed in the
same shell unless otherwise stated.

1 $ source load_daos_env .sh

Listing 3.2: Automatic environment variable configuration

3.2. Software installation

3.2.1. Installing Spack

For certain aspects of this paper, we use Spack, the supercomputer package manager [16],
because its design makes the process of building several different applications in different
versions and configurations relatively easy. The process of installing and activating Spack
is shown in Listing 3.3.

1 $ export spackdir =" $basedir "'/spack '
2 $ git clone 'https :// github.com/spack/spack.git ' " $spackdir "
3 $ source " $spackdir "'/share/spack/setup -env.sh'

Listing 3.3: Installing Spack

In the next step we install NetCDF with Fortran support with HDF5 1.12 as a depen-
dency which is shown in Listing 3.4. This was necessary in our case, because the version
of HDF5 that was pre-installed on our system (1.10) was too old. The installed packages
are a requirement of ECOHAM. We are installing MPICH with an explicitly specified
version of 3.3.2 to be able to distinguish it from our custom install as mentioned in
Section 3.2.3 which is usually not necessary.

1 $ spack install netcdf - fortran %gcc@7 .5.0 ^hdf5@1 .12.0
↪→ ^ mpich@3 .3.2

Listing 3.4: Installing NetCDF with HDF5 1.12

23

3.2.2. Installing DAOS

To build DAOS, we will loosely follow the Administration guide [1], but since we are using
the v0.9 release and the guide is directed towards the v1.0 release at the time of writing,
some things will differ. Alternatively, the document states that a “DAOS RPM packaging
is currently available, and DEB packaging is under development and will be available
in a future DAOS release. Integration with the Spack package manager is also under
consideration.” Note that the installation of MPICH as described in Section 3.2.3 would
benefit especially if DAOS became available in Spack if one considered also installing
MPICH via Spack. However, in the first step, we install DAOS dependencies, clone
DAOS’ repository, remember its directory in a variable, checkout release v0.9, and
initialise the submodules. This process is shown in Listing 3.6. Note that the dependency
installation steps (line 1–6) are adapted from the Ubuntu 18.04 dockerfile for release
0.9 [12], and that not all steps might be necessary.

1 $ sudo apt update
2 $ sudo apt install autoconf bash clang cmake curl doxygen

↪→ flex gcc git golang -go graphviz libaio -dev
↪→ libboost -dev libcmocka0 libcmocka -dev libcunit1 -dev
↪→ libevent -dev libibverbs -dev libiscsi -dev libltdl -dev
↪→ libnuma -dev librdmacm -dev libreadline6 -dev libssl -dev
↪→ libtool -bin libyaml -dev locales make meson nasm
↪→ ninja -build pandoc patch pylint python -dev python3 -dev
↪→ scons sg3 -utils uuid -dev yasm valgrind libhwloc -dev
↪→ man python -distro software -properties -common

3 $ sudo add -apt - repository ppa:jhli/ libsafec
4 $ sudo add -apt - repository ppa:jhli/ipmctl
5 $ sudo apt update
6 $ sudo apt install libsafec -dev libipmctl -dev ndctl ipmctl
7
8 $ export daosdir =" $basedir "'/daos '
9 $ git clone 'https :// github.com/daos -stack/daos.git '

↪→ " $daosdir "
10 $ cd " $daosdir "
11 $ git checkout release /0.9
12 $ git submodule init
13 $ git submodule update

Listing 3.5: Downloading DAOS v0.9

24

Next, we’ll build DAOS with Scons which is shown in Listing 3.6. We choose to build all
dependencies (--build-deps=yes), but to use already installed dependencies if available
(USE_INSTALLED=all). We use 48 cores for compilation (-j 48), because our machine
features 48 physical cores.

1 $ scons -j 48 --config=force --build -deps=yes
↪→ USE_INSTALLED =all install

Listing 3.6: Building DAOS

After this is finished, we need to add DAOS’ directory to the $PATH and $CPATH variables
so that we can execute the daos binaries from an arbitrary point in the file system.
Furthermore, building an application like MPICH with DAOS support requires the
$LD_LIBRARY_PATH variable to be set accordingly. For v0.9, this is shown in Listing 3.7.
For v1.0 and upwards, this may also be done with a provided shell script that can be
found inside the DAOS directory1.

1 export CPATH=" $daosdir "'/ install / include /:'"$CPATH"
2 export PATH=" $daosdir "'/ install /bin /:\
3 " $daosdir "'/ install /sbin /:'"$PATH"
4 export LD_LIBRARY_PATH =" $daosdir "'/ install /lib /:\
5 " $daosdir "'/ install /lib64 /:\
6 " $daosdir "'/ install / include /:'" $LD_LIBRARY_PATH "

Listing 3.7: Setting up DAOS’ environment variables

Since we wish to run the daos_server binary as a non-root user, we need to employ
the daos_admin binary which is shown in Listing 3.8. These steps are adapted from
the “Pre-deployment Checklist” section of the DAOS Administration Guide [1], where
additional information about these commands and other partly optional steps can be
found. The process of preparing and starting DAOS can be found in Section 3.3.

1at “utils/sl/utils/setup_local.sh”

25

1 $ chmod -x " $daosdir "'/ install /bin/ daos_admin '
2 $ sudo cp " $daosdir "'/ install /bin/ daos_admin '

↪→ '/usr/bin/ daos_admin '
3 $ sudo chmod 4755 '/usr/bin/ daos_admin '
4 $ sudo mkdir -p '/usr/share/daos/ control '
5 $ sudo ln -sf

↪→ " $daosdir "'/ install /share/daos/ control / setup_spdk .sh'
↪→ '/usr/share/daos/ control '

6 $ sudo mkdir -p '/usr/share/spdk/ scripts '
7 $ sudo ln -sf

↪→ " $daosdir "'/ install /share/spdk/ scripts /setup.sh'
↪→ '/usr/share/spdk/ scripts '

8 $ sudo ln -sf
↪→ " $daosdir "'/ install /share/spdk/ scripts /common.sh'
↪→ '/usr/share/spdk/ scripts '

9 $ sudo ln -s " $daosdir "'/ install / include
↪→ /usr/share/spdk/ include '

Listing 3.8: Setting up DAOS’ elevated privileges

3.2.3. Installing MPICH

There are multiple options to install MPICH with DAOS support. Since our installation
of MPICH occurred before the version v3.4a3 was released, where the code changes
for the ROMIO ADIO driver were merged, Listing 3.9 shows the process which uses a
version of MPICH which was forked from the DAOS developers which was adapted from
[35] and [19]. However, adapting this to the mainline MPICH should be as simple as
cloning the official MPICH repository2 and staying on the master branch. An alternative
to this approach is installing MPICH via Spack and ensuring that the version is at least
v3.4a3 and that the necessary parameters of the configure statement below are given.
However, at the time of writing, the default version of MPICH in Spack is v3.3.2.

2https://github.com/pmodels/mpich

26

https://github.com/pmodels/mpich

1 $ export mpichdir =" $basedir "'/mpich '
2 $ git clone 'https :// github.com/daos -stack/mpich '

↪→ " $mpichdir "
3 $ cd " $mpichdir "
4 $ git checkout daos_adio
5 $ git submodule init
6 $ git submodule update
7 $ export MPI_LIB =''
8 $./ autogen .sh
9 $ mkdir 'build '
10 $ cd build
11 $ export F90=''
12 $ export F90FLAGS =''
13 $../ configure --prefix=" $mpichdir "/ install

↪→ --enable - fortran =all --enable -romio --enable -cxx
↪→ --enable -g=all --enable - debuginfo
↪→ --with -device=ch3:sock --with -file -system=ufs+daos
↪→ --with -daos=" $daosdir "'/ install '
↪→ --with -cart=" $daosdir "'/ install '

14 $ make -j48
15 $ make install

Listing 3.9: Installing MPICH with DAOS support

Afterwards, we create a new external package for our Spack installation by writing the
content of Listing 3.10 into the file “$HOME/.spack/packages.yaml”.

1 packages :
2 mpich:
3 paths:
4 mpich@3 .4a2: /daos -user/mpich/ install
5 buildable : False

Listing 3.10: packages.yaml for external MPICH Spack package

This enables us to install netcdf-fortran exactly as in Section 3.2.1, but with the new
external package as a dependency. This is demonstrated in Listing 3.11.

27

1 $ spack install netcdf - fortran %gcc@7 .5.0 ^hdf5@1 .12.0
↪→ ^ mpich@3 .4a2

Listing 3.11: Installing NetCDF with a custom MPICH

The process of using ECOHAM with this MPICH installation is described in Section 3.4.4.

3.2.4. Installing DAOS-VOL

With an existing installation of DAOS and HDF5, we can build DAOS-VOL as described
in Listing 3.12. Note that we use the HDF5 that we installed in Spack as a dependency
to netcdf-fortran in Section 3.2.1. This gets picked up by cmake automatically.

1 $ export daosvoldir =" $basedir "'/daos -vol '
2 $ git clone \
3 'https :// bitbucket . hdfgroup .org/scm/ hdf5vol /daos -vol.git ' \
4 " $daosvoldir "
5 $ cd " $daosvoldir "
6 $ mkdir build
7 $ cd build
8 $ spack load mpich
9 $ spack load hdf5
10
11 $ cmake \
12 -D CMAKE_INSTALL_PREFIX =" $daosvoldir "'/install -custom ' \
13 -D DAOS_LIBRARY =" $daosdir "'/ install /lib64/ libdaos .so' \
14 -D DAOS_COMMON_LIBRARY =" $daosdir "'/ install /lib64 '\
15 '/ libdaos_common .so' \
16 -D DAOS_INCLUDE_DIR =" $daosdir "'/ install / include ' \
17 -D CART_LIBRARY =" $daosdir "'/ install /lib/ libcart .so' \
18 -D CART_INCLUDE_DIR =" $daosdir "'/ install / include /cart/' \
19 ".."
20 $ make
21 $ make install

Listing 3.12: Installing DAOS-VOL

28

3.3. Using DAOS

This section will show how to configure and start the DAOS server for testing purposes
and further subsequent steps. We use an example configuration for a single server setup
which uses sockets which we copy from inside $daospath to $basepath (see Listing 3.13)
which should contain two sections at the bottom (see Listing 3.14) that configure a RAM
disk (“scm”) and an NVMe device (“bdev”). Since we’ll only use RAM, we’ll comment
out the last three lines and also increase the size of the RAM disk to 50 GB. The bottom
file should then look like Listing 3.15.

1 $ cd " $daosdir "'/utils/config/ examples /'
2 $ cp 'daos_server_local .yml ' " $basedir "/

Listing 3.13: Acquiring example DAOS config

1 scm_mount : /mnt/daos # map to -s /mnt/daos
2 scm_class : ram
3 scm_size : 4
4
5 bdev_class : file
6 bdev_size : 16
7 bdev_list : [/ tmp/daos -bdev]

Listing 3.14: Original DAOS config

1 scm_mount : /mnt/daos # map to -s /mnt/daos
2 scm_class : ram
3 scm_size : 50
4
5 # bdev_class : file
6 # bdev_size : 16
7 # bdev_list : [/ tmp/daos -bdev]

Listing 3.15: Modified DAOS config

We can now start DAOS via the daos_server binary as shown in Listing 3.16.

1 $ daos_server --debug
↪→ --config=" $basepath "'/ daos_server_local .yml ' start

Listing 3.16: Starting DAOS

29

Since the call to daos_server does not return until DAOS terminates, we will open a
second shell where we execute the commands that are given in Listing 3.17: We format
the attached storage and create a new pool with 20 GB size. Note that we will need to
write about 17.7 GB as will be described in Section 3.4.1. Afterwards, we’ll save the pool
information which is characterized by a UUID and the number of pool service replicas
(which will usually be 0) in the variables $DAOS_POOL and $DAOS_SVCL. These variables
will also be used by the DAOS-VOL plugin (see Section 3.4.3) and MPICH ADIO driver
(see Section 3.4.4) to determine the pool to write into. In the following, we assume that
we ever only create one pool. Also note that it is now safe to use the load_daos_env.sh
shell script that has been mentioned in Section 3.1 since all required directories should
now be present.

1 source " $basepath "'/ load_daos_env .sh'
2
3 $ dmg -i network list
4 localhost :10001: connected
5 Supported Providers :
6 localhost :10001:
7 ofi+gni , ofi+psm2 , ofi+tcp , ofi+sockets , ofi+verbs , ofi_rxm
8
9 $ dmg --insecure --host -list= localhost :10001 storage format

↪→ --reformat
10 $ dmg --insecure --host -list= localhost :10001 pool create

↪→ --scm -size =20G
11
12 $ POOL_INFO ="$(dmg --insecure --host -list= localhost :10001

↪→ pool list)"
13
14 $ echo " $POOL_INFO "
15 localhost :10001: connected
16 Pool UUID Svc Replicas
17 --------- ------------
18 2b5a7f8a -ad58 -4cb5 -a1cd -397 da2792966 0
19
20 $ export DAOS_POOL ="$(echo " $POOL_INFO " | awk 'NR ==4{ print

↪→ $1}')"
21 $ export DAOS_SVCL ="$(echo " $POOL_INFO " | awk 'NR ==4{ print

↪→ $2}')"
22
23 $ echo " DAOS_POOL =\" $DAOS_POOL \"; DAOS_SVCL =\" $DAOS_SVCL \""
24 DAOS_POOL ="2b5a7f8a -ad58 -4cb5 -a1cd -397 da2792966 ";

↪→ DAOS_SVCL ="0"

Listing 3.17: DAOS storage initialisation and pool creation

30

Below pool level, it is also necessary to create a container to write into. Containers can
have different types like POSIX or HDF5 which are specialized for the kind of data that
they are meant to accept. While DAOS-VOL is automatically creating a container with
type HDF5 upon write access, it is necessary for both MPICH and DFuse to create a
container of type POSIX before usage. This is demonstrated in Listing 3.18. The process
for a HDF5 container is analogous.

1 $ daos cont create --pool=" $DAOS_POOL " --svc=" $DAOS_SVCL "
↪→ --type=POSIX

2 $ export DAOS_CONT ="$(daos pool list -cont
↪→ --pool=" $DAOS_POOL " --svc=" $DAOS_SVCL ")"

Listing 3.18: Creating a container with type POSIX

Finally, for all applications that communicate with DAOS, it is necessary that a DAOS
agent is running on the same machine as the client application. In our case, the server
and client machines are identical and we start the daos_agent binary with the same
configuration file as the daos_server which is shown in Listing 3.19. Just as with
daos_server, this will not return immediately, so in the following, we’ll start a third
shell for all subsequent tasks.

1 $ daos_agent --insecure
↪→ --config -path=" $basepath "'/ daos_server_local .yml '

Listing 3.19: Starting the DAOS agent

3.4. Adapting ECOHAM to DAOS

In this section we will install ECOHAM and embrace different options to make it write
into DAOS. Since neither the original ECOHAM which is maintained by Pätsch and
Kühn [37] nor the forked version from the research group “Scientific Computing” of
the Universität Hamburg are publicly available online, this mainly deals as an exam-
ple for other, similar applications. In our tests, we use our own branch that is based
on the work of Kostede [27]. By default, ECOHAM will expect to run using a job
scheduler like slurm and to write into a lustre file system. It may also be desirable
to run ecoham with an I/O profiler like scorep. However, in our example, we need
neither of those. In Listing 3.20 we clone the repository and checkout our branch which
enables ECOHAM to run without a batch scheduling system, sets the output directory to
“$HOME/ECOHAM_Output”, replaces the scorep compiler wrapper with mpif90, enables us
to specify the number of used MPI processes as a command line argument, and replaces
the Spack installation with the one created in Section 3.2.1.

31

1 $ source " $basedir "'/ load_daos_env .sh'
2 $ git clone 'ecoham.git ' " $ecohamdir "
3 $ cd " $ecohamdir "
4 $ git checkout daos_evaluation

Listing 3.20: Cloning ECOHAM

3.4.1. General usage

Now, to run ECOHAM locally without DAOS, we can use the commands that are shown
in Listing 3.21. Originally, ECOHAM takes two parameters: The first argument is the
run id which is a generic identifier that can be used to distinguish the output of multiple
runs from each other in the context of a batch scheduling system. For our local runs, this
is not of special interest for us, so in the following, we always assume that this parameter
will be “0”. The second argument is the run type which can be either “0” (compilation
only), “1” (0 plus preparation of the job submission) or “2” (1 plus submission of the
job). As the compilation is relatively quick, we will always choose “2” – compilation,
preparation, and submission of the run (which in our case equals starting ECOHAM
locally) – so that we can purge the output directory between each two subsequent runs
to avoid reuse of any cached output data (“warmstart data”) for the best comparability.
The third parameter gets added by our patch that was mentioned in Section 3.4 and
determines the number of MPI processes that ECOHAM gets started with. In this
case, it gets started with 24 processes because this achieved the shortest runtime in our
tests (see Section 3.4.2 for a typical value). ECOHAM tends to be delicate in terms of
processes that it gets started with: We determined that values from 1 to 27 were safe to
run ECOHAM with and that it didn’t start with all tested values above 27. ECOHAM’s
RAM consumption and runtime vary between 3 GB and 19 hours (with one process) and
9 GB and 9 minutes (with 27 processes). Note that these benchmarks were done with a
low number of repetitions and that the average value may differ.

1 $ cd " $ecohamdir "'/ serielle_io '
2 $ export ECOHAM_RUNID ='0'
3 $ export ECOHAM_RUN_TYPE ='2'
4 $ export ECOHAM_NUM_PROCS ='24'
5 $./ InitAndCompile .sh " $ECOHAM_RUNID " " $ECOHAM_RUN_TYPE "

↪→ " $ECOHAM_NUM_PROCS "

Listing 3.21: Running ECOHAM

32

The shown call will create many files in “$HOME/ECOHAM_Output/ECOHAM.0”. Before
computation, InitAndCompile.sh will actually copy ECOHAM’s source code to this
folder as well. The main space consumer is a NetCDF-4 / HDF5 file located at
“ECOHAM_Output/ECOHAM.0/res.0/0.1977.00/0_3D.nc” which will be about 17.7 GB.
The complete folder will be about 18 GB.

3.4.2. Usage with DFuse

The most straightforward way to utilise any application to write to DAOS is the “DAOS
File System” (DFS), otherwise known as “DFuse”. As the name suggests, this service
provides a POSIX file system interface using FUSE. However, it is presumable that this
will not offer a very good performance since the required number of context switches for
I/O calls gets increased to 2 (compare POSIX file system: 1 context switch; DAOS goal:
0 context switches), so DFuse defeats one of DAOS’ main purposes and should therefore
primarily be used in testing environments – a performance evaluation can be found at
the end of this section. Nonetheless, it is a very easy way to check if DAOS accepts data
and persists it correctly and might be a viable option for small amounts of data with
performance-uncritical applications. This can also be applicable in a hybrid solution
where DAOS-VOL is used to save NetCDF-4 data, but a nested directory structure
containing metadata should be saved in a DAOS POSIX container which is described in
Section 3.4.5.

DFuse can be started through the commands given in Listing 3.22: We redirect ECO-
HAM’s output simply by symlinking the output directory to the designated DFuse
mount point. Finally, we start the dfuse binary with the specified pool and container.
Afterwards we can simply start ECOHAM like described in Section 3.4.1 in a new shell,
since dfuse was started with the --foreground option and will therefore only return
on termination.

1 $ rm -rf " $ecohamoutputdir "
2 $ ln -s " $dfsmntdir " " $ecohamoutputdir "
3 $ dfuse -S --mountpoint =" $dfsmntdir " --svc=" $DAOS_SVCL "

↪→ --pool=" $DAOS_POOL " --container =" $DAOS_CONT "
↪→ --foreground

Listing 3.22: Starting DFuse

After ECOHAM has run through, we can stop DFuse via fusermount which is shown in
Listing 3.23. Afterwards we’ll make sure to unlink the directories again and restore the
original output directory.

33

It’s worth mentioning that ECOHAM will try to gather information about multiple
symlinks that it creates inside the directory “$HOME/ECOHAM_Output/ECOHAM.0/wrk.0/
Input” which DFuse apparently does not support, because for each file, “ls: Input/
<filename>: Operation not permitted” will be printed, where “<filename>” is a
placeholder. Additionally, roughly every second run of ECOHAM will terminate with a
segmentation fault prematurely. Complications like these should be a serious considera-
tion if one attempted a hybrid solution like described in Section 3.4.5.

1 $ fusermount3 -u " $dfsmntdir "
2 $ rm " $ecohamoutputdir "
3 $ mkdir -p " $ecohamoutputdir "

Listing 3.23: Stopping DFuse

Another point to mention is that besides dfuse, there also exists a dfuse_hl binary that
uses the high-level FUSE API and is at its current point a legacy implementation of the
DAOS file system that may be removed in the future. The usage is shown in Listing 3.24
and one can simply put this line in place of line 5 of Listing 3.22.

1 $ dfuse_hl " $dfsmntdir " -s -f -d -p " $DAOS_POOL " -l
↪→ " $DAOS_SVCL " -c " $DAOS_CONT "

Listing 3.24: Starting DFuse via dfuse_hl

While ECOHAM does not show any error messages about unpermitted operations in
a successful run with dfuse_hl which could imply that the required operations are
supported by it. However, a closing statement about the correctness of the output in
both cases would require plausibility tests for all files which we did not conduct, and
the problems with frequent segmentation faults does persist here as well. As one can
find in Table 3.1, there is no difference between the performance of dfuse and dfuse_hl
beyond their standard deviation in our application: “normal” denotes a regular run of
ECOHAM using a POSIX file system, “dfuse” denotes a run using the regular DFuse
binary, “dfuse_hl” denotes a run using the high level DFuse binary. Listed is the mean
runtime of the different variants.

Note that this shows the complete runtime of ECOHAM including compilation and
is not a proper I/O benchmark. The deltas between the runtimes can not simply be
transferred to an assumption that the I/O takes the respective amount longer or shorter
time. Furthermore, this isn’t a proper benchmark for DAOS either: Our single-server
setup is far from realistic and the results can not be compared to the potential results in
a production environment.

34

Table 3.1.: Performance evaluation of different runs of ECOHAM on a POSIX file system
(normal) and using the DAOS FUSE file system.

Variant
#Measurements Mean runtime2 Std. dev.2

[s]Total Valid [s] [m:s]

normal 10 10 535.7 8:56 19.8

dfuse 10 5 690.1 11:30 9.1

dfuse_hl 10 4 688.1 11:28 32.1

3.4.3. Usage with DAOS-VOL

Running ECOHAM with DAOS-VOL should only require setting two environment vari-
ables as shown in Listing 3.25. The plugin will then be automatically picked up by
the HDF5 installation that we provisioned inside the Spack directory when we start
ECOHAM like described in Section 3.4.1. The pool information will be read from the
variables $DAOS_POOL and $DAOS_SVCL which we set in Section 3.3.

1 $ export HDF5_VOL_CONNECTOR =daos
2 $ export HDF5_PLUGIN_PATH =" $daosvoldir "'/install -custom/lib '

Listing 3.25: Setting up DAOS-VOL

This will automatically create a new container of type HDF5 inside the specified DAOS
Pool. However note, that only the content of ECOHAM’s NetCDF-4 file (0_3D.nc) will
be saved into this container; the rest of directory structure is written into the POSIX file
system as usual. Therefore, this method of applying DAOS-VOL is primarily attractive
for applications that write all of their data into a single HDF5 file and does not really
provide a desirable behaviour for our case. However, in Section 3.4.5, we suggest a way
to use both DAOS-VOL and DFuse to tackle this problem.

2Only valid runs are considered.

35

This approach also is not currently in a working state. ECOHAM does attempt to write to
DAOS using the DAOS-VOL connector, but fails with the message “NetCDF: HDF error”.
The DAOS server log, located at “/tmp/daos_server.log”, contains the following
message multiple times: “Could not prepare akey iterator DER_NONEXIST(-1005)”.
We were able to trace this error to “src/common/btree.c”. It is generated in line 1742
of this file, in a function called “dbtree_fetch”. We were unable to find out what
exactly causes the error. DAOS and DAOS-VOL as such work fine, as demonstrated in
Section 3.5, so this is likely somehow caused by specific behavior within ECOHAM or
NetCDF code.

3.4.4. Usage with MPICH ADIO driver

Alternatively, one could also connect to DAOS on the MPI-IO level. This can be achieved
by swapping the spack load directives in ECOHAM from the packages installed in
Section 3.2.1 to the packages installed in Section 3.2.3. Additionally, we have to prepend
“daos:” to the paths of all files that are written with MPI-IO. The necessary patch can
be found in Listing A.1. Now, if the environment variables $DAOS_POOL, $DAOS_SVCL
and $DAOS_CONT are set, ECOHAM should use the forked MPICH and write into DAOS.

Note that this would simply write ECOHAM’s NetCDF-4 file into a container of type
POSIX. Again, all remaining files of the directory structure that are not written by MPI-
IO are still written into the POSIX file system. Additionally, by writing it into a POSIX
container, it is also significantly harder to access the written data as NetCDF-4 data
from outside of DAOS, since one can not simply directly access it via the HDF5 API, e.g.
if one wished to access only a certain record of the file or to use applications like h5dump
to get a glimpse of the file’s structure. Instead, one has to perform additional steps like
mounting the POSIX container or opening the container with MPI-IO. Therefore, using
the MPICH DAOS driver is not a satisfying solution for usage with ECOHAM either.
However, since a container of type POSIX is used, it is therefore trivial to incorporate
DFuse to read the file from the container. This might prove useful if one wanted to achieve
a high writing performance but reading the file for evaluation was not time-critical.

As with DAOS-VOL, this approach did also not work as intended. While ECOHAM runs
through without any errors and the 0_3D.nc is missing from the file system suggesting
that either an error occurred or that ROMIO picked it up correctly, it is apparently not
written into any DAOS container either. It remains to find out if this problem persists
with an updated MPICH installation via Spack.

36

3.4.5. Usage with DAOS-VOL and FUSE

To approach the problem of DFuse’s low write speed and that DAOS-VOL will only
write the NetCDF-4 data into DAOS, an obvious solution would be a combination of the
two: One could benefit from DAOS-VOL’s supposed high write speed and write all the
remaining data into DFuse’s mount point.

The adaptation should be trivial: One could create a new container of type POSIX,
mount it using DFuse and symlink ECOHAM’s output directory to the mount point
as described in Section 3.4.2, and afterwards set the required environment variables as
described in Section 3.4.3 before starting ECOHAM. A remaining disadvantage of this
method is of course that the NetCDF-4 file will still miss inside the POSIX context, so
in scenarios where this is critical, e.g. for immediate post-run analysis with external
tools, this might be a problem. Additionally, the lower performance of DFuse could drag
our whole application back again.

3.5. Proof-of-concept DAOS-VOL Test Application

To confirm DAOS-VOL as working, we have written a simple test application3, which
includes two target binaries. One writes data into a HDF5 file and then exits, and the
other is intended to be run afterwards, and will read the data back and confirm it is, in
fact, the data that the first binary has written.

With DAOS running, and when linked with the same HDF5 library as DAOS-VOL,
this works fine, as long as the required environment variables are set, as described in
Section 3.4.3. An abridged excerpt of the source code is included in Listing A.3. After
running the writing portion of the test application, the HDF5 utility h5dump also finds
the written HDF5 file – which does not exist in the file system, but actually resides
within DAOS – and can dump its header and contents. We can conclude that the issues
with getting ECOHAM to work with DAOS-VOL likely occur due to some kind of issue
with either ECOHAM itself, or NetCDF. In principal, writing data to DAOS using
DAOS-VOL seems to work fine, as demonstrated by the test application.

3https://gist.github.com/tronje/5cf6650896f2cb828630b8abb0c29b37

37

https://gist.github.com/tronje/5cf6650896f2cb828630b8abb0c29b37

4. Conclusion and outlook

This report presented some of the inner workings of DAOS. The reader should have a
general idea of how data is treated and stored in it, and of the concepts that make DAOS
special and, arguably, a promising and future-proof storage system. Many aspects of
DAOS were not explored. Some due to thin or difficult to find documentation, and others
merely due to the limited scope of this document. A more in-depth look at the Pool
Map, and Pool metadata in general would have been possible, as well as the concept of
Object Schemata and Classes [23].

The security model which DAOS employed was also largely ignored, as it simply is not
very fleshed out yet, and not very interesting or novel in general. It is also, apparently,
very much subject to change, as the documentation notes several times that security
aspects may change or be improved later.

How well DAOS performs in real-world scenarios remains to be seen. Before DAOS can
actually be tested, much work will likely have to be put into the documentation of the
project, as similarly stated previously, in Chapter 2.

Besides DAOS, this report briefly showcased how it is possible to perform I/O operations
on block devices from user space on a Linux system – one of many novel solutions
that DAOS employs – by using special Linux drivers and SPDK. This approach, while
complicated, gives considerably I/O performance advantages.

Additionally, we provided a comprehensive guide about how to use DAOS with the
scientific application ECOHAM. Judging from the several pitfalls of the individual
strategies, we can conclude that the question concerning how much effort is required to
adapt an existing scientific application to DAOS is not very easily answered.

On the one hand, the required code changes to ECOHAM were indeed very small. In
fact, the variant with MPI-IO was the only one that required any code change at all.
On the other hand, this comes with a few downsides: Firstly, the available alternatives
and required measures are not very easy to find and to our knowledge, this paper
is the first that offers a comparison and guide for this matter, although it was only
described for a non-publicly available application, but due to DAOS’ rapidly changing
nature it is supposable that much of the information presented here will become obsolete
rather quickly anyway. Secondly, none of the alternatives proved itself to be a perfect
match for ECOHAM’s output procedure: The DFuse interface doesn’t offer a satisfying

38

performance, DAOS-VOL doesn’t consider the non-NetCDF-4 data, MPI-IO does not do
this either and additionally writes NetCDF-4 data into a POSIX container, and with
a hybrid approach, we’ll end up with data that is split into two containers while the
performance issues of DFuse persist.

Therefore, even in in our toy example, a satisfying way to use ECOHAM with DAOS
does not exist at the time of writing. It may be true that DAOS might already be a
good fit for applications that perform all of their output via HDF5 or MPI-IO, but it is
easy to assume that there are many applications that follow a similar way as ECOHAM
with mixed output, where an adaptation to DAOS is simply not sensible without major
code changes.

We can therefore conclude that at its current state of development, DAOS’ fitness in
the context of scientific applications varies dramatically from case to case and has to be
carefully evaluated for each situation. It remains for future work to do performance and
correctness evaluations of the demonstrated alternatives and to set up DAOS in a more
natural server environment.

39

Bibliography
[1] Administration Guide – DAOS v1.0. url: https://daos-stack.github.io/

admin/installation/ (visited on 2020-08-14).
[2] Announcement: DAOS 1.0 is generally available! url: https://daos.groups.io/

g/daos/message/1052 (visited on 2020-08-17).
[3] Announcement: DAOS 1.0.1 and pre-built RPMs are available. url: https://

daos.groups.io/g/daos/message/1107 (visited on 2020-08-17).
[4] Jonas Bonér. Latency Numbers Every Programmer Should Know. url: https:

//gist.github.com/jboner/2841832 (visited on 2020-08-17).
[5] Peter Braam. “The Lustre Storage Architecture”. In: CoRR abs/1903.01955 (2019).

arXiv: 1903.01955. url: http://arxiv.org/abs/1903.01955.
[6] M. Scot Breitenfeld et al. “DAOS for Extreme-scale Systems in Scientific Ap-

plications”. In: CoRR abs/1712.00423 (2017). arXiv: 1712.00423. url: http:
//arxiv.org/abs/1712.00423.

[7] Philip Carns et al. “PVFS: A parallel file system for Linux clusters”. In: ALS 4
(2000-11).

[8] DAOS Fault Model. url: https://daos-stack.github.io/overview/fault/
(visited on 2020-08-22).

[9] DAOS Security Model. url: https : / / daos - stack . github . io / overview /
security/ (visited on 2020-08-22).

[10] DAOS Storage Model. url: https://github.com/daos- stack/daos/blob/
master/doc/storage_model.md (visited on 2019-07-01).

[11] DAOS Storage Model. url: https : / / daos - stack . github . io / overview /
storage/ (visited on 2020-08-17).

[12] daos/Dockerfile.ubuntu.18.04 at release/0.9. url: https://github.com/daos-
stack/daos/blob/release/0.9/utils/docker/Dockerfile.ubuntu.18.04
(visited on 2020-08-14).

[13] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. “Consistency in a
Partitioned Network: A Survey”. In: ACM Comput. Surv. 17.3 (1985-09), pp. 341–
370. issn: 0360-0300. doi: 10.1145/5505.5508. url: https://doi.org/10.
1145/5505.5508.

[14] Exascale FastForward / Unidata NetCDF. url: https://bitbucket.hdfgroup.
org/projects/FFWD2/repos/netcdf-c/browse (visited on 2020-08-27).

40

https://daos-stack.github.io/admin/installation/
https://daos-stack.github.io/admin/installation/
https://daos.groups.io/g/daos/message/1052
https://daos.groups.io/g/daos/message/1052
https://daos.groups.io/g/daos/message/1107
https://daos.groups.io/g/daos/message/1107
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
https://arxiv.org/abs/1903.01955
http://arxiv.org/abs/1903.01955
https://arxiv.org/abs/1712.00423
http://arxiv.org/abs/1712.00423
http://arxiv.org/abs/1712.00423
https://daos-stack.github.io/overview/fault/
https://daos-stack.github.io/overview/security/
https://daos-stack.github.io/overview/security/
https://github.com/daos-stack/daos/blob/master/doc/storage_model.md
https://github.com/daos-stack/daos/blob/master/doc/storage_model.md
https://daos-stack.github.io/overview/storage/
https://daos-stack.github.io/overview/storage/
https://github.com/daos-stack/daos/blob/release/0.9/utils/docker/Dockerfile.ubuntu.18.04
https://github.com/daos-stack/daos/blob/release/0.9/utils/docker/Dockerfile.ubuntu.18.04
https://doi.org/10.1145/5505.5508
https://doi.org/10.1145/5505.5508
https://doi.org/10.1145/5505.5508
https://bitbucket.hdfgroup.org/projects/FFWD2/repos/netcdf-c/browse
https://bitbucket.hdfgroup.org/projects/FFWD2/repos/netcdf-c/browse

[15] Mike Folk et al. “An overview of the HDF5 technology suite and its applications”.
In: 2011-03, pp. 36–47. doi: 10.1145/1966895.1966900.

[16] T. Gamblin et al. “The Spack package manager: bringing order to HPC soft-
ware chaos”. In: SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 2015, pp. 1–12.

[17] Sibsankar Haldar and Alex Aravind. Operating Systems. Pearson Education, 2010.
isbn: 8131730220.

[18] HDF5 DAOS VOL connector. url: https://bitbucket.hdfgroup.org/projects/
HDF5VOL/repos/daos-vol/browse (visited on 2020-08-27).

[19] HPC I/O Middleware – DAOS v1.0. url: https://daos-stack.github.io/
user/hpc/ (visited on 2020-08-14).

[20] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. “NVRAM-Aware Logging
in Transaction Systems”. In: Proc. VLDB Endow. 8.4 (2014-12), pp. 389–400. issn:
2150-8097. doi: 10.14778/2735496.2735502. url: https://doi.org/10.14778/
2735496.2735502.

[21] Intel Corporation. DAOS Community. url: https://wiki.hpdd.intel.com/
display/DC/DAOS+Community+Home (visited on 2019-02-24).

[22] Intel Corporation. DAOS Community. url: https://github.com/daos-stack/
daos/blob/master/LICENSE (visited on 2020-08-27).

[23] Intel Corporation. DAOS Object. url: https://github.com/daos-stack/daos/
blob/master/src/object/README.md (visited on 2019-02-27).

[24] Intel Corporation. DAOS Quick Start Guide. url: https://github.com/daos-
stack/daos/blob/master/doc/quickstart.md (visited on 2019-02-24).

[25] Intel Corporation. DAOS README. url: https://github.com/daos-stack/
daos/blob/master/README.md (visited on 2019-01-23).

[26] Intel Corporation. Service Replication. url: https://github.com/daos-stack/
daos/blob/master/src/rdb/README.md (visited on 2019-02-27).

[27] Simon Kostede. “Performanceanalyse der Ein- / Ausgabe des Ökologiemodells
ECOHAM5”. MA thesis. Universität Hamburg, 2016-08.

[28] Greg Kroah-Hartman. Manual driver binding and unbinding. url: https://lwn.
net/Articles/143397/ (visited on 2020-08-27).

[29] Michael Kuhn. “JULEA: A Flexible Storage Framework for HPC”. In: High Per-
formance Computing. Ed. by Julian M. Kunkel et al. Cham: Springer International
Publishing, 2017, pp. 712–723. isbn: 978-3-319-67630-2.

[30] Hermann-J. Lenhart et al. “Predicting the consequences of nutrient reduction on
the eutrophication status of the North Sea”. In: Journal of Marine Systems 81.1-2
(2010-04). Symposium on Advances in Marine Ecosystem Modelling Research JUN
23-26, 2008, Plymouth, ENGLAND, pp. 148–170. url: http://nora.nerc.ac.
uk/id/eprint/13939/.

41

https://doi.org/10.1145/1966895.1966900
https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/daos-vol/browse
https://bitbucket.hdfgroup.org/projects/HDF5VOL/repos/daos-vol/browse
https://daos-stack.github.io/user/hpc/
https://daos-stack.github.io/user/hpc/
https://doi.org/10.14778/2735496.2735502
https://doi.org/10.14778/2735496.2735502
https://doi.org/10.14778/2735496.2735502
https://wiki.hpdd.intel.com/display/DC/DAOS+Community+Home
https://wiki.hpdd.intel.com/display/DC/DAOS+Community+Home
https://github.com/daos-stack/daos/blob/master/LICENSE
https://github.com/daos-stack/daos/blob/master/LICENSE
https://github.com/daos-stack/daos/blob/master/src/object/README.md
https://github.com/daos-stack/daos/blob/master/src/object/README.md
https://github.com/daos-stack/daos/blob/master/doc/quickstart.md
https://github.com/daos-stack/daos/blob/master/doc/quickstart.md
https://github.com/daos-stack/daos/blob/master/README.md
https://github.com/daos-stack/daos/blob/master/README.md
https://github.com/daos-stack/daos/blob/master/src/rdb/README.md
https://github.com/daos-stack/daos/blob/master/src/rdb/README.md
https://lwn.net/Articles/143397/
https://lwn.net/Articles/143397/
http://nora.nerc.ac.uk/id/eprint/13939/
http://nora.nerc.ac.uk/id/eprint/13939/

[31] Jialin Liu et al. “Evaluation of HPC Application I/O on Object Storage Sys-
tems”. In: (2018-11). url: http://conferences.computer.org/scw/2018/
pdfs/PDSW-DISCS2018-7eAHkUBB2dWhq2ImKsykIN/5DJPALrRZcBywbLvt3wESZ/
74djJsykXVavOscu8abhsU.pdf.

[32] Jay F. Lofstead et al. “DAOS and Friends: A Proposal for an Exascale Storage
System”. In: SC16: International Conference for High Performance Computing,
Networking, Storage and Analysis (2016), pp. 585–596. doi: 10.1109/SC.2016.49.
url: http://pages.cs.wisc.edu/~johnbent/Pubs/lofstead_sc16.pdf.

[33] Ina Lorkowski et al. “Interannual variability of carbon fluxes in the North Sea
from 1970 to 2006 – Competing effects of abiotic and biotic drivers on the gas-
exchange of CO2”. In: Estuarine, Coastal and Shelf Science 100 (2012). Recent
advances in biogeochemistry of coastal seas and continental shelves, pp. 38–57.
issn: 0272-7714. doi: https://doi.org/10.1016/j.ecss.2011.11.037. url:
http://www.sciencedirect.com/science/article/pii/S0272771411004987.

[34] David Mosberger and Stephane Eranian. “IA-64 Linux Kernel: Design and Imple-
mentation”. In: (2001-01).

[35] MPI-IO Code, Build, and Testing. url: https : / / wiki . hpdd . intel . com /
display/DC/MPI- IO+Code%2C+Build%2C+and+Testing (visited on 2020-08-
27).

[36] MPICH 3.4a3 released. url: https://www.mpich.org/2020/07/06/mpich-3-
4a3-released/ (visited on 2020-08-14).

[37] Johannes Pätsch and Wilfried Kühn. “Nitrogen and carbon cycling in the North
Sea and exchange with the North Atlantic—A model study. Part I. Nitrogen
budget and fluxes”. In: Continental Shelf Research 28.6 (2008), pp. 767–787. issn:
0278-4343. doi: https://doi.org/10.1016/j.csr.2007.12.013. url: http:
//www.sciencedirect.com/science/article/pii/S0278434307003470.

[38] POSIX Namespace – DAOS v1.0. url: https://daos-stack.github.io/user/
posix/ (visited on 2020-08-14).

[39] I. S. Reed and G. Solomon. “Polynomial Codes Over Certain Finite Fields”. In:
Journal of the Society for Industrial and Applied Mathematics 8.2 (1960), pp. 300–
304. doi: 10.1137/0108018. eprint: https://doi.org/10.1137/0108018. url:
https://doi.org/10.1137/0108018.

[40] Rew Russell, Edward Hartnett, and John Caron. “NetCDF-4: Software Implement-
ing an Enhanced Data Model for the Geosciences”. In: 2006-01.

[41] Konstantin Shvachko et al. “The Hadoop Distributed File System”. In: 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies (MSST) (2010), pp. 1–
10.

[42] SPDK User Space Drivers Documentation. url: https://spdk.io/doc/userspace.
html (visited on 2020-08-27).

42

http://conferences.computer.org/scw/2018/pdfs/PDSW-DISCS2018-7eAHkUBB2dWhq2ImKsykIN/5DJPALrRZcBywbLvt3wESZ/74djJsykXVavOscu8abhsU.pdf
http://conferences.computer.org/scw/2018/pdfs/PDSW-DISCS2018-7eAHkUBB2dWhq2ImKsykIN/5DJPALrRZcBywbLvt3wESZ/74djJsykXVavOscu8abhsU.pdf
http://conferences.computer.org/scw/2018/pdfs/PDSW-DISCS2018-7eAHkUBB2dWhq2ImKsykIN/5DJPALrRZcBywbLvt3wESZ/74djJsykXVavOscu8abhsU.pdf
https://doi.org/10.1109/SC.2016.49
http://pages.cs.wisc.edu/~johnbent/Pubs/lofstead_sc16.pdf
https://doi.org/https://doi.org/10.1016/j.ecss.2011.11.037
http://www.sciencedirect.com/science/article/pii/S0272771411004987
https://wiki.hpdd.intel.com/display/DC/MPI-IO+Code%2C+Build%2C+and+Testing
https://wiki.hpdd.intel.com/display/DC/MPI-IO+Code%2C+Build%2C+and+Testing
https://www.mpich.org/2020/07/06/mpich-3-4a3-released/
https://www.mpich.org/2020/07/06/mpich-3-4a3-released/
https://doi.org/https://doi.org/10.1016/j.csr.2007.12.013
http://www.sciencedirect.com/science/article/pii/S0278434307003470
http://www.sciencedirect.com/science/article/pii/S0278434307003470
https://daos-stack.github.io/user/posix/
https://daos-stack.github.io/user/posix/
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://spdk.io/doc/userspace.html
https://spdk.io/doc/userspace.html

[43] R Thakur, E Lusk, and W Gropp. “Users guide for ROMIO: A high-performance,
portable MPI-IO implementation”. In: (1997-10). doi: 10.2172/564273.

[44] Rajeev Thakur, William Gropp, and Ewing Lusk. “On Implementing MPI-IO
Portably and with High Performance”. In: Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems. IOPADS ’99. Atlanta, Georgia, USA:
Association for Computing Machinery, 1999, pp. 23–32. isbn: 1581131232. doi:
10.1145/301816.301826. url: https://doi.org/10.1145/301816.301826.

[45] V. M. Weaver. “Self-monitoring overhead of the Linux perf_event performance
counter interface”. In: 2015 IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS). 2015, pp. 102–111.

[46] Vincent M. Weaver. “Linux perf_event Features and Overhead”. In: (2013). url:
http://web.eece.maine.edu/~vweaver/projects/perf_events/overhead/
fastpath2013_perfevents.pdf.

[47] Sage Weil et al. “Ceph: A Scalable, High-Performance Distributed File System.”
In: 2006-11, pp. 307–320.

[48] write(2) Linux User’s Manual. 2018-02.

43

https://doi.org/10.2172/564273
https://doi.org/10.1145/301816.301826
https://doi.org/10.1145/301816.301826
http://web.eece.maine.edu/~vweaver/projects/perf_events/overhead/fastpath2013_perfevents.pdf
http://web.eece.maine.edu/~vweaver/projects/perf_events/overhead/fastpath2013_perfevents.pdf

Appendices

44

A. Additional listings

1 diff --git a/ serielle_io / InitAndCompile .sh
↪→ b/ serielle_io / InitAndCompile .sh

2 index 46 e256f ..20 b33a4 100755
3 --- a/ serielle_io / InitAndCompile .sh
4 +++ b/ serielle_io / InitAndCompile .sh
5 @@ -2,9 +2,9 @@
6
7 . /daos -user/spack/share/spack/setup -env.sh
8
9 -spack load netcdf - fortran ^hdf5@1 .12.0 ^ mpich@3 .3.2
10 -spack load hdf5@1 .12.0 ^ mpich@3 .3.2
11 -spack load mpich@3 .3.2
12 +spack load netcdf - fortran ^hdf5@1 .12.0 ^ mpich@3 .4a2
13 +spack load hdf5@1 .12.0 ^ mpich@3 .4a2
14 +spack load mpich@3 .4a2
15
16 if [-z "$3"]; then
17 export ECOHAM_NO_CORES =1
18 diff --git a/ serielle_io /src/ eco_output_3D .f90

↪→ b/ serielle_io /src/ eco_output_3D .f90
19 index eab4033 ..04 d40c6 100644
20 --- a/ serielle_io /src/ eco_output_3D .f90
21 +++ b/ serielle_io /src/ eco_output_3D .f90
22 @@ -568,7 +568 ,7 @@
23 endif !if (n_full3D .gt. 0)
24
25 #ifdef NETCDF
26 - filename = trim(filename)// '.nc'
27 + filename = 'daos:'//trim(filename)//'.nc'
28 call write_log_message (' write output to

↪→ NETCDF -file: '//trim(filename))
29
30 ! allocate and initialize netcdf 2D-output metadata

Listing A.1: Patching ECOHAM for usage with MPICH ADIO driver

45

1 # Setup base path for all applications
2 export basedir ="$HOME"
3
4 # Setup application locations
5 export daosdir =" $basedir "'/daos '
6 export mpichdir =" $basedir "'/mpich '
7 export ecohamdir =" $basedir "'/ecoham '
8 export spackdir =" $basedir "'/spack '
9 export daosvoldir =" $basedir "'/daos -vol '
10
11 # Prepend daos directories to PATH and CPATH
12 export CPATH=" $daosdir "'/ install / include /:'"$CPATH"
13 export PATH=" $daosdir "'/ install /bin /:\
14 " $daosdir "'/ install /sbin /:'"$PATH"
15
16 # Prepend daos directories to LD_LIBRARY_PATH
17 export LD_LIBRARY_PATH =" $daosdir "'/ install /lib /:\
18 " $daosdir "'/ install /lib64 /:\
19 " $daosdir "'/ install / include /:'" $LD_LIBRARY_PATH "
20
21 # Set network device that DAOS should use
22 export OFI_INTERFACE =eth0
23
24 # Setup Spack
25 source " $spackdir "'/share/spack/setup -env.sh'
26
27 # Setup mount directory for DFS
28 export dfsmntdir =" $basedir "'/ dfs_mnt '
29 mkdir -p " $dfsmntdir "
30
31 # Setup ECOHAM output directory
32 export ecohamoutputdir =" $basedir "'/ ECOHAM_Output '
33 mkdir -p " $ecohamoutputdir "
34
35 # Setup patch directory
36 export ecohampatchdir =" $basedir "'/ ecoham_patches '

Listing A.2: load_daos_env.sh – Shell script to setup environment variables for DAOS

46

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #include "hdf5.h"
5 #include "common.h"
6
7 int main(void) {
8 int rc = EXIT_SUCCESS ;
9 hid_t file_id ;
10 hid_t dataset_id ;
11 hid_t dataspace_id ;
12 herr_t status;
13 int i;
14 const hsize_t dims [1] = { DIM_X };
15
16 int * write_data = malloc(DIM_X * sizeof(int));
17 int * read_data = malloc(DIM_X * sizeof(int));
18
19 for (i = 0; i < DIM_X; i++) {
20 write_data [i] = i % 10;
21 }
22
23 file_id = H5Fcreate (FILENAME , H5F_ACC_TRUNC ,

↪→ H5P_DEFAULT , H5P_DEFAULT);
24 dataspace_id = H5Screate_simple (1, dims , NULL);
25 dataset_id = H5Dcreate2 (file_id , DATASET ,

↪→ H5T_STD_I32BE , dataspace_id ,
26 H5P_DEFAULT , H5P_DEFAULT , H5P_DEFAULT);
27 H5Dwrite (dataset_id , H5T_NATIVE_INT , H5S_ALL , H5S_ALL ,
28 H5P_DEFAULT , write_data);
29 H5Dread (dataset_id , H5T_NATIVE_INT , H5S_ALL , H5S_ALL ,
30 H5P_DEFAULT , read_data);
31 H5Dclose (dataset_id);
32 H5Sclose (dataspace_id);
33 H5Fclose (file_id);
34 free(write_data);
35 free(read_data);
36 return rc;
37 }

Listing A.3: DAOS-VOL proof-of-concept, write application (abridged)

47

List of Figures

2.1. Example of four Storage Nodes, eight DAOS Targets and three DAOS
Pools [10]. 13

2.2. Architecture of DAOS Storage Model [10]. 13
2.3. Epoch in a Container [10]. 17

3.1. Storage stack of ECOHAM with potential contact points of DAOS using
different auxiliary applications or plugins 22

48

List of Listings
3.1. basedir configuration . 22
3.2. Automatic environment variable configuration 23
3.3. Installing Spack . 23
3.4. Installing NetCDF with HDF5 1.12 . 23
3.5. Downloading DAOS v0.9 . 24
3.6. Building DAOS . 25
3.7. Setting up DAOS’ environment variables 25
3.8. Setting up DAOS’ elevated privileges . 26
3.9. Installing MPICH with DAOS support 27
3.10. packages.yaml for external MPICH Spack package 27
3.11. Installing NetCDF with a custom MPICH 28
3.12. Installing DAOS-VOL . 28
3.13. Acquiring example DAOS config . 29
3.14. Original DAOS config . 29
3.15. Modified DAOS config . 29
3.16. Starting DAOS . 29
3.17. DAOS storage initialisation and pool creation 30
3.18. Creating a container with type POSIX . 31
3.19. Starting the DAOS agent . 31
3.20. Cloning ECOHAM . 32
3.21. Running ECOHAM . 32
3.22. Starting DFuse . 33
3.23. Stopping DFuse . 34
3.24. Starting DFuse via dfuse_hl . 34
3.25. Setting up DAOS-VOL . 35

A.1. Patching ECOHAM for usage with MPICH ADIO driver 45
A.2. load_daos_env.sh – Shell script to setup environment variables for DAOS 46
A.3. DAOS-VOL proof-of-concept, write application (abridged) 47

49

List of Tables

1.1. Latencies of different storage devices in comparison to a typical context
switch latency (order of µs) [20][4][46][45]. 7

2.1. Targeted Level of Scalability for each DAOS Concept [10]. 12
2.2. Storage Topology Tree Example [10]. 15

3.1. Performance evaluation of different runs of ECOHAM on a POSIX file
system (normal) and using the DAOS FUSE file system. 35

50

	Introduction
	Challenges in I/O technology
	Current situation
	Centralized versus distributed storage
	POSIX interfaces
	POSIX-compliant file systems
	Files and directories

	Related work
	The DAOS project
	Goals of this paper

	DAOS internals
	Storage Model
	Overview
	Target
	Pool
	Container
	Object

	Transactional Model
	Fault Model
	Hierarchical Fault Domains
	Fault Detection and Diagnosis
	Fault Isolation
	Fault Recovery

	User Space I/O

	DAOS with a scientific application
	Prerequisites
	Software installation
	Installing Spack
	Installing DAOS
	Installing MPICH
	Installing DAOS-VOL

	Using DAOS
	Adapting ECOHAM to DAOS
	General usage
	Usage with DFuse
	Usage with DAOS-VOL
	Usage with MPICH ADIO driver
	Usage with DAOS-VOL and FUSE

	Proof-of-concept DAOS-VOL Test Application

	Conclusion and outlook
	Bibliography
	Appendices
	Additional listings
	List of Figures
	List of Listings
	List of Tables

