
Bericht

Deduplication in JULEA

vorgelegt von

Julius Plehn

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: M. Sc. Informatik
Matrikelnummer: 6535163

Betreuer: Dr. Michael Kuhn

Hamburg, 06. August 2021

Abstract

In general, deduplication can be used to only store a single copy of an entity that occurs
several times by referencing all further entities to the initial one. In terms of file systems
this means that the data is separated by some strategy and a unique identifier of this
specific part is generated. Only if this identifier is new to the system a traditional write
operation is performed and the identifier is stored. Whenever another part has the
same content and therefore the same identifier a reference to the existing one is made.
This strategy therefore can decrease the amount of physical storage needed while also
introducing a few challenges regarding the separation, identification and storage of the
identifiers required.

In this report several approaches to deduplication are presented and use cases and real
world implementations are shown. Finally, deduplication is implemented into the JULEA
storage framework. In the evaluation it is shown, that depending on the use case and
the type of data significant storage savings are possible.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Deduplication . 6

2 Background 8
2.1 Chunking . 8
2.2 Fingerprinting . 10

2.2.1 Locality-Based . 11
2.2.2 Similarity-Based . 11
2.2.3 Flash-Assisted . 11

2.3 Use Cases . 12
2.3.1 Backups . 12
2.3.2 Container images . 12
2.3.3 HPC . 12

3 Related Work 13
3.1 ZFS . 13
3.2 OpenDedup . 14

4 JULEA 15
4.1 Introduction . 15
4.2 Concepts . 16
4.3 Implementation . 17

4.3.1 JItemDedup . 18
4.3.2 Operations . 19

5 Evaluation 24
5.1 Single File Performance . 24
5.2 Backup/Versioning Performance . 28

6 Future Work 30

7 Conclusion 31

Bibliography 32

Appendices 35

3

List of Figures 36

List of Listings 37

4

1 Introduction

In this chapter the general purpose of data reduction techniques and the relevance
of deduplication in this regard is shown. Finally, an introduction into the basics of
deduplication is given.

1.1 Motivation
On a file system level there are two concepts that are used regularly when data reduction
is of interest. The first possibility is to use compression and this method is implemented
in file systems like ZFS and Btrfs.

Using compression it is possible to reduce the size of the individual blocks by applying
algorithms like LZ4, ZSTD and GZIP. This method works exceptionally well on many
types of data except on some formats that apply reduction techniques by themselves like
JPEG or already compressed files. Another benefit is, that only a few additional details
about the compressed blocks has to be handled. This includes the used compression
algorithm, their attributes and the physical size of the underlying data.

An alternative is to use deduplication. In the same way compression excels at some
specific use cases deduplication performs especially well when the same data occurs
multiple times throughout the dataset. This explicitly also includes already compressed
data like images and videos. A disadvantage in this case is that much more additional
metadata regarding the references to other data parts has to be stored.

Those two techniques do not exclude each other. The strengths of each concept can
also be combined into an example I/O pipeline seen in Figure 1.1. In the first part
deduplication is performed and the first and the last part of the file are identified to be
the same. From a physical storage perspective the fourth block therefore does not has to
be saved. Finally, the remaining chunks are compressed and therefore are reduced in
size.

DeduplicationFile Compression

Figure 1.1: Example reduction pipeline

5

1.2 Deduplication
In this section an introduction into the basic principles of deduplication is given and
the read and write processes are highlighted. This also lays the foundation for the
implementation given in Chapter 4.

When using deduplication the overall goal is to reduce physical storage requirements by
storing repetitive data only once and reusing those data pieces throughout the whole
domain space. The main focus in this report is the integration into file systems and this
process is shown in the remainder.

In Figure 1.2 an overview of a write and read operation on the same file is given. When
writing a file the first step is to create chunks according to a specific policy. In this
case static chunking is used, while maintaining a chunk size of 128 kB. Each chunk is
then hashed using a cryptographic function with a sufficient certainty that only the
same data chunk results in the same fingerprint. Using these fingerprints it is now
possible to check if another chunk has previously been written which resulted in the
same fingerprint. For every chunk that ocurred the associated reference counter of the
fingerprint is incremented.

In this example the fingerprints are stored in a hash table and the first, second and sixth
chunk referenced by the fingerprint 0x2 has once been used previously. This system
now has the capability to decide that these chunks do not need to be saved again and
therefore only those two new chunks have to be written. In this example only half of the
physical storage is required in total. The last step is to update the reference counters in
the metadata backend. Besides indicating duplicates of individual chunks the reference
counter is also used for garbage collection purposes. When deleting a file all associated
reference counters are decremented and when reaching zero the chunk is removed.

On the contrary when reading a file the first step is to use the metadata storage to
retrieve a list of the chunks associated with the file name. Those identifiers can then be
used to read the chunks independently and to recreate the file according to the physical
layout. In order to reduce the amount of I/O required to read the file only unique chunks
have to be received. The final file can be reassembled by utilizing the chunk layout
provided by the metadata backend.

This top level view on deduplication serves as an introduction to this topic. As can be
seen there are several ways to create chunking policies and various ways to implement
fingerprinting, metadata handling and I/O paths. Further possibilities are shown in
Chapter 2 and an implementation is shown in Chapter 4.

6

Write File: file.h5

128 kB Chunk Size

Chunking Policy

0x2 0x2 0xA

Hash Table Lookup

0xC 0xA 0x2

Write 2 Chunks

{0x2: 1, 0xA: 0, 0xC: 0}

Update Refcount

{0x2: 4, 0xA: 2, 0xC: 1}

List Lookup

Read File: file.h5

Read 3 Chunks

[0x2, 0x2, 0xA, 0xC, 0xA, 0x2]

0x2 0x2 0xA 0xC 0xA 0x2

Figure 1.2: Deduplication Paths

7

2 Background

When talking about deduplication it is important to differentiate the possible use cases
and how they influence the implementation. As deduplication can be used in local and
distributed file systems, while also having unique I/O requirements, different techniques
are used in practice and for research purposes. Those are explored in this section.

2.1 Chunking
The most notable differences are in the use of the chunking technique. Chunks can
either have a static or a dynamic size. A prominent example of the use of static sizes
can be found in ZFS where the chunk size of those fingerprinted blocks is aligned with
the recordsize. The benefit of this approach is the relative ease of implementation and
[1, p. 165] has shown reduced processing time in relation to dynamic chunk sizes. The
deduplication ratio however, which is defined as DR = file size

deduplication size , is lower than with
dynamic sizes and is subject to several disadvantages.

The biggest issue with static chunking and why dynamic chunking is preferred is the
boundary shift problem. This issue arises when a small modification in a file leads to a
rewrite of the remaining file as those static chunks change in the remainder of the file as
well. In the worst case scenario this change occurs in the beginning of the file, which
therefore would require a complete rewrite of the file. To conquer this issue dynamic or
content-defined chunking uses chunks of variable length. This is achieved by the use of
rolling hash functions, most notable by the Rabin fingerprinting algorithm.

According to [2, p. 11] this technique has been first used in this context in the “Low
Bandwidth File System” (LBFS) and has been subject to a lot of research which proposes
refinements for different use cases and in order to overcome some shortcomings shown
below. Rabin fingerprinting uses a sliding window which represents the actual hash. By
moving the fixed-size window along the data a new byte sequence enters the fingerprint,
while the last byte sequence leaves the window. Properties of rolling hashes allow to only
perform those two operations on the existing hash and therefore are very efficient in this
regard. This is shown exemplarily in Figure 2.1. At the beginning the hash of the whole
window of size eight is calculated. By sliding the window across the data the letter “A”
leaves the window while “/” enters. The new hash can now be calculated by referring to
the old hash, the removed and the added letter.

8

Figure 2.1: Rolling hash example [3]

Whenever a specific condition is detected a cut is made. For example the authors of the
LBFS filesystem note in [4] that a chunk is created whenever “the low-order 13 bits of
the fingerprint equal a constant value”.

Because of the desired properties of hash functions in general and the details outlined by
the author of the Rabin algorithm [5] a uniformed distribution of this hash function is
expected. Therefore very large chunks, as well as, small chunks are expected, while the
average chunk size can be controlled by a parameter. Like noted in [6] very small chunks
increase overhead in metadata handling and large chunks lead to a smaller deduplication
ratio.

In practice, artificial cutoff points are assigned with the intention to limit the minimal
and maximal size of the chunks with the reasoning noted above. The authors in [7]
also note that those cutoff points “are not robust and not reproducible in the case of
relatively small inserts or deletes”. Therefore several techniques exist that try to improve
the performance of dynamic deduplication in this regard.

In [7] a method is shown which tries to create more segments with a uniform size. This is
achieved by increasing the probability of creating a cutoff point with each byte read since
the previous chunk and therefore removing the need for artificial cutoff points.

The challenge with very large chunks is also noted in [8], which additionally emphasises
that when the probability of their occurrence is high, the same issues arise that are
known from static chunking, namely the boundary shift problem. As a solution to this
problem an algorithm called “Elastic Chunking” is proposed, which tries to reduce the
number of consecutive chunks of maximal size by increasing the maximal chunk size in
those cases. This is done by implementing an adjustment policy which keeps track of
previous chunks. First experiments show promising results and further research is being
conducted with additional data sets.

9

Another approach is shown in [9] where static chunking is combined with local file
similarity. The authors propose an approach where when a file is changed most changes
evolve around a specific part of a file. This holds true for many file formats while
exceptions like JPEG-20001 and archives often handle file size reduction by themselves.
Their implementation computes a file similarity hash using the Rabin algorithm, which
enables the deduplication process to find a very similar file on the server. The similarity
information itself consists out of the hash and offset information. If a match is found on
the server the difference of the hash on the local file in comparison to the remote file
is calculated. If those two positions are unequal the file changes can be observed and
static chunking is used on this specific range. In their evaluation the authors observed a
processing time which matches that of static chunking, while achieving a deduplication
ratio comparable to that of dynamic chunking. One downside is that the performance is
highly dependent on the data type and the locality of the changes.

As can be seen in this section there are many factors that are relevant when deciding on
which chunking strategy one should rely on. Some techniques are highly dependent on
the use case and the performance of others depend on the layout of the data. In order to
built a broadly usable deduplication system which is unopinionated about the underlying
data static chunking is used in the remainder.

2.2 Fingerprinting
In order to identify a unique block a secure hashing function like SHA-1 and SHA-
256 is used. Depending on the overall requirements an additional byte-for-byte level
comparison is feasible, like shown in the approach implemented in [10]. This might
especially be required when using a hashing function where collisions have been created
like in [11]. Newer implementations might therefore prefer SHA-256 and according to
the documentation ZFS even supports SHA-512 [12].

Another aspect of fingerprinting is the handling of storage requirements. As shown in
[13] a naive implementation of deduplication would require for 1 PB of data, a block
size of 8 B and SHA-128 (160 bit) about 2.5 TB of fingerprinting data. Therefore this
approach is not feasible for large datasets. In comparison using SHA-256 and additional
metadata ZFS allocates about 320 B for each entry in the deduplication table (DDT) [14].
Therefore the deduplication table would need to reside on disk and every I/O operation
would involve additional random access and therefore slow down the file system.

In [15] the author shows an alternative approach and introduces a ZFS prototype where
if the DDT does not fit into the memory entries which are not referenced by another
chunk are evicted from memory. This technique works as long as the memory is not
filled with fingerprints of chunks which are referenced more than once.

A few more basic concepts that are used in practice are shown below while following the

1https://github.com/uclouvain/openjpeg/wiki/DocJ2KCodec

10

https://github.com/uclouvain/openjpeg/wiki/DocJ2KCodec

notation introduced in [13]. Among helping with size management of the fingerprinting
index those changes can help improving the I/O performance. Due to the high proba-
bility of scattering a file across several regions on the storage layer especially the read
performance can be improved. This is particularly relevant for appliances outside of
backup systems.

2.2.1 Locality-Based
Those systems benefit from the similarity of the alignment of chunks across different files.
In general the claim is, that when a chunk occurs in some file the probability of the next
chunk is related to the occurrence in another and therefore similar file.

An example implementation is given in [16], where the authors introduce “POD: Per-
formance Oriented I/O”. Their goal is to balance the performance of write and read
operations of small and large files by dynamically changing the memory utilization of
the fingerprinting index with respect to the read cache. An important component of this
system is the decision on which chunks actually need to be indexed. This is done by
classifying the data into certain categories. Depending on whether a redundancy exceeds
a threshold deduplication is performed. This also helps to improve the read performance,
as more continuous chunks can be read.

2.2.2 Similarity-Based
This technique can be used where files do not share locality of individual chunks but an
overall similarity.

In [17] “Extreme Binning” is introduced. The intention is to store a similarity hash of
every file in memory. This hash can then be used to read the actual chunk hashes from
secondary storage in one consecutive I/O operation. The key component here is the
calculation of the similarity hash, which is handled by the Broder’s theorem. In this
context the theorem states that if two files have similar chunks the probability that both
result in the same hash is high.

2.2.3 Flash-Assisted
With increased IOPS capabilities in recent storage technologies the fingerprinting data
does not have to reside in the memory at all costs. With NVMe drives achieving over
1 millions random reads per second alternatives emerge. One example is shown in [18]
where, among other optimizations, a key-value store is used to handle the fingerprints
on flash drives. Modern key-value stores like RocksDB2 have native support for those
appliances nowadays.

2https://rocksdb.org

11

https://rocksdb.org

2.3 Use Cases
In this section use cases for deduplication are shown. The most common use case for
this feature is when backups are involved. However, deduplication can be used in all
sorts of scenarios and in a variety of environments.

2.3.1 Backups
Backups are ideal for deduplication as in many cases the majority of the data stays the
same in between backup runs. In those cases e.g. file-level deduplication is a fast and
resource efficient way to achieve a worthwhile deduplication ratio. Another benefit is
that when deduplication is performed on the client only chunks that are new or have
changed have to be transmitted across a potentially slow network connection.

2.3.2 Container images
In OS images a lot of data is redundant. According to Microsoft virtualization related
data can be reduced by 80-90%3 when using deduplication. In [19] researchers have built
a tool called Slimmer that is capable of applying deduplication on Docker registries. They
found out that only 3% of the data is unique and when using file-level deduplication,
paired with compression, storage savings up to a factor of 24.8 are possible.

2.3.3 HPC
In [20] a study is performed on datasets residing on HPC storage systems. It was shown
that 20-30% of the data can be saved when deduplication is being used. In practice it is
still questionable on how well deduplication can be used on a productive system due to
the large overhead when working on potentially thousands of petabytes of data and the
existing I/O paths and distributed environments.

However, the study also shows that it might be possible to derive workflow improvements
from analysing the individual project spaces. In some cases exact file copies were found
and unpacked archives were kept. Instead of enforcing deduplication across the whole
file system it therefore might be possible to increase user awareness of their individual
impact on the available storage in the HPC facility.

3https://docs.microsoft.com/en-us/windows-server/storage/data-deduplication/
overview

12

https://docs.microsoft.com/en-us/windows-server/storage/data-deduplication/overview
https://docs.microsoft.com/en-us/windows-server/storage/data-deduplication/overview

3 Related Work

3.1 ZFS
ZFS is a well-known, modern and broadly used file system, which also includes a volume
manager. It provides state of the art features like software defined RAID support,
checksums, snapshots, replication, compression and deduplication. Development of this
file system started in 2001 during Sun Microsystems ownership and is nowadays fully
open source and managed under the name OpenZFS1.

At its foundation ZFS uses blocks of configurable size which are handled according to
a copy-on-write mechanism. All modifications therefore result in a new block being
written. Whenever a block is read the content is verified based on a checksum calculated
by either Fletcher-2, Fletcher-4 or SHA-256 during the write process. The requirements
for deduplication are therefore deeply integrated into the roots of the filesystem.

A deduplication specific feature in ZFS is the deduplication table, which has been
introduced in Section 2.2. In order to estimate if deduplication provides a benefit for
the user-specific use case the zdb utility can be used. An example can be seen in
Listing 3.1. The “refcnt” column denotes how many times a block is referenced. This
is then shown from an allocation and from a reference perspective. A single block
with a logical size of 128 kB is referenced over 2 million times resulting in a theoretical
physical size of 272 GB. However, when using deduplication this block is stored only
once, which is shown in the “allocated” group. This leads to a physical deduplication
ratio of referenced PSIZE

allocated PSIZE = 306 GB
33.3 GB = 9.18 and the actual use of deduplication should be

considered in this case.

1https://openzfs.org/wiki/Main_Page

13

https://openzfs.org/wiki/Main_Page

user@host:~$ zdb -S <POOLNAME>
Simulated DDT histogram:

bucket allocated referenced
------ ---------------------------- ----------------------------
refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE
------ ------ ----- ----- ----- ------ ----- ----- -----

1 555K 69.3G 33.3G 33.3G 555K 69.3G 33.3G 33.3G
2M 1 128K 128K 128K 2.13M 272G 272G 272G

Total 555K 69.3G 33.3G 33.3G 2.67M 342G 306G 306G

dedup = 9.18, compress = 1.12, copies = 1.00,
dedup * compress / copies = 10.26

Listing 3.1: Evaluation of deduplication before actual activation [21]

3.2 OpenDedup
OpenDedup2 provides deduplication features as a POSIX compliant file system and can
serve as an intermediate layer between local storage and cloud storage providers. It is
mainly intended for backup purposes and is compatible with commonly used applications
for similar use cases like Backblaze and NetBackup.

In contrast to the deduplication technique used in ZFS, OpenDedup provides static
chunking with block sizes set in the range of 4 kB to 128 kB and dynamic chunking using
Rabin fingerprinting. The challenge of finding optimal chunk sizes can also be seen here
as the minimal and maximal size of those chunks are predefined and set to 4 kB and
32 kB, respectively.

When storing the data on remote storage a local cache is used for quicker access to
the most recent data. The remote storage also serves as an operator for data resilience
purposes, as for example AWS S3 is capable of handling data loss in at least two
facilities3.

2https://opendedup.org
3https://docs.aws.amazon.com/AmazonS3/latest/userguide/DataDurability.html

14

https://opendedup.org
https://docs.aws.amazon.com/AmazonS3/latest/userguide/DataDurability.html

4 JULEA

In this chapter a deduplication implementation for JULEA is introduced. First of all
a minimal viable implementation in regard to possible variants described in Chapter 2
is highlighted. Further on the general architecture of JULEA and the integration of
this new feature is shown. Finally, several scenarios are evaluated. The source code is
available on Github1.

4.1 Introduction
JULEA is a storage framework developed by Michael Kuhn and has been first introduced
in [22]. It provides several backends that can be used for data and metadata purposes,
which can either run on the client or the server side. Those backends are implemented in
user space and restrictions exposed e.g. by the VFS layer do not apply.

The point where JULEA intervenes is shown in Figure 4.1. On the left side a traditional,
rigid HPC stack can be seen. An application uses a scientific I/O library, like NetCDF,
that depends on other frameworks by itself. This is motivated by the need for an easy
and in this case domain specific access to I/O functionalities. Those requests are then
passed along other libraries like HDF5 and finally MPI-IO is used for access to a parallel,
distributed file system like Lustre. As in general the ease of use declines as the potential
for new concepts rises throughout this stack it becomes a great challenge to implement
new features.

On the right the proposed stack introduced by JULEA can be seen. In this case JULEA
is used as a transparent interface between previous layers and allows for easier extensions
on the I/O path.

This enables researchers to implement various features more easily and the possibility to
rely on modern technology. As those restrictions do not apply data backends with support
for high-level APIs like RADOS2 and GIO3 exist. In order to handle metadata in various
ways support for transactional databases like MySQL and SQLite were implemented, as
well as, key-value stores like LMDB and LevelDB.

Those backends share an API and new variants have to implement either the data or

1https://github.com/Julius-Plehn/julea/tree/feature/dedup
2https://docs.ceph.com/en/latest/rados/api/librados-intro/
3https://developer.gnome.org/gio/stable/

15

https://github.com/Julius-Plehn/julea/tree/feature/dedup
https://docs.ceph.com/en/latest/rados/api/librados-intro/
https://developer.gnome.org/gio/stable/

the metadata API. Deduplication relies heavily on handling of small I/O operations as
well as the availability of efficient data structures for metadata. Those prerequisites
are fulfilled by JULEA and in the next sections additional JULEA concepts and the
implementation details are shown.

Figure 4.1: JULEA Stack [22]

4.2 Concepts
Before getting into the implementation details of the new deduplication feature, further
JULEA specific concepts are introduced. This is done by highlighting how a similar
feature, the regular JItem client, is built and what components are involved when
performing a write or a read operation.

First of all, some important components that are used throughout JULEA are intro-
duced.

Batches

In general all operations are performed in batches, following a specific semantics. This
correlates to the term “transactions” used in databases and even the integrated semantics
behave similar to the popular ACID properties. Several available semantics can be
integrated into a template and a new batch can be created from it. Among others an
atomicity semantic enables JULEA to specify when intermediate changes introduced
by an operation are available to other clients. The consistency semantic can be used to
specify when modifications will be applied to the backend and the ordering semantic can
be used to optimize the order of operations within a batch. Combining those constraints
it is possible to emulate POSIX semantics. Another purpose of batches is that they are
used to aggregate several operations for performance optimization purposes.

16

Collections

As the item client mimics behavior found in cloud environments, specifically object
storage related APIs like S3, collections are used to separate items logically in a flat
hierarchy. The items themself are identified by a name/key attribute and both identifiers
can be iterated. Depending on used security semantics those entities are only available
to the specific user or group.

Objects

Objects are used to store the actual data and they come with two different implementa-
tions. The first one uses a distribution to split the object onto several servers, while the
second one hashes the objects name in order to assign a single object in its entirety to a
single server. As of now the user can either choose to distribute the data according to
the round-robin algorithm or according to weights. It is also possible to assign a single
server. In this case a random server is chosen when the distribution is created.

The existing JItem client uses the distributing variant, while the new deduplication
capable client uses the regular object store. When using the regular client the distributed
object is initialized when the item is created. At this point the object is assigned a
namespace and the file path is used as a name. Furthermore the previously specified
distribution is attached. This part only serves as an initialization for further I/O
operations and the object is created in the batch which is used for the creation of the
item itself.

Behind the scenes and independent from the object variant used, the I/O is passed along
to the configured JBackend implementation which implements the object interface. This
works similar for other backends like databases and key-value stores.

4.3 Implementation
Based on the findings in Chapter 2 a deduplication system with the following character-
istics has been developed. The deduplication uses static chunking in an online manner.
Therefore all chunks are assigned at immediate run-time and only new, unknown chunks
are written. Garbage collection is performed at the same time as whenever a chunk is
not referenced anymore a cleanup operation is performed. To provide the best possible
resistance to hash collisions SHA-256 is used.

Deduplication is implemented as a new item client, similar to the existing JItem client
and therefore can be used directly by other applications. How this benefits our use case
can be seen in Figure 4.2. This new client runs on the compute nodes and only unique
and unseen chunks have to be sent across the TCP network. This is especially helpful
when the deduplication ratio (DR) is high or the network is slow.

17

Compute Node #2

Compute Node #1

Storage Node #2

Storage Node #1
Application

Application

MPI

JULEA Client JULEA Server

Database

Object Store

JULEA ServerJULEA Client Object Store

TCP

Figure 4.2: JULEA Client-Server Architecture [23]

This new deduplication capable client is called JItemDedup. Its interface closely resembles
that of the JItem client and shares many functions which are prefixed by j_item_dedup_-
instead of j_item_. Most notable, from a user perspective, the read and write functions
take the same parameters and only an additional and in many situations optional function
j_item_dedup_set_chunk_size can be used to set an individual chunk size for a specific
item.

In the next sections the overall structure of the new client is introduced. Additionally,
several important I/O operations are highlighted.

4.3.1 JItemDedup
The struct of the new client shares many fields of the previous client. The biggest
difference is that no object entity for actual data storage is attached to the new client.
Previously the data was attached to a single distributed JDistributedObject. However,
as the data is chunked according to a policy, the distribution happens as new data arrives
and a chunk is represented by an independent JObject. This is required as a single
object can be shared among many deduplicated items and the lifecycle of those objects
is linked to its reference counter that is shared globally.

In order to handle the hashes of the item a new key-value member in the struct is used
(kv_h). This is an addition to the existing kv member, which is still used to handle
metadata of the item itself, for example the name and the modification time. The content
of the key-value store is serialized/deserialized depending on the lifecycle of the item and
stored in GArray *hashes. Another new member is called chunk_size which stores the
size in which the chunks are going to be split into. These changes and additions can also
be seen in Figure 4.3.

18

(a) JItem Struct (b) JItemDedup Struct

Figure 4.3: Differences between JItem and JItemDedup

4.3.2 Operations
In this section details about read and write operations are shown. This is done by
outlining which influence the state of the overall system has on the operations, especially
on the write path. This is of special interest when working on chunked and distributed
data. When performing read or write operations a pointer to a buffer for holding the
data is given, as well as, the data length and an offset within the data. It is therefore
possible to read and write a specific part of an item and the deduplication client has to
be able to cope with those cases.

Independent of the type of I/O some chunk related calculations have to be made. This
includes the identification of the very first and last chunk, the total number of chunks
and the number of bytes which have to be processed in the last chunk.

The write operation is also shown in Listing 4.1 which helps to relate the overall steps
needed to perform deduplication with the actual code.

Write: New item

In this situation a new item is created and no previous data has been written to this
item. Given the size of the data and the defined chunk size the number of total chunks
required can be calculated. For every chunk an independent hash has to be calculated.
This is shown in line 23-34. In many cases hashing algorithms propose an API which

19

evolves around a context. It is therefore easily possible to add input to the hashing
algorithm and to get the final hash which is shown in line 34.

Another important aspect is the calculation of the len variable, which denotes how much
data has to be written in this particular chunk. The length depends on whether the
specific chunk is positioned at the beginning, the end or whether both conditions are
fulfilled. Additionally, this variable is influenced by the possibility of the use of an offset.
The chunks have to be aligned accordingly and the variable data_offset (line 1) keeps
track of where the input data has to be read from. The progress is therefore tracked in
line 83.

When this is done the key-value store is used to get the total number of references to
this chunk by querying the hash. This is shown in line 36-38 where the chunk_refs
namespace is used. When the callback is executed the variable refcount holds the
number of references to this specific chunk.

In the best case scenario the hash, respectively the chunk itself, is known to the system.
When the hash is unknown a new object has to be created (line 40-58). While previously,
in the non-deduplication capable client, a single item consisted out of a single distributed
object, a deduplicated item consists out of many, independent objects. Therefore, when
a new object is created a separated namespace (“chunks”) is used and the object itself is
named after its hash (line 43). The write operation on the object is similar to the way
the hash has been calculated, except that now an additional offset for the object has to
be used.

A direct connection between the independent objects and the deduplicated item does
not exist. The final step it to increment the reference counter of the new object in the
key-value store (line 60-70).

Finally, the hash of the chunk is added in order of their occurrence (line 82).

Write: Existing item

In this case an item already exists and data is written using an offset. While in the
regular item the data is simply written at that specified offset some extra steps are
necessary when using deduplication.

As this deduplication variant uses a static chunk size the data has to be hashed accordingly.
When using an offset it is now required to recreate the existing chunk and change it so
that the new data, that is included in that specific part, forms a new chunk and a new
hash can be calculated - including the previous part. This can be seen in line 25 and 32.
In both cases a previously created buffer is used and fitted according to the layout of the
new data.

In order to write the actual new data some old data has to be read first. It is therefore
required to calculate the offset within the chunk with respect to the global offset passed
to the write function. The next step is to read this specific part using the associated

20

object, which is identified by the used hash at this position. The required hash is easily
available as the hashes are deserialized into a GArray and they are ordered according to
the occurrence of their associated chunks.

The remaining steps are similar to the ones shown in the previous scenario with one
important exception. It is possible that some old chunks have been modified. However,
this is not reflected in the current state because when a chunk at a certain position has
changed a new object is either created or a reference counter has been incremented. After
the most recent hashes have been serialized and added to the current item a garbage
collection step is required. This means that if a chunk is processed the final step is
to check if previously the same chunk ocurred at the same position. If this is not the
case the associated reference counter is decremented and when no further references are
needed the chunk is deleted. This can be seen in line 72-81 where the hash is removed
from the GArray, which is present within the item. The actual garbage collection step is
performed within the j_item_unref_chunk function.

1 guint64 data_offset = 0;
2 for (guint64 chunk = 0; chunk < chunks; chunk++)
3 {
4 gchar* hash;
5 guint32 refcount = 0;
6 guint64 len = item->chunk_size;
7

8 algo_array[hash_choice]->init(hash_context);
9

10 if (chunk == 0 && chunk == chunks - 1)
11 {
12 len = item->chunk_size - chunk_offset - remaining;
13 }
14 else if (chunk == 0)
15 {
16 len = item->chunk_size - chunk_offset;
17 }
18 else if (chunk == chunks - 1)
19 {
20 len = item->chunk_size - remaining;
21 }
22

23 if (chunk == 0)
24 {
25 algo_array[hash_choice]->update(hash_context, first_buf,

chunk_offset);↪→

26 }
27

21

28 algo_array[hash_choice]->update(hash_context, (const gchar*)data +
data_offset, len);↪→

29

30 if (chunk == chunks - 1)
31 {
32 algo_array[hash_choice]->update(hash_context, last_buf, remaining);
33 }
34 algo_array[hash_choice]->finalize(hash_context, &hash);
35

36 chunk_kv = j_kv_new("chunk_refs", (const gchar*)hash);
37 j_kv_get_callback(chunk_kv, j_item_hash_ref_callback, &refcount,

sub_batch);↪→

38 ret = j_batch_execute(sub_batch);
39

40 if (refcount == 0)
41 {
42 guint64 extra_offset = 0;
43 chunk_obj = j_object_new("chunks", (const gchar*)hash);
44 j_object_create(chunk_obj, batch);
45

46 if (chunk == 0 && chunk_offset > 0)
47 {
48 j_object_write(chunk_obj, first_buf, chunk_offset, 0,

bytes_written, batch);↪→

49 extra_offset = chunk_offset;
50 }
51

52 j_object_write(chunk_obj, (const gchar*)data + data_offset, len,
extra_offset, bytes_written, batch);↪→

53

54 if (chunk == chunks - 1 && remaining > 0)
55 {
56 j_object_write(chunk_obj, last_buf, remaining, item->chunk_size -

remaining, bytes_written, batch);↪→

57 }
58 }
59

60 new_ref_bson = bson_new();
61 bson_append_int32(new_ref_bson, "ref", -1, refcount + 1);
62

63 {
64 gpointer value;
65 guint32 value_len;
66 value = bson_destroy_with_steal(new_ref_bson, TRUE, &value_len);

22

67

68 j_kv_put(chunk_kv, value, value_len, bson_free, sub_batch);
69 }
70 ret = j_batch_execute(sub_batch);
71

72 if (chunk < old_chunks)
73 {
74 gchar* old_hash = g_array_index(item->hashes, gchar*, first_chunk +

chunk);↪→

75 if (g_strcmp0(old_hash, (gchar*)hash) != 0)
76 {
77 j_item_unref_chunk(old_hash, batch);
78 g_array_remove_index(item->hashes, first_chunk + chunk);
79 g_free(old_hash);
80 }
81 }
82 g_array_insert_val(item->hashes, first_chunk + chunk, hash);
83 data_offset += len;
84 }
85 algo_array[hash_choice]->destroy(hash_context);

Listing 4.1: Write process (Shortened)

Read

As mentioned previously the read process requires similar precalculations like the write
path. Depending on the given offset the required number of chunks is calculated.
Additionally, depending on the position of the individual chunk, the length that has to
be read from the referenced object is chosen.

The final step is to iterate throughout the required objects, which are referenced by
their hashes and to recreate the requested item by appending the data to an allocated
buffer.

23

5 Evaluation

In this chapter several scenarios are evaluated. In the first part the deduplication
performance on individual files is shown. Finally, a specific use case is highlighted.
For evaluation purposes three different datasets are analysed. One dataset consists
out of linux kernel archives1, either used as individual files or as an archive. Another
dataset was taken from a previous ECHAM2 run and is stored as a NetCDF file. Finally,
DEDISbench3 was used to generate realistic datasets based on collected metrics.

5.1 Single File Performance
In the first test several linux kernels have been combined into a single tar-archive resulting
in a combined size of 9.8 GB. Compression was explicitly disabled. The influence of
different chunk sizes and their impact on the runtime can be seen in Figure 5.1. It
is expected that the deduplication rate increases as the chunk size decreases and this
behavior can be seen here. A chunk that is 4096 B large and introduces a specific
deduplication rate has to, by definition, achieve the same or a better deduplication rate
when the chunk size becomes half of the previous size.

This file format also serves as an example on what influence the packaging and the
internal layout of the individual data chunks might have on the optimal chunk size. As
noted in the tar documentation4 data is stored in blocks, which are 512 B large and
several blocks are read and written at once in a unit called “record”. Furthermore, each
record is separated by gaps and the occurrence of those therefore depend on the number
of blocks in a single record. It is now either up to the user to define the correct chunk size
when using deduplication or up to the deduplication policy to decide on the individual
chunk size by using dynamic chunking, which has been introduced earlier.

For reference another file has been benchmarked, which can be seen in Figure 5.3. The
results are very similar, however in this case the achievable maximal deduplication rate
is far less than in the previous example. The performance in general is heavily influenced
by the actual data that is written. Another aspect is the layout of the data. The internal
mechanism on how to save data in either a tar-archive or in a NetCDF file varies vastly.

1https://github.com/torvalds/linux/releases
2https://mpimet.mpg.de/en/science/models/mpi-esm/echam/
3https://github.com/jtpaulo/dedisbench
4https://www.gnu.org/software/tar/manual/html_node/Blocking-Factor.html#

Blocking-Factor

24

https://github.com/torvalds/linux/releases
https://mpimet.mpg.de/en/science/models/mpi-esm/echam/
https://github.com/jtpaulo/dedisbench
https://www.gnu.org/software/tar/manual/html_node/Blocking-Factor.html#Blocking-Factor
https://www.gnu.org/software/tar/manual/html_node/Blocking-Factor.html#Blocking-Factor

Even in a scenario where exactly the same data is written the deduplication ratio could
be completely different and could also depend on a different chunk size.

Another aspect is the influence on the runtime, which increases as the chunk size decreases.
This relationship can also be seen in Figure 5.2, where in a benchmark scenario a large
portion of the time was spent on metadata operations. Those type of operations increase
when more chunks have to be processed. The measurements were made using the perf
utility5. Perf is useful to gather insights into the internal behavior of an application
and the associated kernel by capturing events that are emitted by the operating system.
In this case the cycles event was captured meaning that by counting the CPU cycles
a specific part of an application took it is possible to tell where most time was spend
within the execution. In this case it can be observed that within j_item_dedup_write
about 11.6 % was spent on operation related to the key-value store. This is unique to the
deduplication feature as batches were executed within the write operation itself.

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

2048 4096 8192 16384 32768 65536 131072
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

D
e
d

u
p

li
ca

ti
o
n

 R
a
te

R
u

n
ti

m
e
 [

S
e
co

n
d

s]

Chunk Size [B]

linux.tar

DR
Runtime

Figure 5.1: Deduplication performance on tar-archive

5https://perf.wiki.kernel.org/index.php/Main_Page

25

https://perf.wiki.kernel.org/index.php/Main_Page

Figure 5.2: Impact of metadata operations

 1.04
 1.05
 1.06
 1.07
 1.08
 1.09

 1.1
 1.11
 1.12
 1.13

2048 4096 8192 16384 32768 65536 131072
 0

 100

 200

 300

 400

 500

 600

 700

 800

D
e
d

u
p

li
ca

ti
o
n

 R
a
te

R
u

n
ti

m
e
 [

S
e
co

n
d

s]

Chunk Size [B]

ECHAM.nc

DR
Runtime

Figure 5.3: Deduplication performance on ECHAM NetCDF output

The following two plots are based on data generated by the DEDISbench tool. This tool
can be used to simulate data that is derived of an input file that represents a distribution
of blocks and their probability of occurrence. An example can be seen in the Github
repository6. Each line represents a number of blocks and how many duplicates should be

6https://github.com/jtpaulo/dedisbench/blob/master/conf/dist_archival

26

https://github.com/jtpaulo/dedisbench/blob/master/conf/dist_archival

created accordingly. This project provides several distributions by default and two have
been used for analysis. However is is also possible to create custom distributions based
on own data using the DEDISgen utility. An important characteristic when creating
those files is the selection of the block size. This also highlights the challenge introduced
by the use of static chunking in comparison to the use of dynamic chunk sizes.

As can be seen in Figure 5.4 a distribution according to archival data and kernel data has
been benchmarked. The analysed file has been created using a block size of 128 000 B.
While the given deduplication rate is barely over one using the same block size, the
deduplication rate increases drastically when reducing the static chunk size. Similar
to the performance seen in Section 5.2 the storage of kernels is an ideal use case for
deduplication and a good example for the usage within backup or versioning use cases in
general.

Another test was made using an unaligned chunk size of 128 123 B. As expected the
achieved deduplication rate was one and therefore not a single block has been re-
duced.

In Figure 5.5 the amount of created chunks in relation to the chunk size is shown. The
benchmark scenario and the used block size is the same as previously. It can be seen
that within a deduplicatable chunk the data stays the same for a whole block. Therefore
a written block of size 128 000 B can be chunked into smaller chunks and the number of
chunks needed stays the same. However, when the chunk size is misaligned every chunk
is unique and the deduplication ratio is one, as shown in the previous figure. This also
results in a huge amount of required chunks as each one is unique. When using a chunk
size of 256 000 B deduplication is possible to a certain extend and the data can be stored
by using fewer chunks.

0

1

2

3

4

5

32000 64000 128000 128123 256000

D
e
d

u
p

li
ca

ti
o
n

 R
a
te

Chunk Size [B]

DEDISbench: Deduplication rate comparison

Archival
Kernels

Figure 5.4: DEDISbench with misaligned chunk size

27

7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

32000 64000 128000 128123 256000

C
re

a
te

d
 C

h
u

n
k
s

Chunk Size [B]

DEDISbench: Chunk creation comparison

Archival
Kernels

Figure 5.5: Influence of chunk size on metadata generation

5.2 Backup/Versioning Performance
In this section the backup use case is demonstrated. This is done by adding one linux
kernel version at a time and tracking the total storage usage of JULEA in comparison to
the storage space required on a regular file system without deduplication.

The results can be seen in Figure 5.6, where the blue line represents the storage required
within JULEA with deduplication enabled. In comparison the red line represents the
accumulated storage requirements without deduplication. The influence of different
chunk sizes has also been evaluated, however it has shown to be of little use in this case
as deduplication based on the overall file content achieved great results.

As can be seen the initial addition of kernel version 5.12 requires the same space in
both cases. Beginning with the addition of kernel version 5.13 a major difference can
be observed. While without deduplication the storage requirements rise nearly linearly
the space used with deduplication rises only by ∼ 30 %. The remaining content of
the kernel can therefore be deduplicated. Another interesting observation is that the
differences between the first release candidate of the kernel (5.13-rc1) and the final
stable version (5.13) are significant and result in an additional storage use of ∼ 3.8 %.
The differences between the intermediate versions however are much smaller. In the
end the required physical storage when using deduplication is about 1592 MB and the
potential storage savings are significant in comparison to the 10 497 MB required without
deduplication.

Another experiment has been done in Figure 5.7. In this setup the POSIX storage
backend was located on a Raspberry Pi 3 Model B+ which was connected by WiFi.
The metadata backend was located on the client. In this case an additional advantage,
besides the previously observed storage savings, can be seen. As the amount of data,
that has to be transmitted declines with every additional kernel version, significant time

28

savings are possible. When comparing both plots the correlation between the amount of
data that has to be transmitted and transmission time becomes obvious.

 1150
 1200
 1250
 1300
 1350
 1400
 1450
 1500
 1550
 1600

5.12 5.13 5.13-rc1 5.13-rc2 5.13-rc3 5.13-rc4 5.13-rc5 5.13-rc6 5.13-rc7
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000
 10000
 11000

S
iz

e
 [

M
B

]
(D

e
d

u
p

=
O

n
)

S
iz

e
 [

M
B

]
(D

e
d

u
p

=
O
ff

)

Version

Linux Kernel Versions

Accumulated with Dedup
Accumulated without Dedup

Figure 5.6: Performance on directory containing Linux kernels

 200

 400

 600

 800

 1000

 1200

 1400

5.12 5.13 5.13-rc1 5.13-rc2 5.13-rc3 5.13-rc4 5.13-rc5 5.13-rc6 5.13-rc7

T
im

e
 [

S
e
co

n
d

s]

Version

Linux Kernel Versions - Time Comparison

Deduplication on remote POSIX backend

Figure 5.7: Time improvement on directory containing Linux kernels

29

6 Future Work

The presented deduplication implementation serves as a first usable implementation in
order to show the strengths and weaknesses of a basic static chunking policy. In the
future two main development targets could be of interest.

First of all, more chunking policies could be explored. The addition of the Rabin
fingerprinting algorithm would be a great improvement and could be compared against
the performance of the existing one. Additional policies shown in Section 2.2 might also
be of interest.

Another step could be to include deduplication in other parts of the JULEA stack. As of
now deduplication happens on the client-side and ideally less data needs to be transmitted.
Depending on the use case deduplication could happen in the backend directly within the
objects. This would also enable experiments using postponed deduplication in which the
write process is not slowed down by increased metadata operations and instead, when
the available resources allow for it, perform deduplication later on. This also includes
garbage collection and metadata heavy tasks.

30

7 Conclusion

This report has shown that deduplication can achieve significant storage savings, depend-
ing on the use case and the handled data, accordingly. In a best-case scenario where
multiple iterations of software versions were stored it was possible to save ∼ 70 % of
physical storage when storing the second version indicating a high amount of duplicated
data. While this scenario works well in this specific case other scenarios profit from
more advanced implementations which do not rely on the static chunking technique.
For example it was shown that the influence of a chunk size that is misaligned with the
layout of the deduplicatable data has a severe impact on the deduplication rate.

The JULEA framework provides all required functionalities and the necessary expand-
ability in order to integrate those further variants.

31

Bibliography

[1] E. Manogar and S. Abirami. A study on data deduplication techniques for optimized
storage. In 2014 Sixth International Conference on Advanced Computing (ICoAC),
pages 161–166, 2014. doi:10.1109/ICoAC.2014.7229702.

[2] D. Meister. Advanced data deduplication techniques and their application. 2013.

[3] Moinakg. High performance content defined chunking, 2013. URL: https://
moinakg.wordpress.com/tag/rabin-fingerprint/.

[4] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A Low-bandwidth
Network File System. pages 174–187, 2001. URL: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.10.8444.

[5] M.O. Rabin. Fingerprinting by Random Polynomials. Center for Research in
Computing Technology: Center for Research in Computing Technology. Center for
Research in Computing Techn., Aiken Computation Laboratory, Univ., 1981. URL:
https://books.google.de/books?id=Emu_tgAACAAJ.

[6] Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. Bimodal content defined
chunking for backup streams. In Proceedings of the 8th USENIX Conference on File
and Storage Technologies, FAST’10, page 18, USA, 2010. USENIX Association.

[7] Michael Hirsch, Shmuel T. Klein, Dana Shapira, and Yair Toaff. Dynamic de-
termination of variable sizes of chunks in a deduplication system. Discrete Ap-
plied Mathematics, 274:81–91, 2020. Stringology Algorithms. URL: https://www.
sciencedirect.com/science/article/pii/S0166218X18303962, doi:https://
doi.org/10.1016/j.dam.2018.07.015.

[8] Wenlong Tian, Ruixuan Li, Zhiyong Xu, and Weijun Xiao. Does the content
defined chunking really solve the local boundary shift problem? In 2017 IEEE 36th
International Performance Computing and Communications Conference (IPCCC),
pages 1–8, 2017. doi:10.1109/PCCC.2017.8280445.

[9] Young Chan Moon, Ho Min Jung, Chuck Yoo, and Young Woong Ko. Data dedu-
plication using dynamic chunking algorithm. In Proceedings of the 4th International
Conference on Computational Collective Intelligence: Technologies and Applications
- Volume Part II, ICCCI’12, page 59–68, Berlin, Heidelberg, 2012. Springer-Verlag.
doi:10.1007/978-3-642-34707-8_7.

[10] Lior Aronovich, Ron Asher, Eitan Bachmat, Haim Bitner, Michael Hirsch, and

32

https://doi.org/10.1109/ICoAC.2014.7229702
https://moinakg.wordpress.com/tag/rabin-fingerprint/
https://moinakg.wordpress.com/tag/rabin-fingerprint/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.8444
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.8444
https://books.google.de/books?id=Emu_tgAACAAJ
https://www.sciencedirect.com/science/article/pii/S0166218X18303962
https://www.sciencedirect.com/science/article/pii/S0166218X18303962
https://doi.org/https://doi.org/10.1016/j.dam.2018.07.015
https://doi.org/https://doi.org/10.1016/j.dam.2018.07.015
https://doi.org/10.1109/PCCC.2017.8280445
https://doi.org/10.1007/978-3-642-34707-8_7

Shmuel T. Klein. The design of a similarity based deduplication system. In
Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference, SYS-
TOR ’09, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1145/1534530.1534539.

[11] Stevens, Bursztein, et al. Announcing the first SHA1 collision. URL: https:
//security.googleblog.com/2017/02/announcing-first-sha1-collision.
html.

[12] Checksums and Their Use in ZFS — OpenZFS documentation. URL: https:
//openzfs.github.io/openzfs-docs/Basic%20Concepts/Checksums.html.

[13] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu,
Yucheng Zhang, and Yukun Zhou. A comprehensive study of the past, present,
and future of data deduplication. Proceedings of the IEEE, 104:1–30, 09 2016.
doi:10.1109/JPROC.2016.2571298.

[14] Dominic Kay. How To Size Main Memory for ZFS Deduplication. URL: https:
//www.oracle.com/technical-resources/articles/it-infrastructure/
admin-o11-113-size-zfs-dedup.html.

[15] Matt Ahrens. Zero performance overhead OpenZFS dedup, 2019. URL: https:
//openzfs.org/w/images/8/8d/ZFS_dedup.pdf.

[16] Bo Mao, Hong Jiang, Suzhen Wu, and Lei Tian. POD: Performance Oriented
I/O Deduplication for Primary Storage Systems in the Cloud. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, pages 767–776, May
2014. doi:10.1109/IPDPS.2014.84.

[17] Deepavali Bhagwat, Kave Eshghi, Darrell D. E. Long, and Mark Lillibridge. Extreme
Binning: Scalable, parallel deduplication for chunk-based file backup. In 2009
IEEE International Symposium on Modeling, Analysis Simulation of Computer
and Telecommunication Systems, pages 1–9, Sep. 2009. doi:10.1109/MASCOT.2009.
5366623.

[18] Biplob Debnath, Sudipta Sengupta, and Jin Li. ChunkStash: Speeding up Inline
Storage Deduplication Using Flash Memory. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, USENIXATC’10, page 16,
USA, 2010. USENIX Association.

[19] Nannan Zhao, Vasily Tarasov, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis,
Amit Warke, Mohamed Mohamed, and Ali Butt. Slimmer: Weight Loss Secrets for
Docker Registries. In 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD), pages 517–519, July 2019. ISSN: 2159-6190. doi:10.1109/CLOUD.2019.
00096.

[20] Dirk Meister, Jurgen Kaiser, Andre Brinkmann, Toni Cortes, Michael Kuhn, and
Julian Kunkel. A study on data deduplication in HPC storage systems. In SC
’12: Proceedings of the International Conference on High Performance Computing,

33

https://doi.org/10.1145/1534530.1534539
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://openzfs.github.io/openzfs-docs/Basic%20Concepts/Checksums.html
https://openzfs.github.io/openzfs-docs/Basic%20Concepts/Checksums.html
https://doi.org/10.1109/JPROC.2016.2571298
https://www.oracle.com/technical-resources/articles/it-infrastructure/admin-o11-113-size-zfs-dedup.html
https://www.oracle.com/technical-resources/articles/it-infrastructure/admin-o11-113-size-zfs-dedup.html
https://www.oracle.com/technical-resources/articles/it-infrastructure/admin-o11-113-size-zfs-dedup.html
https://openzfs.org/w/images/8/8d/ZFS_dedup.pdf
https://openzfs.org/w/images/8/8d/ZFS_dedup.pdf
https://doi.org/10.1109/IPDPS.2014.84
https://doi.org/10.1109/MASCOT.2009.5366623
https://doi.org/10.1109/MASCOT.2009.5366623
https://doi.org/10.1109/CLOUD.2019.00096
https://doi.org/10.1109/CLOUD.2019.00096

Networking, Storage and Analysis, pages 1–11, November 2012. ISSN: 2167-4337.
doi:10.1109/SC.2012.14.

[21] ZFS auf Linux/ Deduplizierung – Wikibooks, Sammlung freier Lehr-, Sach-
und Fachbücher. URL: https://de.wikibooks.org/wiki/ZFS_auf_Linux/
_Deduplizierung.

[22] Michael Kuhn. JULEA: A Flexible Storage Framework for HPC. In Julian M.
Kunkel, Rio Yokota, Michela Taufer, and John Shalf, editors, High Performance
Computing, pages 712–723, Cham, 2017. Springer International Publishing.

[23] Kira Duwe and Michael Kuhn. Deliverable D1: Report - Coupled Storage System
for Efficient Management of Self-Describing Data Formats (CoSEMoS), 2021. URL:
https://parcio.ovgu.de/Research/CoSEMoS.html.

34

https://doi.org/10.1109/SC.2012.14
https://de.wikibooks.org/wiki/ZFS_auf_Linux/_Deduplizierung
https://de.wikibooks.org/wiki/ZFS_auf_Linux/_Deduplizierung
https://parcio.ovgu.de/Research/CoSEMoS.html

Appendices

35

List of Figures

1.1 Example reduction pipeline . 5
1.2 Deduplication Paths . 7

2.1 Rolling hash example [3] . 9

4.1 JULEA Stack [22] . 16
4.2 JULEA Client-Server Architecture [23] 18
4.3 Differences between JItem and JItemDedup 19

a JItem Struct . 19
b JItemDedup Struct . 19

5.1 Deduplication performance on tar-archive 25
5.2 Impact of metadata operations . 26
5.3 Deduplication performance on ECHAM NetCDF output 26
5.4 DEDISbench with misaligned chunk size 27
5.5 Influence of chunk size on metadata generation 28
5.6 Performance on directory containing Linux kernels 29
5.7 Time improvement on directory containing Linux kernels 29

36

List of Listings
3.1 Evaluation of deduplication before actual activation [21] 14

4.1 Write process (Shortened) . 23

37

38

	Introduction
	Motivation
	Deduplication

	Background
	Chunking
	Fingerprinting
	Locality-Based
	Similarity-Based
	Flash-Assisted

	Use Cases
	Backups
	Container images
	HPC

	Related Work
	ZFS
	OpenDedup

	JULEA
	Introduction
	Concepts
	Implementation
	JItemDedup
	Operations

	Evaluation
	Single File Performance
	Backup/Versioning Performance

	Future Work
	Conclusion
	Bibliography
	Appendices
	List of Figures
	List of Listings

