

## Proseminar: Speicher und Dateisysteme Jan Harder – 08.01.2019 Betreuer: Dr. Michael Kuhn



Proseminar Speicher und Dateisysteme | Jan Harder

## Lustre



## Gliederung

- 1. Allgemein
  - 1.1 Was ist Lustre?
  - 1.2 Motivation
  - 1.3 Geschichte / Projekt
- 2. Architektur
  - 2.1 Komponenten
  - 2.2 Clients
  - 2.3 Server und Targets
  - 2.4 Objekt based storages
  - **2.5 LNET**

- 3. Funktionen
  - 3.1 Failover
  - 3.2 Striping
- 4. Verwendung
- 5. Aktuelle Entwicklung





#### Was ist Lustre?

- Paralleles, verteiltes Dateisystem
- Name: Linux + Cluster
- Für Linux-Systeme entwickelt
- Für hohe Auslastung ausgelegt
- Open Source durch GNU GPL (v2)
- POSIX konform

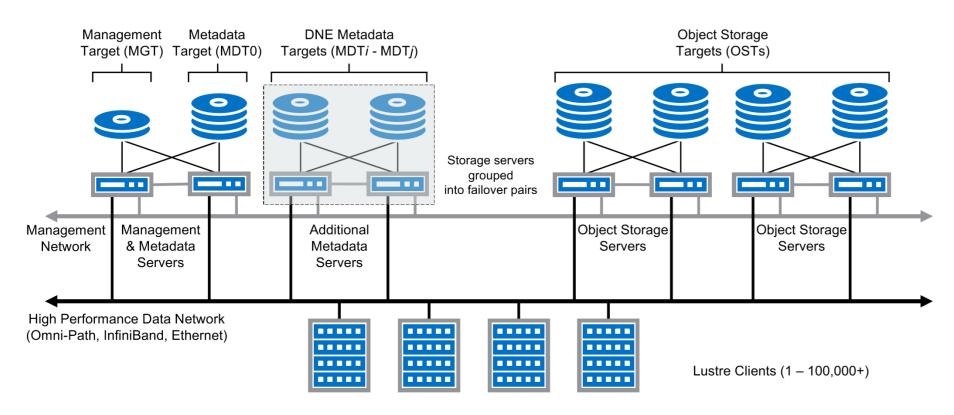




#### Motivation

- Immer größere Datenmengen
- Größere Dateien
- Server und Netzwerk haben jedoch beschränkten Durchsatz und Kapazität
- -> Dateien über mehrere Server verteilen




#### Geschichte von Lustre

- 1999: Forschungsprojekt von Peter J. Braam an der Carnegie Mellon University
- 2001: Cluster File Systems in 2001 gegründet
- 2007: Kauf durch Sun Microsystems
- 2010: Kauf durch Oracle keine Weiterentwicklung
- Verschiedene Gruppen setzen Entwicklung fort (Whamcloud, Open SFS)





#### Architektur von Lustre



Aufbau eines Lustre Dateisystems von wiki.lustre.org [1]





#### Komponenten

- Clients
- Metadata Server / Metadata Target
- Management Server / Management Target
- Object Storage Server / Object Storage Target
- Object Storage Devices
- LNET





#### Clients

- Hohe Anzahl an Clients möglich (100.000+)
- Ein Namensraum für alle Clients
- Clients fassen Meta- und Objektdaten POSIX konform zusammen
- Anwendung muss nicht für Lustre geschrieben werden
- Clients greifen nicht direkt auf Speicher zu
- Oft ohne eigene Festplatten





## Management Server / Management Target

- Management Server (MGS) stellt
  Konfigurationsinformationen bereit
- Daten werden auf Management Target (MGT) gespeichert
- Nur ein MGS für ganzes Lustre Dateisystem
- MGS ist nicht an eigentlichen Operationen beteiligt





### Metadata Server / Metadata Target

- Metadata Server (MDS) stellt Metadaten bereit
- Dateiname, Zugriffsrechte, Sperren, Stripes...
- Metadata wird in inodes gespeichert
- Inodes werden auf Metadata Target(s) (MDT) gespeichert
- Kein Zugriff auf Dateien möglich ohne MDS/MDT
- Für das Löschen und Erstellen von Dateien zuständig





## Object Storage Server / Object Storage Target

- Datei wird in Stripes auf mehrere Objekte verteilt
- Object Storage Server (OSS) verwaltet die gespeicherten Daten
- Führen I/O Operationen aus (read/write)
- Passiver Speicher (Verteilung durch MDS oder MGS)
- OST sollten gleichmäßig verteilt sein
- Kapazität lässt sich durch Hinzufügen von OST erhöhen





## **Object Storage Devices (OSD)**

- Targets können zwei verschiedene Dateisysteme haben
- LDISKFS: Weiterentwicklung von ext4, Kernel muss angepasst werden
  - Berechnung der inodes Anzahl bei Formatierung
- ZFS: Kernel muss nicht angepasst werden, Installation aufwendiger
  - Dynamisches Berechnen der inodes Anzahl
- Auch Kombinationen von LDISKFS und ZFS möglich



#### Architektur

#### Skalierbarkeit

|                                                         | Value using LDISKFS backend                           | Value using ZFS backend | Notes                                                                |
|---------------------------------------------------------|-------------------------------------------------------|-------------------------|----------------------------------------------------------------------|
| Maximum stripe count                                    | 2000                                                  | 2000                    | Limit is 160 for Idiskfs if "ea_inode" feature is not enabled on MDT |
| Maximum stripe size                                     | < 4GB                                                 | < 4GB                   |                                                                      |
| Minimum stripe size                                     | 64KB                                                  | 64KB                    |                                                                      |
| Maximum object size                                     | 16TB                                                  | 256TB                   |                                                                      |
| Maximum file size                                       | 31.25PB                                               | 512PB*                  |                                                                      |
| Maximum file system size                                | 512PB                                                 | 8EB*                    |                                                                      |
| Maximum number of files or subdirectories per directory | 10M for 48-byte filenames. 5M for 128-byte filenames. | <b>2</b> <sup>48</sup>  |                                                                      |
| Maximum number of files in the file system              | 4 billion per MDT                                     | 256 trillion per MDT    |                                                                      |
| Maximum filename length                                 | 255 bytes                                             | 255 bytes               |                                                                      |
| Maximum pathname length                                 | 4096 bytes                                            | 4096 bytes              | Limited by Linux VFS                                                 |

Tabelle über die Skalierbarkeit von wiki.lustre.org [2]





### Lustre Networking (LNET)

- Netzwerk API: LNET
- Vermittelt zwischen Clients und Server
- Verschiedene Typen unterstützt
  - Ethernet, Infiniband...



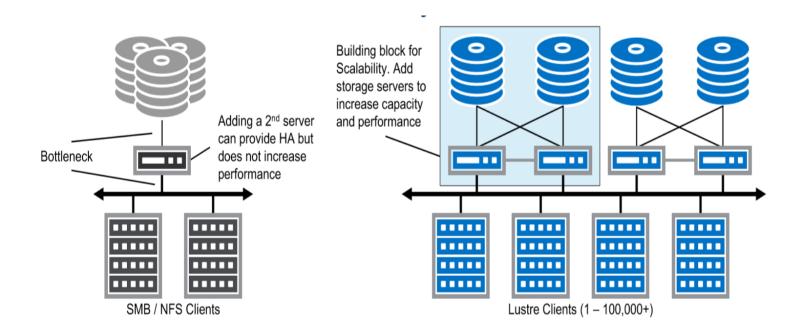


## Konfiguration

- 1 MGS + MGT
- 1 MDS + MDT
- 1 OSS + OST

- MGS und MDS verbunden
- 2 MDS + MDT

■ 2 OSS + OST


Mindestanforderung

Hohe verfügbarkeit





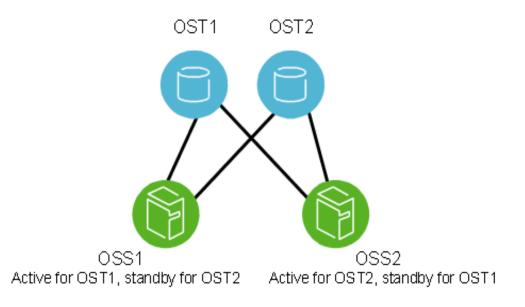
### Konfiguration

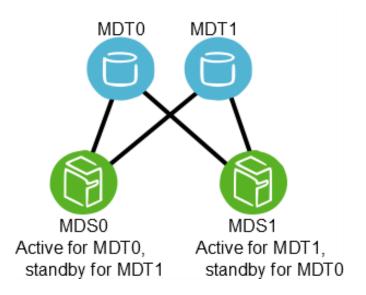


Vergleich von herkömmlichen Dateisystemen und Lustre von wiki.lustre.org [3]






#### Failover


- Failover-Konfiguration sichert Ausführung bei Serverausfall
- MDS, MGS und OSS unterstützen Failover
- Anordnung in Paaren
- Aktiv-Passiv für MDS und MGS
- Aktiv-Aktiv für OSS
- Transaction log





#### Failover





Aufbau von Failoverpaaren von doc.lustre.org [4]





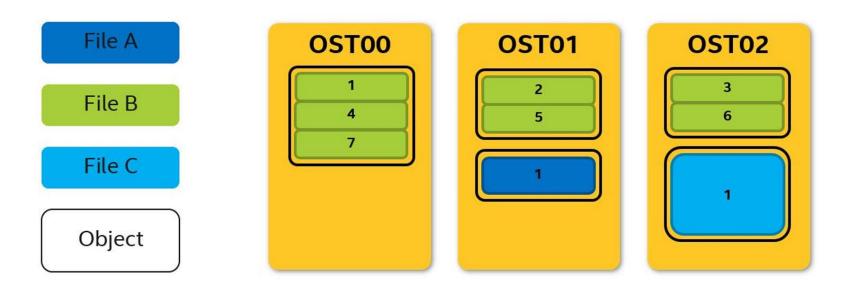
#### Failover



Aufbau eines Lustre Dateisystems von wiki.lustre.org [1]






### Striping

- Dateien werden über mehrere OST verteilt
- Dateigröße wird nicht durch OST Kapazität limitiert
- Schnelleres Speichern oder Lesen durch paralleles
  Speichern
- Datei kann auf bis zu 2000 OST verteilt warden
- Round Robin Algorithmus verteilt Dateien fortlaufend





## Striping



Schema von Striping von Intel [5]



### Verwendung

- Supercomputer
- Aufwendige Berechnungen
  - Z.B. Wetterprognosen
- Zeitkritische Berechnungen
- Sehr weit verbreitet



## Aktuelle Entwicklung

- Keine Lustre Kernel Patches mehr
  - Einfachere und Kernelunabhängige Installation
- Komprimierung von Daten auf Clients und Server



## Zusammenfassung

- Hohe Verfügbarkeit durch Failover
- Erhöhte Kapazität und Durchsatz durch parallel Zugriff
- Open Source



# Fragen?



#### Abbildungen:

http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf Seite 5 [1]

http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf Seite 8 [2]

http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf Seite 9 [3]

http://doc.lustre.org/lustre manual.xhtml [4]

https://www.intel.com/content/dam/www/public/us/en/documents/training/lustre-file-striping.pdf Seite 13 [5]

Jeweils letzter Aufruf am 07.01.2019



https://en.wikipedia.org/wiki/Lustre (file system)

https://www.sysgen.de/lustre-parallel-filesystem.html

http://www.linux-magazin.de/ausgaben/2007/11/need-for-speed/7/

http://berrendorf.inf.h-brs.de/lehre/ss05/parsys/s Lustre.pdf

https://www.intel.com/content/dam/www/public/us/en/doc uments/training/lustre-file-striping.pdf

https://www.nextplatform.com/2016/05/23/lustre-daos-machine-learning-intels-platform/

Jeweils letzter Aufruf am 07.01.2019



http://wiki.lustre.org/Projects

http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf

https://wr.informatik.uni-

hamburg.de/ media/teaching/sommersemester 2015/hea-

15-parallele verteilte dateisysteme.pdf

http://www.scc.kit.edu/scc/docs/Lustre/Riehm-Lustre.pdf

https://en.wikipedia.org/wiki/Round-robin\_scheduling

Jeweils letzter Aufruf am 07.01.2019