
P. Correa Gómez - Linux Kernel Profiling 1/21

Linux Kernel Profiling

Pablo Correa Gómez

Universität Hamburg
Scientific Computing // Wissenschaftliches Rechnen

Efficient Programming Seminar

Wednesday, January 27, 2021

P. Correa Gómez - Linux Kernel Profiling 2/21

Outline

1. Motivation

2. Kernel profiling: What is the matter?

3. Kernel core profiling

4. Conclusion

P. Correa Gómez - Linux Kernel Profiling 3/21

Outline

1. Motivation

2. Kernel profiling: What is the matter?

3. Kernel core profiling

4. Conclusion

P. Correa Gómez - Linux Kernel Profiling 4/21

Motivation

 Profiling: Measuring performance/resource usage of a program

 Big-picture (most common routines) and small-picture (optimize)

 Related to debugging, e.g: Program spends a lot of time in a piece
of code

 The kernel is always special (and a critical component)

[https://tse2.mm.bing.net]

P. Correa Gómez - Linux Kernel Profiling 5/21

(Linux) Kernel in a Nutshell

 Kernel: The program that controls hardware

 Also memory management, processes or I/O

 The one program always running

 Everything else needs the kernel

 Linux: hybrid architecture: monolithic core + module

 Core responsible for functional basics. Always running

 Modules extend functionality. Can be loaded and unloaded

P. Correa Gómez - Linux Kernel Profiling 6/21

Kernel core profiling: What is the matter? Timing

 Init is the “initial” program, that starts
everything else (graphical session, network
connectivity, etc.)

 Linux starts running before init

 Linux processes keeps running after init!

 Last thing that stops

[debian-handbook]

P. Correa Gómez - Linux Kernel Profiling 7/21

Kernel core profiling: What is the matter? Usage

 Kernel manages hardware
resources → Used by ALL
processes
 System call: Function call to
request something to the kernel
 You might have used them
without knowing, e.g: “open”

 Non-sense to run/profile kernel
just by itself!

Linux User and Kernel space[2]

P. Correa Gómez - Linux Kernel Profiling 8/21

Kernel core profiling: What is the matter? Practicalities

 Common profilers of two types[3]:

 Instrumentation → Require special compilation with symbols

 Sampling → Periodically stop the program + record program counter

 Both types:

 Generate data after program exits

 Stop the process to record status

P. Correa Gómez - Linux Kernel Profiling 9/21

Kernel profiling: What is the matter?

 Kernel core profiling intrinsically different to application profiling:
 First thing to start, last to exit

 EVERYTHING uses the kernel

 Cannot be stopped without halting the system

 Only program that needs a reboot to be updated

 Kernel modules: Can be dynamically loaded and unloaded →
Some properties from application profiling

 Kernel by itself does NOTHING useful. To profile, we need
programs running!

P. Correa Gómez - Linux Kernel Profiling 10/21

Kernel core profiling

 Specialist tools

 Some built into the kernel

 Introduce oprofile

 Discuss further about perf

P. Correa Gómez - Linux Kernel Profiling 11/21

Kernel core profiling: oprofile

 External to linux

 Built as kernel module

 Samples registers and
Program Counters via interrupts

 Uses CPU’s Performance
Monitoring Unit (PMU) when
possible

 Collected via the Linux Kernel
Performance Events Subsystem
(perf_events)

P. Correa Gómez - Linux Kernel Profiling 12/21

Kernel core profiling: perf

 Built into the kernel: tools/perf

 Also uses perf_events

 Provides information about “events”. Generic and HW specific

 Also useful for debugging/tracing

P. Correa Gómez - Linux Kernel Profiling 13/21

Kernel core profiling: perf

 Many kind of events
 Provide information from:

 CPU’s Performance Monitoring
Unit (PMU): instructions, cycles,
caching

 Kernel software counters: page
faults, cpu migrations

 In-kernel Tracepoints

 Other metrics

 Can have modifiers: u, k, H, ...
 “perf list” to inspect

P. Correa Gómez - Linux Kernel Profiling 14/21

Kernel core profiling: Perf basics

 Very versatile tool:

 System-wide and per-process events

 Consider only specific cores

 Collects and display events of execution (perf stat)

 Store detailed profiling in file + inspect (perf record + perf report)

 performance counter profile in real time (perf top)

 For HW events: multiplexing and scaling if not enough PMUs

P. Correa Gómez - Linux Kernel Profiling 15/21

Kernel core profiling: Advanced Perf

 Dynamically define tracepoints (perf probe)
 Provide benchmark suites (perf bench)
 Analyze shared cache (perf c2c)
 Analyze kvm host and guest (perf kvm)
 Other detailed kernel-internal statistics:

 Memory (perf kmen and perf mem)

 Scheduler (perf sched)

 Locking (perf lock)

 And more!

P. Correa Gómez - Linux Kernel Profiling 16/21

Kernel core profiling: perf stat

 Provides statistics of events for the time running
 System-wide (-a) or a specific pid (-p) or command
 Is not sampling based! But real counts between start and end
 Can repeatedly run a command and provide statistics

P. Correa Gómez - Linux Kernel Profiling 17/21

Kernel core profiling: perf record + perf report

 “perf record”: run a command (or pid or system-wide) and sample
events

 Two types of sampling:
 “-F, --freq”: Frequency to sample counters. Default

 “-c, --count”: Interrupt at count number of events

 Generate output: perf.data

 “perf report”: presents results

 Can create call graphs

P. Correa Gómez - Linux Kernel Profiling 18/21

Kernel core profiling: perf record + perf report

P. Correa Gómez - Linux Kernel Profiling 19/21

Kernel core profiling: perf top

 Realtime sampling of events
 Can select specific cores
 Useful for first look into what is happening
 Cannot specify command like previous examples

P. Correa Gómez - Linux Kernel Profiling 20/21

Kernel core profiling: Conclusion

 Kernel profiling is special

 But specialist tools exist

 Require extensive knowledge about kernel internals

 perf is hard, but extremely powerful

P. Correa Gómez - Linux Kernel Profiling 21/21

References

 [1] https://infoslack.com/images/linux-arquitetura.png
 [2] Susan L. Graham Peter B. Kessler Marshall K. McKusick,
gprof: a Call Graph Execution Profiler:
https://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
 [3] Adeneo Embedded, Embedded Linux Conference Europe
2013, Linux Kernel Debugging And Profiling Tools
 [4] Elena Zannoni, Oracle America, Tracing on Linux Updates
 [5] oprofile documentation: https://oprofile.sourceforge.io/doc/
 [6] perf Tutorial: https://perf.wiki.kernel.org/index.php/Tutorial
 [7] perf: https://www.man7.org/linux/man-pages/man1/perf.1.html

https://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
https://oprofile.sourceforge.io/doc/
https://perf.wiki.kernel.org/index.php/Tutorial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

