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Motivation

 Profiling: Measuring performance/resource usage of a program

 Big-picture (most common routines) and small-picture (optimize)

 Related to debugging, e.g: Program spends a lot of time in a piece 
of code

 The kernel is always special (and a critical component)

[https://tse2.mm.bing.net]
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(Linux) Kernel in a Nutshell

 Kernel: The program that controls hardware

 Also memory management, processes or I/O

 The one program always running

 Everything else needs the kernel

 Linux: hybrid architecture: monolithic core + module

 Core responsible for functional basics. Always running

 Modules extend functionality. Can be loaded and unloaded
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Kernel core profiling: What is the matter? Timing 

 Init is the “initial” program, that starts 
everything else (graphical session, network 
connectivity, etc.)

 Linux starts running before init

 Linux processes keeps running after init!

 Last thing that stops

[debian-handbook]
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Kernel core profiling: What is the matter? Usage 

 Kernel manages hardware 
resources → Used by ALL 
processes
 System call: Function call to 
request something to the kernel
 You might have used them 
without knowing, e.g: “open”

 Non-sense to run/profile kernel 
just by itself!

Linux User and Kernel space[2]
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Kernel core profiling: What is the matter? Practicalities

 Common profilers of two types[3]:

 Instrumentation → Require special compilation with symbols

 Sampling → Periodically stop the program + record program counter

 Both types:

 Generate data after program exits

 Stop the process to record status
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Kernel profiling: What is the matter?

 Kernel core profiling intrinsically different to application profiling:
 First thing to start, last to exit

 EVERYTHING uses the kernel

 Cannot be stopped without halting the system

 Only program that needs a reboot to be updated

 Kernel modules: Can be dynamically loaded and unloaded → 
Some properties from application profiling

 Kernel by itself does NOTHING useful. To profile, we need 
programs running!
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Kernel core profiling

 Specialist tools

 Some built into the kernel

 Introduce oprofile

 Discuss further about perf
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Kernel core profiling: oprofile 

 External to linux

 Built as kernel module

 Samples registers and 
Program Counters via interrupts

 Uses CPU’s Performance 
Monitoring Unit (PMU) when 
possible

 Collected via the Linux Kernel 
Performance Events Subsystem 
(perf_events) 
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Kernel core profiling: perf

 Built into the kernel: tools/perf

 Also uses perf_events

 Provides information about “events”. Generic and HW specific

 Also useful for debugging/tracing
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Kernel core profiling: perf

 Many kind of events
 Provide information from:

 CPU’s Performance Monitoring 
Unit (PMU): instructions, cycles, 
caching

 Kernel software counters: page 
faults, cpu migrations

 In-kernel Tracepoints

 Other metrics

 Can have modifiers: u, k, H, ... 
 “perf list” to inspect
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Kernel core profiling: Perf basics

 Very versatile tool:

 System-wide and per-process events

 Consider only specific cores

 Collects and display events of execution (perf stat)

 Store detailed profiling in file + inspect (perf record + perf report) 

 performance counter profile in real time (perf top)

 For HW events: multiplexing and scaling if not enough PMUs
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Kernel core profiling: Advanced Perf

 Dynamically define tracepoints (perf probe)
 Provide benchmark suites (perf bench)
 Analyze shared cache (perf c2c)
 Analyze kvm host and guest (perf kvm)
 Other detailed kernel-internal statistics:

 Memory (perf kmen and perf mem)

 Scheduler (perf sched)

 Locking (perf lock)

 And more!
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Kernel core profiling: perf stat

 Provides statistics of events for the time running
 System-wide (-a) or a specific pid (-p) or command
 Is not sampling based! But real counts between start and end
 Can repeatedly run a command and provide statistics 
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Kernel core profiling: perf record + perf report

 “perf record”: run a command (or pid or system-wide) and sample 
events

 Two types of sampling:
 “-F, --freq”: Frequency to sample counters. Default

 “-c, --count”: Interrupt at count number of events

 Generate output: perf.data

 “perf report”: presents results

 Can create call graphs 
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Kernel core profiling: perf record + perf report
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Kernel core profiling: perf top

 Realtime sampling of events
 Can select specific cores
 Useful for first look into what is happening
 Cannot specify command like previous examples
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Kernel core profiling: Conclusion 

 Kernel profiling is special

 But specialist tools exist

 Require extensive knowledge about kernel internals

 perf is hard, but extremely powerful
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