
P. Correa Gómez - Linux Kernel Profiling 1/21

Linux Kernel Profiling

Pablo Correa Gómez

Universität Hamburg
Scientific Computing // Wissenschaftliches Rechnen

Efficient Programming Seminar

Wednesday, January 27, 2021

P. Correa Gómez - Linux Kernel Profiling 2/21

Outline

1. Motivation

2. Kernel profiling: What is the matter?

3. Kernel core profiling

4. Conclusion

P. Correa Gómez - Linux Kernel Profiling 3/21

Outline

1. Motivation

2. Kernel profiling: What is the matter?

3. Kernel core profiling

4. Conclusion

P. Correa Gómez - Linux Kernel Profiling 4/21

Motivation

 Profiling: Measuring performance/resource usage of a program

 Big-picture (most common routines) and small-picture (optimize)

 Related to debugging, e.g: Program spends a lot of time in a piece
of code

 The kernel is always special (and a critical component)

[https://tse2.mm.bing.net]

P. Correa Gómez - Linux Kernel Profiling 5/21

(Linux) Kernel in a Nutshell

 Kernel: The program that controls hardware

 Also memory management, processes or I/O

 The one program always running

 Everything else needs the kernel

 Linux: hybrid architecture: monolithic core + module

 Core responsible for functional basics. Always running

 Modules extend functionality. Can be loaded and unloaded

P. Correa Gómez - Linux Kernel Profiling 6/21

Kernel core profiling: What is the matter? Timing

 Init is the “initial” program, that starts
everything else (graphical session, network
connectivity, etc.)

 Linux starts running before init

 Linux processes keeps running after init!

 Last thing that stops

[debian-handbook]

P. Correa Gómez - Linux Kernel Profiling 7/21

Kernel core profiling: What is the matter? Usage

 Kernel manages hardware
resources → Used by ALL
processes
 System call: Function call to
request something to the kernel
 You might have used them
without knowing, e.g: “open”

 Non-sense to run/profile kernel
just by itself!

Linux User and Kernel space[2]

P. Correa Gómez - Linux Kernel Profiling 8/21

Kernel core profiling: What is the matter? Practicalities

 Common profilers of two types[3]:

 Instrumentation → Require special compilation with symbols

 Sampling → Periodically stop the program + record program counter

 Both types:

 Generate data after program exits

 Stop the process to record status

P. Correa Gómez - Linux Kernel Profiling 9/21

Kernel profiling: What is the matter?

 Kernel core profiling intrinsically different to application profiling:
 First thing to start, last to exit

 EVERYTHING uses the kernel

 Cannot be stopped without halting the system

 Only program that needs a reboot to be updated

 Kernel modules: Can be dynamically loaded and unloaded →
Some properties from application profiling

 Kernel by itself does NOTHING useful. To profile, we need
programs running!

P. Correa Gómez - Linux Kernel Profiling 10/21

Kernel core profiling

 Specialist tools

 Some built into the kernel

 Introduce oprofile

 Discuss further about perf

P. Correa Gómez - Linux Kernel Profiling 11/21

Kernel core profiling: oprofile

 External to linux

 Built as kernel module

 Samples registers and
Program Counters via interrupts

 Uses CPU’s Performance
Monitoring Unit (PMU) when
possible

 Collected via the Linux Kernel
Performance Events Subsystem
(perf_events)

P. Correa Gómez - Linux Kernel Profiling 12/21

Kernel core profiling: perf

 Built into the kernel: tools/perf

 Also uses perf_events

 Provides information about “events”. Generic and HW specific

 Also useful for debugging/tracing

P. Correa Gómez - Linux Kernel Profiling 13/21

Kernel core profiling: perf

 Many kind of events
 Provide information from:

 CPU’s Performance Monitoring
Unit (PMU): instructions, cycles,
caching

 Kernel software counters: page
faults, cpu migrations

 In-kernel Tracepoints

 Other metrics

 Can have modifiers: u, k, H, ...
 “perf list” to inspect

P. Correa Gómez - Linux Kernel Profiling 14/21

Kernel core profiling: Perf basics

 Very versatile tool:

 System-wide and per-process events

 Consider only specific cores

 Collects and display events of execution (perf stat)

 Store detailed profiling in file + inspect (perf record + perf report)

 performance counter profile in real time (perf top)

 For HW events: multiplexing and scaling if not enough PMUs

P. Correa Gómez - Linux Kernel Profiling 15/21

Kernel core profiling: Advanced Perf

 Dynamically define tracepoints (perf probe)
 Provide benchmark suites (perf bench)
 Analyze shared cache (perf c2c)
 Analyze kvm host and guest (perf kvm)
 Other detailed kernel-internal statistics:

 Memory (perf kmen and perf mem)

 Scheduler (perf sched)

 Locking (perf lock)

 And more!

P. Correa Gómez - Linux Kernel Profiling 16/21

Kernel core profiling: perf stat

 Provides statistics of events for the time running
 System-wide (-a) or a specific pid (-p) or command
 Is not sampling based! But real counts between start and end
 Can repeatedly run a command and provide statistics

P. Correa Gómez - Linux Kernel Profiling 17/21

Kernel core profiling: perf record + perf report

 “perf record”: run a command (or pid or system-wide) and sample
events

 Two types of sampling:
 “-F, --freq”: Frequency to sample counters. Default

 “-c, --count”: Interrupt at count number of events

 Generate output: perf.data

 “perf report”: presents results

 Can create call graphs

P. Correa Gómez - Linux Kernel Profiling 18/21

Kernel core profiling: perf record + perf report

P. Correa Gómez - Linux Kernel Profiling 19/21

Kernel core profiling: perf top

 Realtime sampling of events
 Can select specific cores
 Useful for first look into what is happening
 Cannot specify command like previous examples

P. Correa Gómez - Linux Kernel Profiling 20/21

Kernel core profiling: Conclusion

 Kernel profiling is special

 But specialist tools exist

 Require extensive knowledge about kernel internals

 perf is hard, but extremely powerful

P. Correa Gómez - Linux Kernel Profiling 21/21

References

 [1] https://infoslack.com/images/linux-arquitetura.png
 [2] Susan L. Graham Peter B. Kessler Marshall K. McKusick,
gprof: a Call Graph Execution Profiler:
https://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
 [3] Adeneo Embedded, Embedded Linux Conference Europe
2013, Linux Kernel Debugging And Profiling Tools
 [4] Elena Zannoni, Oracle America, Tracing on Linux Updates
 [5] oprofile documentation: https://oprofile.sourceforge.io/doc/
 [6] perf Tutorial: https://perf.wiki.kernel.org/index.php/Tutorial
 [7] perf: https://www.man7.org/linux/man-pages/man1/perf.1.html

https://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf
https://oprofile.sourceforge.io/doc/
https://perf.wiki.kernel.org/index.php/Tutorial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

